BIOCHEMICAL COMPARISON OF RICE WINE PRODUCED USING COMMON AND GLUTINOUS RICE WITH THREE DIFFERENT TRADITIONAL STARTER CAKES

KISHNETH PALANIVELOO

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION
UNIVERSITI MALAYSIA SABAH
2010
UNIVERSITI MALAYSIA SABAH
BORANG PENGENSAHAN STATUS TESIS

JUDUL : BIOCHEMICAL COMPARISON OF RICE WINE PRODUCED USING COMMON AND GLUTINOUS RICE WITH THREE DIFFERENT TRADITIONAL STARTER CAKES

IJAZAH : SARJANA SAINS (S.Sn)

SAYA : KISHNETH PALANIVELOO SESI PENGAJIAN : 2008/2010

Mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut :-

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ / TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap: 133, Jalan Tanjung, Taman Bunga Raya, 08000 Sungai Petani, Kedah Darul Aman

Tarikh: 09-08-2010

(TANDATANGAN PUSTAKAWAN)

Disahkan Oleh:

PROF MADA YA DR CHARLES S. VAIRAPPAN

(TARIKH: 09-08-2010)
DECLARATION

I declare that the work presented in this thesis is to the best of my knowledge and belief, original and my own work except as acknowledged in the text.

7 JUNE 2010

[Signature]

KISHNETH PALANIVELOO
PP2007-8429
VERIFICATION

NAME : KISHNETH PALANIVELOO
MATRIC NO : PP2007-8429
TITLE : BIOCHEMICAL COMPARISON OF RICE WINE PRODUCED USING COMMON AND GLUTINOUS RICE WITH THREE DIFFERENT TRADITIONAL STARTER CAKES.

DEGREE : MASTER OF SCIENCE
VIVA DATE : 20 JULY 2010

VERIFIED BY

1. SUPERVISOR
 (ASSOC. PROF. DR CHARLES S. VAIRAPPAN)

Signature
ACKNOWLEDGEMENT

The completion of this research thesis involved the support and contribution of several parties along the way. Therefore as appreciation I would like to convey my heartfelt gratitude.

Firstly, I would like to express my heartfelt gratitude to my supervisor Associate Professor Dr. Charles Santhanaraju Vairappan for his undivided attention and guidance which led me to the successful completion of this thesis.

Next, I wish to thank my parents, Mr and Mrs Palaniveloo Sinayah for their neverending support being it financial or morally and patience for the 6 years spent away from home pursuing my studies at Universiti Malaysia Sabah.

I would like to extend my gratitude to the Director of Institute of Tropical Biology and Conservation (ITBC) for sufficient facilities made available for the completion of this research. Heartfelt thanks to its staffs as well for their voluntary participating in questionnaires pertaining to the research conducted and not forgetting a group of Conservation Biology students of the Batch 2006/2009 who contributed a handful in the process of obtaining the samples for this research. Special thanks to the Natural Products Chemistry lab assistant, Julianah Joseph for supplying starter cultures all the way from Tamparuli and to Madam Rinduh bte Lian of Kg.Tenghilan for her demonstration of traditional wine making which was the basis for this research.

Finally, I would also like to thank all those whose name has not been mentioned here but has played a role in contributing to my thesis. All the wonderful moments and learning experience with all of you will be deeply engraved in my heart.

Once again, THANKS! to all...

Kishneth Palaniveloo
7 June 2010
ABSTRACT

BIOCHEMICAL COMPARISON OF RICE WINE PRODUCED USING COMMON AND GLUTINOUS RICE WITH THREE DIFFERENT TRADITIONAL STARTER CAKES.

Rice wine or 'tapai' is one of the traditional alcoholic beverages, which has been produced in Sabah for ages and is used in most of the cultural rituals and ceremonies. This study delves on the chemical characterization of rice wine produced from common and glutinous rice using three different traditional starter cakes; 1) bitter, 2) bitter sweet, 3) sweet. Each batch of fermentation involving one type of rice and starter cake lasted for 4 weeks and the wine collected were separated from its rice, and the fermented rice was extracted in ethanol to yield crude extract. Sweet starter cake had the highest yeast/LAB load followed by bitter sweet and bitter and accordingly resulted in and weight reduction of substrate at an average of 450 %, 230 % and 210 % respectively. The volume of wine produced by glutinous rice was twice the volume produced by common rice. pH of the wines was in the range of 4.3 and 4.7. Morphological changes in the rice grain during fermentation were observed through scanning electron micrographs (SEM) and the presence of yeast/LAB growth and changes to the rice grains were observed. High Performance Liquid Chromatography analysis of the wine revealed that wine produced from common rice with its respective starter cake contained much lower glucose content [1) Bitter : 120.643 ± 0.21 mg/ml, 2) Bitter-Sweet : 270.42 ± 0.32 mg/ml, 3) Sweet : 310.326 ± 5.83 mg/ml] as compared to glutinous rice [1)Bitter : 300.274 ± 0.28 mg/ml, 2) Sweet and bitter : 320.251 ± 0.00 mg/ml, 3) Sweet : 440.138 ± 29.97 mg/ml]. However, gas chromatography analysis showed that rice wine produced from common rice had comparatively higher alcohol percentage; 9 % to 12 % as compared to glutinous rice; 7 % to 8 %. The difference in wine taste could be attributed to the varying type and amounts of organic acids and metabolites contained in the starter cakes and produced during the fermentation process. Gas Chromatography analysis revealed details of this complex composition. Comparison of these chemicals between their starter cake, wine and fermented rice is discussed. Ethanolic extract of the respective fermented rice contained low glucose levels but showed strong antioxidant and potent fibrinolytic enzyme activities, with bitter sweet starter cake displaying the best of results. Antioxidant potential of fermented rice extracts of common rice displayed higher scavenging activity compared to glutinous rice, while common rice wine displayed higher antioxidant values compared to glutinous rice wine. Fibrinolytic enzyme activities were present in fermented rice extracts, and extracts of common rice showed double the activity by diameter as compared to glutinous rice for all three starters. In summary, fermentation using different rice types with different starter cakes confirms the difference in chemical properties as well as bioactive potentials of the rice wine and fermented rice.
ABSTRAK

Tapai atau 'rice wine' merupakan salah satu minuman beralkohol tradisional yang telah dihasilkan di Sabah sejak berkurun lamanya dan digunakan dalam kebanyakan upacara dan keramaian. Kajian ini melibatkan penyelidikan terhadap ciri-ciri kimia tapai yang dihasilkan daripada beras putih dan pulut menggunakan tiga ragi berbeza; 1) pahit, 2) pahit manis, 3) manis. Setiap set penapalan yang melibatkan salah satu beras dan ragi mengambil masa 4 minggu. Tapai yang dihasilkan telah diasikan daripada nasi yang seterusnya diekstrak dengan ethanol untuk mendapatkan ekstraknya. Ragi manis mempunyai kandungan yis/LAB tertinggi diikuti ragi pahit manis serta ragi pahit dan dalam urutan sedemikian perubahan berat substrat untuk penapalan adalah dalam purata 450 %, 230 % dan 210 % masing-masing. Isipadu arak yang dihasilkan beras pulut adalah dua kali ganda arak yang dihasilkan oleh beras biasa. pH semua arak berada dalam julat 4.3 dan 4.7. Perubahan morfologi butiran nasi sewaktu penapalan diteliti melalui mikrograf pengimbasan elektron (SEM) dan kehadiran yis/LAB serta perubahan terhadap butiran nasi juga diteliti. Analisis Kromatografi Cair Kinerja Tinggi menunjukkan alkohol yang dihasilkan menggunakan beras biasa dengan ragi berlainan mengandungi kandungan glukosa yang lebih rendah (1) Pahit : 120.643 ± 0.21 mg/ml, 2) Pahit manis : 270.42 ± 0.32 mg/ml, 3) Manis : 310.326 ± 5.83 mg/ml) berbanding beras pulut (1) Pahit : 300.274 ± 0.28 mg/ml, 2) Pahit manis : 320.251 ± 0.00 mg/ml, 3) Manis : 440.138 ± 29.97 mg/ml). Bagaimanapun, analisis kromatografi gas menunjukkan tapai yang dihasilkan dari beras biasa mempunyai kandungan alkohol yang lebih tinggi; 9 % hingga 12 % berbanding beras pulut; 7 % hingga 8 %. Perbezaan dari segi rasa pula boleh dikaitkan dengan jumlah dan kepelbagaian asid organik dan unsur-unsur yang terkandung dalam ragi dan yang dihasilkan semasa proses penapalan. Analisis kromatografi gas telah memberi data yang lebih mendalam berkzena komposisi kompleks ini. Perbezaan kandungan kimia antara ragi, tapai dan nasi hasil penapalan juga telah dikaji. Ekstrak ethanol nasi hasil penapalan mengandungi kandungan glukosa yang rendah tetapi menunjukkan keupayaan antioksidan dan aktiviti enzim fibrinolitik yang kuat dengan hasil ragi pahit manis memberi keputusan terbaik. Keupayaan antioksidan ekstrak nasi biasa menunjukkan kebolehan 'scavenging' yang lebih tinggi berbanding ekstrak nasi pulut, manakala tapai beras biasa memberi bacaan antioksidan yang lebih tinggi berbanding hasil beras pulut. Aktiviti enzim fibrinolitik adalah ketara pada ekstrak nasi dan ekstrak nasi biasa menunjukkan aktiviti dua kali ganda lebih kuat dari segi diameter daripada ekstrak nasi pulut bagi ketiga-tiga ragi. Secara kesimpulan, penapalan menggunakan jenis beras berbeza dengan ragi berbeza pastinya menunjukkan perbezaan dari segi kandungan kimia dan potensi bioaktif tapai dan nasi hasil penapalan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Food and Fermentation | 1 |
1.2 Benefits of Fermentation | 2 |
1.3 Rice Wine of Sabah | 3 |
1.4 Objectives | 4 |
1.5 Significance of Study | 5 |

CHAPTER 2: LITERATURE REVIEW

2.1 Fermented Food | 6 |
2.2 Types of Fermentation | 6 |
2.2.1 High Salt Savory Flavoured Amino/ Peptide Sauces and Pastes | 7 |
2.2.2 Lactic Acid Fermentation | 7 |
2.2.3 Alcoholic Fermentation | 8 |
2.2.4 Acetic Acid Fermentation | 9 |
2.2.5 Alkaline Fermentation | 9 |
2.2.6 Leavened Bread Fermentation | 9 |
2.2.7 Mixed Acid Fermentation | 10 |
2.3 Fermented Beverage | 10 |
2.3.1 Japanese ‘Sake’ | 11 |
2.3.2 Chinese Rice Wine | 11 |
2.3.3 Red and White Wine | 12 |
2.3.4 Other world beverages | 13 |
2.4 Biochemical Studies on Fermented Beverage | 14 |
2.4.1 Microbial Diversity | 14 |
2.4.2 Chemical Profile | 16 |
2.5 Health Benefits | 18 |
2.5.1 Increased Bone Density | 18 |
2.5.2 Reduced Cardiovascular Risk | 19 |
2.5.3 Gastritis, Ulcer and Cancer | 20 |
2.5.4 Antioxidant Potential | 20 |
2.6 Fermented Product Market | 21 |
2.7 Conversation of Traditional Knowledge

CHAPTER 3: METHODOLOGY

3.1 Pre-Fermentation
3.2 Post-Fermentation
3.3 Scanning Electron Microscope (SEM) Imaging
3.4 Chemical Extraction of Fermented Rice
3.5 Chemical Profiling of Rice Wine and Fermented Rice Extract
 3.5.1 Thin Layer Chromatography (TLC)
 3.5.2 Preparative Thin Layer Chromatography (PTLC)
 3.5.3 High Performance Liquid Chromatography (HPLC)
 3.5.4 Gas Chromatography Mass Spectrometer (GCMS) Analysis
 3.5.5 Nuclear Magnetic Resonance (NMR)
3.6 Yeast/Lactic Acid Bacteria (LAB) Enumeration
 3.6.1 Enumeration of Starter Cakes
 3.6.2 Enumeration of Fermented Rice/Wine
 3.6.3 Preparation of de Man, Rogosa, and Sharpe (MRS) Agar
 3.6.4 Preparation of Dicloran Rose Bengal Choramphenicol (DRBC) Agar
3.7 Antibacterial Bioassay
 3.7.1 Preparation of Nutrient Agar (NA)
 3.7.2 Preparation of Nutrient Broth (NB)
3.8 Antioxidant Assay
3.9 Fibrinolytic Enzyme Assay
3.10 Statistical Analysis

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Limitations of Study
4.2 Documentation of Traditional Knowledge in Rice Wine Making
4.3 Fermentation Profile
 4.3.1 Yeast/Lactic Acid Bacteria Count for Starter Cakes
 4.3.2 Yeast/Lactic Acid Bacteria Increment During Fermentation
 4.3.3 Weight of Rice Before and After Fermentation
 4.3.4 Yield of wine
 4.3.5 pH
4.4 Scanning Electron Microscope (SEM) Imaging
4.5 Chemical Profiling
 4.5.1 Thin Layer Chromatography (TLC) of Starter Cake
 4.4.2 Thin Layer Chromatography (TLC) of Fermented Rice and Wine
4.6 Sugar Analysis
 4.6.1 Rice Wine
 4.6.2 Fermented Rice
4.7 Alcohol Content
4.8 Volatile Hydrocarbons
4.9 Biological Assay/ Bioactive Potential Evaluation
 4.9.1 Antibacterial Assay
 4.9.2 Antioxidant Test
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Volatile compounds formed during cereal fermentation</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Retention factors (Rf) values of visible (blue) spots on TLC</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Retention factors (Rf) value for visible (blue) spots of common and glutinous rice wine.</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Retention factors (Rf) value for visible (blue) spots of common and glutinous rice extract.</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Volatile Compounds from Common Rice Wines of Different Starter Cakes based on GCMS analysis.</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Volatile Compounds from Glutinous Rice Wines of Different Starter Cakes based on GCMS analysis.</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Volatile Compounds from Common Rice Cakes of Different Starter Cakes based on GCMS analysis.</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Volatile Compounds from Glutinous Rice Cakes of Different Starter Cakes based on GCMS analysis.</td>
</tr>
<tr>
<td>Table A-1</td>
<td>Total Yeast/LAB Count for Starter Cakes</td>
</tr>
<tr>
<td>Table A-2</td>
<td>Summary of Yeast/LAB Count for Starter Cakes</td>
</tr>
<tr>
<td>Table B-1</td>
<td>Total Yeast/LAB Count for Common Rice Fermentation (DRBC)</td>
</tr>
<tr>
<td>Table B-2</td>
<td>Summary of Yeast/LAB Count for Common Rice Fermentation (DRBC)</td>
</tr>
<tr>
<td>Table B-3</td>
<td>Total Yeast/LAB Count for Glutinous Rice Fermentation (DRBC)</td>
</tr>
<tr>
<td>Table B-4</td>
<td>Summary of Yeast/LAB Count for Glutinous Rice Fermentation (DRBC)</td>
</tr>
<tr>
<td>Table B-5</td>
<td>Total Yeast/LAB Count for Common Rice Fermentation (MRS)</td>
</tr>
<tr>
<td>Table B-6</td>
<td>Summary of Yeast/LAB Count for Common Rice Fermentation (MRS)</td>
</tr>
</tbody>
</table>
Table B-7: Total Yeast/LAB Count for Glutinous Rice Fermentation (MRS) 98
Table B-8: Summary of Yeast/LAB Count for Glutinous Rice Fermentation (MRS) 98
Table C-1: Summary of Rice Wine Data 99
Table C-2: Summary of Rice Cake Data 100
Table C-3: Summary of Fixed Factors 101
Table C-4: Raw Data for Rice Wine in Triplicates 101
Table C-5: Descriptive Statistics for Rice Wine 102
Table C-6: Tests of Between-Subjects Effects for Rice Wine 103
Table C-7: Raw Data for Fermented Rice in Triplicates 104
Table C-8: Descriptive Statistics for Fermented Rice 105
Table C-9: Tests of Between-Subjects Effects for Fermented Rice 106
Table F-1: Area below the graph values for 1% and 10% alcohol concentration 117
Table H-1: Absorbance Value and Percentage Inhibition of Ascorbic Acid 134
Table H-2: Absorbance Value and Percentage Inhibition of Common Bitter Rice Cake 135
Table H-3: Absorbance Value and Percentage Inhibition of Common Bitter Sweet Rice Cake 136
Table H-4: Absorbance Value and Percentage Inhibition of Common Sweet Rice Cake 137
Table H-5: Absorbance Value and Percentage Inhibition of Glutinous Bitter Rice Cake 138
Table H-6: Absorbance Value and Percentage Inhibition of Glutinous Bitter Sweet Rice 139
Table H-7: Absorbance Value and Percentage Inhibition of Glutinous Sweet Rice Cake 140
Table H-8: Absorbance Value and Percentage Inhibition of Common Bitter Rice Wine 141
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-9</td>
<td>Absorbance Value and Percentage Inhibition of Common Bitter Sweet Rice Wine</td>
<td>142</td>
</tr>
<tr>
<td>H-10</td>
<td>Absorbance Value and Percentage Inhibition of Common Sweet Rice Wine</td>
<td>143</td>
</tr>
<tr>
<td>H-11</td>
<td>Absorbance Value and Percentage Inhibition of Glutinous Bitter Rice Wine</td>
<td>144</td>
</tr>
<tr>
<td>H-12</td>
<td>Absorbance Value and Percentage Inhibition of Glutinous Bitter Sweet Rice Wine</td>
<td>145</td>
</tr>
<tr>
<td>H-13</td>
<td>Absorbance Value and Percentage Inhibition of Glutinous Sweet Rice Wine</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Rice Wine Making process; (From Top Left) (A) Common and glutinous Rice, (B) Cooked rice, (C) Starter Cake, (D) Starter cake pounded, (E) Starter cake mixed evenly with rice, (F) Mixture filled into earthen jar, (G) Utensils used in village, (H) Earthen jar sealed, and (I) Produced rice wine</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Yeast/Lactic Acid Bacteria counts of starter cake used in rice wine fermentation by the Kadazan Dusun community in Sabah</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Yeast/LAB profile for fermentation by common rice and starter cake using DRBC and MRS agar (A-Bitter, B-Bitter Sweet, C-Sweet)</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Yeast/LAB profile for fermentation by glutinous rice and starter cake using DRBC and MRS agar (A-Bitter, B-Bitter Sweet, C-Sweet)</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Percentage reduction in wet weight of rice before and after fermentation for common and glutinous rice using three starters cakes (Com – Common Rice, Glu – Glutinous Rice; B-Bitter, BS-Bitter Sweet, S-Sweet)</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Yield of wine produced by fermentation of common and glutinous rice with three different starter cakes.</td>
<td>45</td>
</tr>
<tr>
<td>4.7</td>
<td>pH values of rice wine produced by fermentation of common and glutinous rice with three different starter cakes</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>Scanning Electron Microscope (SEM) micrographs showing the surface of nonfermented rice grains and their cross section surface. (1)Common rice; A1-20x, B1-50x, C1-500x, D1-1,500x (2)Glutinous rice; A2-20x, B2-50x, C2-500x, D2-1,500x</td>
<td>51</td>
</tr>
<tr>
<td>4.9</td>
<td>SEM micrographs of fermented common rice grains and their cross section surface.[A1(20x),B1(10x),C1(20x); A2,B2,C2 – 500X; A3,B3,C3 – 1500X] A-Bitter, B-Bitter Sweet, C-Sweet</td>
<td>53</td>
</tr>
<tr>
<td>4.10</td>
<td>SEM micrographs of fermented glutinous rice grains and their cross section surface.[A1(20x),B1(250x),C1(20x); A2,B2,C2 – 500X; A3,B3,C3 – 1500X] A-Bitter, B-Bitter Sweet, C-Sweet</td>
<td>53</td>
</tr>
</tbody>
</table>
Figure 4.11 Thin Layer Chromatography of starter Cakes (BS – Bitter Sweet, B – Bitter, S – Sweet)

Figure 4.12 Thin Layer Chromatography of; A) rice wine, and B) rice cake extracts (BS – Bitter Sweet, B – Bitter, S – Sweet)

Figure 4.13 Glucose content of rice wine produced by fermentation of common and glutinous rice with three different starter cakes

Figure 4.14 Glucose content of fermented rice produced by fermentation of common and glutinous rice with three different starter cakes

Figure 4.15 Alcohol percentage of rice wine produced by fermentation of common and glutinous rice with three different starter cakes

Figure 4.16 IC₅₀ value for rice wine free radical scavenging produced by fermentation of common and glutinous rice with three different starter cakes compared to Ascorbic Acid. (Com – Common Rice, Glu – Glutinous Rice; B-Bitter, BS-Bitter Sweet, S-Sweet)

Figure 4.17 IC₅₀ value for fermented rice free radical scavenging produced by fermentation of common and glutinous rice with three different starter cakes compared to Ascorbic Acid. (Com – Common Rice, Glu – Glutinous Rice; B-Bitter, BS-Bitter Sweet, S-Sweet)

Figure 4.18 Fibrinolytic enzyme assay inhibition for fermented rice extracts produced by fermentation of common and glutinous rice with three different starter cakes. (Com – Common Rice, Glu – Glutinous Rice; B-Bitter, BS-Bitter Sweet, S-Sweet)

Figure 4.19 Fibrinolytic Enzyme Activity of Fermented Common rice extracts produced by fermentation with three different starter cakes.

Figure 4.20 Fibrinolytic Enzyme Activity of Fermented Glutinous rice extracts produced by fermentation with three different starter cakes.

Figure D-1 H-NMR Spectrum of isolated common major compound of rice wine and fermented rice (DCSV#931)

Figure D-2 ¹³C-NMR Spectrum of isolated common major compound of rice wine and fermented rice (DCSV#931)
Figure E-1 HPLC Chromatogram and Standard Curve of Sugar Standard 107
Figure E-2 HPLC Chromatogram of 10 mg/ml Glucose Standard 108
Figure E-3 HPLC Chromatogram of 50 mg/ml Glucose Standard 109
Figure E-4 HPLC Chromatogram of 100 mg/ml Glucose Standard 109
Figure E-5 HPLC Chromatogram of 200 mg/ml Glucose Standard 110
Figure E-6 HPLC Chromatogram for Common Bitter Sweet Wine 111
Figure E-7 HPLC Chromatogram for Common Bitter Wine 111
Figure E-8 HPLC Chromatogram for Common Sweet Wine 112
Figure E-9 HPLC Chromatogram for Glutinous Bitter Wine 112
Figure E-10 HPLC Chromatogram for Glutinous Bitter Sweet Wine 113
Figure E-11 HPLC Chromatogram for Glutinous Sweet Wine 113
Figure E-12 HPLC Chromatogram for Common Bitter Rice Cake 114
Figure E-13 HPLC Chromatogram for Common Bitter Sweet Rice Cake 114
Figure E-14 HPLC Chromatogram for Common Sweet Rice Cake 115
Figure E-15 HPLC Chromatogram for Glutinous Bitter Rice Cake 115
Figure E-16 HPLC Chromatogram for Glutinous Bitter Sweet Rice Cake 116
Figure E-17 HPLC Chromatogram for Glutinous Sweet Rice Cake 116
Figure F-1 Alcohol standard curve graph 117
Figure F-2 Gas Chromatographic Spectrum for Alcohol Standard 1 % 118
Figure F-3 Gas Chromatographic Spectrum for Alcohol Standard 10 % 118
Figure F-4 GC Alcohol Spectrum for Common Bitter fermentation 119
Figure F-5 GC Alcohol Spectrum for Common Bitter Sweet fermentation 119
Figure F-6 GC Alcohol Spectrum for Common Sweet fermentation 120
Figure F-7 GC Alcohol Spectrum for Glutinous Bitter fermentation 120
Figure F-8 GC Alcohol Spectrum for Glutinous Bitter Sweet fermentation 121
Figure F-9 GC Alcohol Spectrum for Glutinous Sweet fermentation 121
Figure G-1 GC Spectrum for Common Bitter Rice Wine Volatile Hydrocarbons 122
Figure G-2 GC Spectrum for Common Bitter Sweet Rice Wine Volatile Hydrocarbons 123
Figure G-3 GC Spectrum for Common Sweet Rice Wine Volatile Hydrocarbons 124
Figure G-4 GC Spectrum for Glutinous Bitter Rice Wine Volatile Hydrocarbons 125
Figure G-5 GC Spectrum for Glutinous Bitter Sweet Rice Wine Volatile Hydrocarbons 126
Figure G-6 GC Spectrum for Glutinous Sweet Rice Wine Volatile Hydrocarbons 127
Figure G-7 GC Spectrum for Common Bitter Rice Cake Volatile Hydrocarbons 128
Figure G-8 GC Spectrum for Common Bitter Sweet Rice Cake Volatile Hydrocarbons 129
Figure G-9 GC Spectrum for Common Sweet Rice Cake Volatile Hydrocarbons 130
Figure G-10 GC Spectrum for Glutinous Bitter Rice Cake Volatile Hydrocarbons 131
Figure G-11 GC Spectrum for Glutinous Bitter Sweet Rice Cake Volatile Hydrocarbons 132
Figure G-12 GC Spectrum for Glutinous Sweet Rice Cake Volatile Hydrocarbons 133
Figure H-1 Ascorbic Acid Standard Curve (Top and Bottom) 134
Figure H-2 Common Bitter Rice Cake Graph for Average Percentage Inhibition 135
Figure H-3 Common Bitter Sweet Rice Cake Graph for Average Percentage Inhibition 136
Figure H-4 Common Sweet Rice Cake Graph for Average Percentage Inhibition

Figure H-5 Glutinous Bitter Rice Cake Graph for Average Percentage Inhibition

Figure H-6 Glutinous Bitter Sweet Rice Cake Graph for Average Percentage Inhibition

Figure H-7 Glutinous Sweet Rice Cake Graph for Average Percentage Inhibition

Figure H-8 Common Bitter Rice Wine Graph for Average Percentage Inhibition

Figure H-9 Common Bitter Sweet Rice Wine Graph for Average Percentage Inhibition

Figure H-10 Common Sweet Rice Wine Graph for Average Percentage Inhibition

Figure H-11 Glutinous Bitter Rice Wine Graph for Average Percentage Inhibition

Figure H-12 Glutinous Bitter Sweet Rice Wine Graph for Average Percentage Inhibition

Figure H-13 Glutinous Sweet Rice Wine Graph for Average Percentage Inhibition
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-B</td>
<td>Common Rice, Bitter Starter Cake</td>
</tr>
<tr>
<td>C-BS</td>
<td>Common Rice, Bitter Sweet Starter Cake</td>
</tr>
<tr>
<td>C-S</td>
<td>Common Rice, Sweet Starter Cake</td>
</tr>
<tr>
<td>G-B</td>
<td>Glutinous Rice, Bitter Starter Cake</td>
</tr>
<tr>
<td>G-BS</td>
<td>Glutinous Rice, Bitter Sweet Starter Cake</td>
</tr>
<tr>
<td>G-S</td>
<td>Glutinous Rice, Sweet Starter Cake</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>AA</td>
<td>Ascorbic Acid</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GCMS</td>
<td>Gas chromatography Mass Spectrometry</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>RT</td>
<td>Retention Time</td>
</tr>
<tr>
<td>RI</td>
<td>Retention Index</td>
</tr>
<tr>
<td>R_r</td>
<td>mobility relative to front</td>
</tr>
<tr>
<td>PTLC</td>
<td>Preparative Thin Layer Chromatography</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>Tol</td>
<td>Toluene</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight over Volume</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>C-B</td>
<td>Common Rice, Bitter Starter Cake</td>
</tr>
<tr>
<td>C-BS</td>
<td>Common Rice, Bitter Sweet Starter Cake</td>
</tr>
<tr>
<td>C-S</td>
<td>Common Rice, Sweet Starter Cake</td>
</tr>
<tr>
<td>G-B</td>
<td>Glutinous Rice, Bitter Starter Cake</td>
</tr>
<tr>
<td>G-BS</td>
<td>Glutinous Rice, Bitter Sweet Starter Cake</td>
</tr>
<tr>
<td>G-S</td>
<td>Glutinous Rice, Sweet Starter Cake</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>AA</td>
<td>Ascorbic Acid</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GCMS</td>
<td>Gas chromatography Mass Spectrometry</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>RT</td>
<td>Retention Time</td>
</tr>
<tr>
<td>RI</td>
<td>Retention Index</td>
</tr>
<tr>
<td>Rf</td>
<td>mobility relative to front</td>
</tr>
<tr>
<td>PTLC</td>
<td>Preparative Thin Layer Chromatography</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>Tol</td>
<td>Toluene</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight over Volume</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Bacterial Enumeration for Starters</td>
<td>94</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Bacterial Enumeration for Fermentation</td>
<td>95</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Data Summary and Statistical Analysis</td>
<td>99</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Nuclear Magnetic Resonance (NMR) spectrum</td>
<td>106</td>
</tr>
<tr>
<td>Appendix E</td>
<td>HPLC Sugar Analysis Spectrum</td>
<td>108</td>
</tr>
<tr>
<td>Appendix F</td>
<td>GC Alcohol Analysis Spectrum</td>
<td>117</td>
</tr>
<tr>
<td>Appendix G</td>
<td>GC Volatile Hydrocarbon Spectrum</td>
<td>122</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Antioxidant Assay</td>
<td>134</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 FOOD AND FERMENTATION

Man had practiced the art of food fermentation for centuries even before its basic principle were really understood. The study of fermentation in a scientific approach only took place in the 1850s with the isolation of amyl alcohol by Louis Pasteur (El-Mansi et al., 2007). According to Pasteur, fermentation is associated with the life and structural integrity of the yeast cells whereby yeasts cells play the role as the ferment. Various theories were proposed by various researches regarding fermentation but generally fermentation is understood as an enzyme catalyzed, energy producing process which generally uses sugar as substrate to transform it into products such as ethanol, lactic acid, hydrogen and at the same time resulting in the production of other minor organic acids (Cornish-Bowden, 1997). Fermentation was also described as a sequence of events whereby oxygen from sugar was transferred from one molecule of sugar to the other to form a highly oxidized and reduced product. Finally, the concept of fermentation was modified to support the idea that fermentation was a function of a living entity involving a chain of multiple reactions catalyzed by various enzymes produced by microorganisms (El-Mansi et al., 2007). Therefore, fermentation can be considered as the breaking of food into small components for easy consumption and digestion as well as proper assimilation of nutrient by the body.

At present, there are various types of food that are fermented for human and animal consumption. Fermented food are the end product from biochemical processes caused by microorganisms whereby their enzymes hydrolyze polysaccharides, proteins and lipids to nontoxic products with better flavorings, aromas and texture so that it is much attraction for human consumption (Streinkraus, 2002). Originally fermented food was only restricted to household
consumption and was produced in limited quantity but as demand increased, these food production transformed to cottage industry and is now produced in large scale industrially.

1.2 BENEFITS OF FERMENTATION

Fermentation of food has been known to provide multiple benefits to consumers and animals. Fermentation has the potential to enrich the food by developing a variety of flavors, aromas, and textures from the various chemical processes and fine chemicals contributed by the microorganisms. In the production of wine, the final product can taste sweet, bitter or sour depending on the combination of ingredients used and produced.

Fermented food as a whole is much more nutritious as the process of fermentation enriches the end product biologically with vitamins, proteins, amino acids and fatty acids. As an example, starch from rice is converted into sugar then fermented into alcohol; there would be an increase in protein level and free amino acid content (Steinkraus, 2002). However, the variation in nutritional quality and quantity at the end of the fermentation process depend on the kind of microorganisms employed and the parameters governing the process.

During the process of fermentation, detoxification takes place through the continuous hydration of the raw material and by subjecting the materials to extreme condition (either acidic or alkaline), which removes potential toxins in food. At the same time, the specific extreme pH condition created by the yeast/Lactic acid bacteria eliminates unwanted microorganisms present that might spoil the fermented product, thus making it last longer. As such, fermentation also helps to preserve food so that it can be stored long without deteriorating its quality and taste. Preservation of food is best through lactic acid, alcohol, acetic acid and alkaline fermentations (Steinkraus, 2002).

On the contrary, though fermented food takes time to be produced very little energy is required to produce it. Fermented food is produced naturally with the reaction of microorganism under suitable conditions to provide hygienic, health
beneficial food ready for consumption. Therefore, fermentation is an environment friendly process as energy is conserved (Steinkraus, 2002).

1.3 RICE WINE OF SABAH

Today, indigenous fermented food has become a new research interest since these are believed to contain therapeutic properties beneficial to the health of non-traditional consumers (Chiang et al., 2006). The application of fermentation is not restricted to a particular region but is practiced all over the world thus widespread research had been conducted to understand the benefits of fermented food. Some example of fermented food are the Indonesian “tempe”, Chinese soy sauce, Malaysian “belacan” and “tempoyak”, Cambodian “prahoc”, Middle-Eastern yogurts, Nigerian “gari”, Indian jackfruit wine, Zambian maize beer and Kenyan “busaa”, among the many varieties available today.

In this regard, the East Malaysian states in the island of Borneo are extremely rich in nature as well as culture with the most number of indigenous ethnic races with their unique cultural values. With the diversity of culture comes various traditional food and techniques for their preparation. Specifically, in Sabah, the local community has the knowledge to transform harvested rice into an alcoholic beverage. The rice wine which is locally known as ‘tapai’ is one of such product and has been produced for ages by the local community in small quantities, mainly for household consumption as well as cultural ceremonies and rituals. This wine has a variety of names, which differ with the ethnic races, for instance certain Dusun slangs call it ‘hiing’, whereas others call it ‘kinomol’, ‘segantang’, ‘kinarung’, ‘kinopi’, and ‘linahas’.

The produced wine has an alcoholic aroma with a mixture of bitter sweet taste and a sparkling feel. The freshly produced wine comes in faded yellow color but turns bright golden yellow when stored for a long duration. This alcoholic beverage is the end product of rice fermentation with the aid of a starter cake or yeast/lactic acid bacteria, which is locally known as ‘ragi’ or ‘sasad’. The starter cake, which is extremely important in the production of wines, is made from rice, spice and yeast. A variety of rice is used to make rice wine and the starter cake.
REFERENCES

Matsubara, K., Sumi, H., Hori, K. and Miyazawa, K. 1998. Purification and characterization of Two Fibrinolytic Enzymes from a Marine Green Alga,

Miyasaka Brewing Company Ltd. 2007. Sake- Brewing Process.

Rong, X. G. and Fa, B. T. Grandiose Survey of Chinese Alcoholic Drinks and Beverages. (Downloaded from internet ; http://www.sytx.edu.cn/zhqijiu/umain.htm)

