ADSORPTION AND EQUILIBRIUM CHARACTERISTICS OF CADMIUM AND NICKEL ON PALM OIL FUEL ASH (NON-TREATED AND TREATED WITH NITRIC ACID)

LO YUN WEI

THIS DISSERTATION IS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE OF SCIENCE WITH HONOURS

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

INDUSTRIAL CHEMISTRY PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITY MALAYSIA SABAH

2010
JUDUL: ADSORPTION AND EQUILIBRIUM CHARACTERISTICS OF CARBON AND NICKEL ON PALM OIL FUEL ASH (NON-TREATED AND TREATED) WITH NITRIC ACID

SAYA: LO YUN WEI [IJAZAH: SARJANA MUDA SAINS (KEPUTUSAN)]

Mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (√)
 - SULIT
 - TERHAD
 - TIDAK TERHAD

Disahkan Oleh

[Signature]

Universiti Malaysia Sabah

(TANDATANGAN PENULIS)

Alamat Terkini:
LOT 102, TAMAN DAMAI GATO 4, JABAR
DAOUG 90000, SANDARAN

Tarikh: 10.05.2010

CATATAN: *Potong yang tidak berkenaan.
 **Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
 @Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelesaian atau disertai bagi pengajian secara kerja kursus dan Laporan Proyek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that this is my own work with the exception of the cited materials of which each of them are mentioned.

Yun Wei

LO YUN WEI
(BS 07110020)
06 MAY 2010
VERIFIED BY

1. SUPERVISOR
(DR. SAZMAL EFFENDI BIN ARSHAD)

2. EXAMINER 1
(PROF. MADYA DR. HOW SIEW ENG)

3. EXAMINER 2
(MISS RUBIA IDRIS)

4. DEAN
(PROF. DR. MOHD. HARUN ABDULLAH)
ACKNOWLEDGEMENT

It is a great pleasure that I have now the opportunity to express my appreciation to everyone who had played important role in the development of this study. It is grateful that this research can be completed on time and undergone successfully.

First of all, I would like to express my thankfulness and gratitude to my supervisor, Dr. Sazmal Effendi bin Arshad for his valuable suggestions and encouragement. I appreciate his effort for guiding me and enriching my knowledge towards this study.

Special thank to all the lecturers in Industrial Chemistry Program in School of Science and Technology. All their useful advices, comments, suggestions and guidance are much appreciated.

Besides that, I would also like to thank to my family members and friends who are always giving me full support, understanding and constantly teaching me in this study.

I would like to thank to the library. Library has provided me much useful information, reference books and various sorts of journals. Regarding to these facilities, I was able to finish this study easily.

Lastly, but not the least, I would like to appreciate to the persons who are contributing in helping me through this project. Thank you.
ABSTRACT

Palm oil fuel ash, POFA, an abundantly available throwaway waste from palm oil industry in Malaysia, has currently investigated to be an ideal adsorbent in the wastewater treatment processes. The experiment for the adsorption of Ni (II) and Cd (II) ions from aqueous solutions on non-treated and treated POFA was conducted to investigate the initial ions concentration (2-10 µg mL⁻¹), contact time (5-90 min) and binary components system. The equilibrium adsorption data were analyzed by using the Langmuir and Freundlich isotherms. Both isotherms were best fit to the experimental data for non-treated and treated POFA. The maximum adsorption capacity of Ni (II) and Cd (II) on treated POFA were 526.32 µg g⁻¹ and 769.23 µg g⁻¹ respectively which were higher than the adsorption of Ni (II) and Cd (II) on non-treated POFA which were 500.00 µg g⁻¹ and 714.29 µg g⁻¹ respectively. The experimental data were also tested in terms of adsorption kinetics by using pseudo-first order, pseudo-second order and intra-particle diffusion. The adsorption of Ni (II) and Cd (II) ions on non-treated and treated POFA followed well to the pseudo-second order kinetic model. The amount of adsorption for Ni (II) and Cd (II) on treated POFA was always higher than non-treated POFA. The adsorption capacity of Cd (II) was also higher than Ni (II) for the binary components system and was in agreement with the single component adsorption data. The binary components system was generally found to be antagonistic, which stated that the amount of adsorption in binary components system was lower than the amount of adsorption in single component system. Based on all the results, POFA could be used as an alternative low cost adsorbent to effectively adsorb Ni (II) and Cd (II) ions from wastewater.
PROSES JERAPAN DAN CIRI-CIRI KESEIMBANGAN KADMIUM DAN NIKEL OLEH ABU BAHAN KELAPA SAWIT (DIRAWAT DAN TIDAK DIRAWAT DENGAN ASID NITRIK).

ABSTRAK

Abu bahan kelapa sawit (POFA) banyak terdapat dalam sisa-sisa buangan dari industri kelapa sawit di Malaysia, kini diselidik untuk menjadi bahan jerapan yang berkesan dalam rawatan air buangan. Eksperimen bagi process jerapan logam nikel dan kadmium pada POFA yang telah dirawat dan tidak dirawat dengan asid nitrik dijalankan untuk mengkaji kepekatan awal ion logam (2-10 µg mL⁻¹), masa tindak balas (5-90 min) dan sistem binari. Data keseimbangan jerapan dianalisis oleh Isoterna Langmuir dan Freundlich. Kedua-dua jenis isoterna ini sesuai untuk menjelaskan data eksperimen bagi POFA yang telah dirawat dan tidak dirawat dengan asid nitrik. Kapasiti jerapan maksimum bagi logam nikel dan kadmium pada POFA yang dirawat dengan asid nitrik ialah 526.32 µg g⁻¹ dan 769.23 µg g⁻¹ adalah lebih tinggi daripada jerapan logam nikel dan kadmium pada POFA yang tidak dirawat dengan asid nitrik, laitu masing-masing ialah 500.00 µg g⁻¹ dan 714.29 µg g⁻¹. Data eksperimen ini juga digunakan untuk menganalisis kinetik jerapan, laitu 'pseudo-first order', 'pseudo-second order' dan 'intra-particle diffusion'. Proses jerapan logam nikel dan kadmium pada kedua-dua jenis POFA mematuhi kinetic jerapan 'pseudo-second order'. Jumlah jerapan bagi nikel dan kadmium pada POFA yang telah dirawat dengan asid nitrik selalunya lebih tinggi daripada jerapan logam nikel dan kadmium pada POFA yang tidak dirawat oleh asid nitric. Kapasiti jerapan bagi kadmium adalah lebih tinggi daripada jerapan nikel pada kedua-dua jenis POFA dalam sistem binari dan ini juga disetujui dalam sistem tunggal. Sistem binari dalam eksperimen ini menunjukkan bentuk antagonis, laitu jumlah jerapan pada sistem binari adalah lebih rendah daripada sistem tunggal. Kesimpulannya, POFA boleh digunakan sebagai bahan penjerap yang berkesan untuk menjerap logam nikel and kadmium dalam rawatan air buangan.
LIST OF CONTENT

DECLARATION ii
VERIFICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
LIST OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS, UNITS AND SYMBOLS xviii

CHAPTER 1 INTRODUCTION 1
1.1 Context and Relevance of Study 1
1.2 Objectives 3
1.3 Scope of Study 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 Heavy Metal 4
 2.1.1 Heavy metal in water 5
 2.1.2 Sources of heavy metal 5
 2.1.3 Toxicity of heavy metal 5
2.2 Cadmium 6
LIST OF CONTENT

<table>
<thead>
<tr>
<th></th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Pseudo-first order</td>
<td>17</td>
</tr>
<tr>
<td>b. Pseudo-second order</td>
<td>18</td>
</tr>
<tr>
<td>c. Intra-particle diffusion</td>
<td>19</td>
</tr>
<tr>
<td>2.6.4 Equilibrium isotherm model</td>
<td>20</td>
</tr>
<tr>
<td>a. Langmuir isotherm</td>
<td>20</td>
</tr>
<tr>
<td>b. Freundlich isotherm</td>
<td>22</td>
</tr>
<tr>
<td>2.7 Effect of Contact Time</td>
<td>23</td>
</tr>
<tr>
<td>2.8 Initial Concentration of Heavy Metals</td>
<td>24</td>
</tr>
<tr>
<td>2.9 Binary System of Heavy Metals</td>
<td>25</td>
</tr>
</tbody>
</table>

CHAPTER 3 MATERIALS AND METHODS

3.1 Adsorbent

<table>
<thead>
<tr>
<th>Subsection</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Preparation of non-treated with nitric acid POFA particles</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2 Preparation of treated with nitric acid POFA particles</td>
<td>27</td>
</tr>
</tbody>
</table>

3.2 Adsorbates

<table>
<thead>
<tr>
<th>Subsection</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Preparation of 1000 μg/mL cadmium stock solution</td>
<td>28</td>
</tr>
<tr>
<td>3.2.2 Preparation of 100 μg/mL cadmium standard solution</td>
<td>28</td>
</tr>
<tr>
<td>3.2.3 Preparation of 1000 μg/mL nickel stock solution</td>
<td>28</td>
</tr>
<tr>
<td>3.2.4 Preparation of 100 μg/mL nickel standard solution</td>
<td>28</td>
</tr>
<tr>
<td>3.2.5 Preparation of cadmium working solution</td>
<td>29</td>
</tr>
</tbody>
</table>
3.2.6 Preparation of nickel working solution 29

3.3 Batch Adsorption Experiments 30

3.3.1 Effect of contact time on cadmium and nickel adsorptions 30

3.3.2 Effect of initial concentrations of adsorbates 31

3.3.3 Effect of binary system 32

3.4 Determination of Heavy Metals Concentrations 33

3.4.1 Instrumentation 33

3.4.2 Preparation of calibration graph 33

CHAPTER 4 RESULT AND DISCUSSION 35

4.1 Adsorption equilibrium 35

4.2 Adsorption kinetics 46

4.3 Binary components system 59

4.4 Adsorption of Ni^{2+} and Cd^{2+} on POFA 65

CHAPTER 5 CONCLUSION 67

REFERENCES 69

APPENDIX A 84

APPENDIX B 85

APPENDIX C 86

APPENDIX D 87

APPENDIX E 88
<table>
<thead>
<tr>
<th>LIST OF CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX F</td>
<td>89</td>
</tr>
<tr>
<td>APPENDIX G</td>
<td>90</td>
</tr>
<tr>
<td>APPENDIX H</td>
<td>91</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>92</td>
</tr>
<tr>
<td>APPENDIX J</td>
<td>93</td>
</tr>
<tr>
<td>APPENDIX K</td>
<td>94</td>
</tr>
<tr>
<td>APPENDIX L</td>
<td>95</td>
</tr>
<tr>
<td>APPENDIX M</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>No. of Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>33</td>
</tr>
</tbody>
</table>

Previous researches of utilization of POFA as an adsorbent.
Physical properties of palm oil fuel ash.
Chemical analysis of palm oil fuel ash.
Removal of pollutants using various types of techniques.
Various adsorbents used for heavy metals adsorption.
Examples of adsorbates that conform to pseudo-first order kinetic.
Examples of adsorbates that conform to pseudo-second order kinetic.
Examples of adsorbates that conform to the intra-particle diffusion model.
Examples of adsorbates that conform to Langmuir isotherm.
Examples of adsorbates that conform to Freundlich isotherm.
Preparation of cadmium working solutions.
Preparation of nickel working solutions.
Experimental design for the effect of contact times on adsorption by adsorbents and adsorbates.
Experimental design for the effect of initial concentrations of adsorbates on adsorption by adsorbents.
Experimental design for the effect of binary system on adsorption by adsorbates on adsorption by adsorbents.
<table>
<thead>
<tr>
<th>No. of Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Langmuir and Freundlich isotherm adsorption constants for the adsorption of nickel and cadmium ions on non-treated POFA.</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Langmuir and Freundlich isotherm adsorption constants for the adsorption of nickel and cadmium ions on treated POFA.</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Pseudo-first order, pseudo-second order and intra-particle diffusion for the adsorption of nickel and cadmium on non-treated POFA.</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Pseudo-first order, pseudo-second order and intra-particle diffusion for the adsorption of nickel and cadmium on treated POFA.</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No. of Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Effect of contact time on the removal of cadmium ions on the means of olive cake.</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of initial concentration on nickel removal for modified activated carbon I and modified activated carbon II.</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of non-linearized adsorption isotherms of (a) copper ion in the presence of increasing concentration of nickel ion and (b) nickel ion in the presence of increasing concentration copper ion.</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>The amount of Ni (II) and Cd (II) adsorbed on non-treated POFA at different initial concentrations.</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Percent adsorption of Ni (II) and Cd (II) on non-treated POFA at different initial concentrations.</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>The amount of Ni (II) and Cd (II) adsorbed on treated POFA at different initial concentrations.</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>The percentage adsorption of Ni (II) and Cd (II) on treated POFA at different initial concentrations.</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>The Langmuir isotherm for the adsorption of Ni (II) on non-treated POFA.</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>The Langmuir isotherm for the adsorption of cadmium ions on non-treated POFA.</td>
<td>41</td>
</tr>
<tr>
<td>4.7</td>
<td>The Langmuir isotherm for the adsorption of nickel ions on treated POFA.</td>
<td>41</td>
</tr>
<tr>
<td>4.8</td>
<td>The Langmuir isotherm for the adsorption of cadmium ions on treated POFA.</td>
<td>42</td>
</tr>
<tr>
<td>No. of Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>The Freundlich isotherm for the adsorption of nickel ions on non-treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>The Freundlich isotherm for the adsorption of cadmium ions on non-treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>The Freundlich isotherm for the adsorption of nickel ions on treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>The Freundlich isotherm for the adsorption of cadmium ions on treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Amount of nickel and cadmium ions adsorbed on non-treated POFA at different contact times.</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Percent adsorption of nickel and cadmium ions on non-treated POFA at different contact times.</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Amount of nickel and cadmium ions adsorbed on treated POFA at different contact times.</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Percent adsorption of nickel ions on treated POFA at different contact times.</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Pseudo-first order kinetic plot for nickel adsorption on non-treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Pseudo-first order kinetic plot for cadmium adsorption on non-treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Pseudo-first order kinetic plot for nickel adsorption on treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Pseudo-first order kinetic plot for cadmium adsorption on treated POFA.</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Pseudo-second order kinetic plot for nickel adsorption on non-treated POFA.</td>
<td></td>
</tr>
<tr>
<td>No. of Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.22</td>
<td>Pseudo-second order kinetic plot for cadmium adsorption on non-treated POFA.</td>
<td>54</td>
</tr>
<tr>
<td>4.23</td>
<td>Pseudo-second order kinetic plot for nickel adsorption on treated POFA.</td>
<td>54</td>
</tr>
<tr>
<td>4.24</td>
<td>Pseudo-second order kinetic plot for cadmium adsorption on treated POFA.</td>
<td>55</td>
</tr>
<tr>
<td>4.25</td>
<td>Intra-particle diffusion for nickel adsorption on non-treated POFA.</td>
<td>56</td>
</tr>
<tr>
<td>4.26</td>
<td>Intra-particle diffusion for cadmium adsorption on non-treated POFA.</td>
<td>56</td>
</tr>
<tr>
<td>4.27</td>
<td>Intra-particle diffusion for nickel adsorption on treated POFA.</td>
<td>57</td>
</tr>
<tr>
<td>4.28</td>
<td>Intra-particle diffusion for cadmium adsorption on treated POFA.</td>
<td>57</td>
</tr>
<tr>
<td>4.29</td>
<td>The amount adsorbed for the binary component system on non-treated POFA.</td>
<td>60</td>
</tr>
<tr>
<td>4.30</td>
<td>The percentage of the binary components system on non-treated POFA.</td>
<td>60</td>
</tr>
<tr>
<td>4.31</td>
<td>The amount adsorbed for the binary components system on treated POFA.</td>
<td>61</td>
</tr>
<tr>
<td>4.32</td>
<td>The percentage of the binary component system on treated POFA.</td>
<td>62</td>
</tr>
<tr>
<td>4.33</td>
<td>Comparison on the amount adsorbed between single component and binary component system adsorption on non-treated POFA.</td>
<td>63</td>
</tr>
<tr>
<td>4.34</td>
<td>Percentage on the comparison between single component and binary component system adsorption on non-treated POFA.</td>
<td>64</td>
</tr>
<tr>
<td>No. of Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.35</td>
<td>Comparison on the amount adsorbed between single component and binary component system adsorption on treated POFA.</td>
<td>64</td>
</tr>
<tr>
<td>4.36</td>
<td>Percentage on the comparison between single component and binary component system adsorption on treated POFA.</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS, UNITS AND SYMBOLS

[Cd(NO₃)₂.4H₂O] Cadmium nitrate tetrahydrate

[Ni(NO₃)₂.6H₂O] Nickel nitrate hexahydrate

% Percentage

b Adsorption energy constant of Langmuir adsorption isotherm (mL µg⁻¹)

Cd²⁺ Cadmium ion

Cₑ Equilibrium liquid phase concentration (µg mL⁻¹)

Cᶠ Final liquid phase concentration (µg mL⁻¹)

Cᵢ Initial liquid phase concentration (µg mL⁻¹)

FAAS Flame Atomic Absorption Spectrophotometry

k₁ Rate constant of pseudo-first order adsorption (1/min)

k₂ Rate constant of pseudo-second order adsorption (g / g min)

kᵣ Freundlich isotherm constant related to adsorption intensity (mL g⁻¹)

kᵢd Intra-particle diffusion rate constant (µg g⁻¹ min⁻¹/₂)

n Freundlich adsorption constant (mL µg⁻¹)

Ni²⁺ Nickel ion

POFA Palm Oil Fuel Ash

qₑ Equilibrium solid phase adsorbate concentration (µg g⁻¹)

qₘₐₓ Maximum adsorption capacity (µg g⁻¹)

qₜ Amount of adsorption at time, t (µg g⁻¹)

R² Correlation coefficient

Rₐ Dimensionless separation factor
\(t \) Contact time (min)
\(V \) Volume of solution (mL)
\(w \) Mass of adsorbent (g)
CHAPTER 1

INTRODUCTION

1.1 Context and Relevance of Study

Recently, there is an increasing concern about the contamination of heavy metals in wastewaters. This is not threatening the environment, but also the life form due to their non-biodegradable characteristics and bioaccumulation in the food chain and persistence (Khesami and Capart, 2005). This has become one of the important environmental issues.

Heavy metal pollution in water normally generated from many types of industry like electroplating, metal plating, batteries, mining, pigments, stabilizers, alloy industries and sewage sludge (Patnukao et. al., 2008). These pollutants include copper, lead, nickel, cadmium and so on. The increased use of metals and chemicals in these industries has resulted in the generation of large amounts of polluted aqueous effluents which contain high levels of heavy metals and pose environmental disposal problems for plants, animals and human beings (Gok et. al., 2008). Therefore, the treatment of wastewaters to remove heavy metals from wastewaters is necessary.

A wide range of treatment methods have been applied for the removal of heavy metals from industrial waste streams. These methods include chemical precipitation, coagulation, ion-exchange, solvent extraction, membrane processes, reverse osmosis, ultrafiltration, adsorption and electrochemical deposition (Gok et. al., 2008). However, most of these methods may be ineffective, expensive, generation of secondary pollution and ineffectiveness for low metal concentration (Bhattacharyya
and Gupta, 2006). Among these methods, adsorption is the most effective, simply and widely used because of its cost effectiveness (Boujelben et al., 2009). Adsorption is the most promising techniques for the metal removal and recovery from wastewaters (Chu and Hashim, 2002).

In recent years, numerous low cost materials have been proposed as potential replacements for the effective but expensive synthetic sorbents such as activated carbon (Bailey et al., 1999). Activated carbon is expensive due to the use of non-renewable and relatively expensive starting material such as coal, which is unjustified in pollution control applications (Martin et al., 2003). The adsorbents usually used for the metal removal in water streams are anion exchange resins, clay minerals such as bentonite and zeolite because of their high specific area and low cost (Gao et al., 2009). Fly ash has been extensively investigated for its ability to remove metals ions from aqueous solutions. Most of these studied focused on the fly ash which derived from coal-fired power plants (Kapoor and Viraraghavan, 1992, 1996; Weng and Huang, 1994; Singer and Berggaut, 1995; Apak et al., 1998, Dasmahaptra et al., 1998; Gupta and Torres, 1998; Ricou et al., 1998, 1999; Ricou-Hoeffer et al., 2000).

Malaysia is the world’s largest producer of palm oil which produces a large amount of solid waste such as palm shells and palm fiber. The palm oil fuel ash is a by-product in palm oil mill after the combustion of palm fiber and palm shell as boiler fuel (Tangchirapat et al., 2009). POFA is still considered as a nuisance to the environment and disposed without being put for any other use as compared to other types of palm oil by-products. Since the production of palm oil is continuous, therefore, more ashes will be produced and failure to allocate this by-product will create severe environmental problems (Abdullah et al., 2006).

However, POFA has currently suggested being an ideal adsorbent in the wastewater treatment processes and as air purifiers in cleaning of atmosphere contaminations (Dahlan et al., 2007). There are two advantages of using POFA, first, huge loads of oil palm waste could be partly reduce by converted into an useful, value-added adsorbents, and second, become a low-cost adsorbent. If developed, may overcome the wastewaters and air pollution at a lower cost, solving part of global agricultural refuse and wastewater treatment problem (Ahmad et al., 2007).
1.2 Objectives

The objectives of this study are:

1. To investigate the adsorption and equilibrium characteristics of cadmium and nickel based on POFA as an adsorbent.
2. To compare adsorption equilibrium and kinetics of cadmium and nickel by treated and non-treated POFA.

1.3 Scope of Study

The scope of this study is to study the utilization of POFA as an adsorbent to remove cadmium and nickel from aqueous solutions. The adsorption of cadmium and nickel was determined at different reaction times, initial concentrations of cadmium and nickel and the uptake of cadmium and nickel by POFA in binary system. Then, the final concentrations of cadmium and nickel were analyzed by using atomic adsorption spectrometry (AAS). The metal uptake of cadmium and nickel on POFA was studied for its mechanism, equilibrium and kinetic.
CHAPTER 2

LITERATURE REVIEW

2.1 Heavy Metals

Heavy metals are metallic chemical elements that have a relatively high density, high atomic weight and are toxic or poisonous at low concentrations. Examples of heavy metals include mercury, nickel, cadmium, arsenic, chromium, thallium, lead and so on.

Heavy metals pollution by industrial activities and technological development has a greater side effect to the environment and public health because of its toxicity, non-biodegradability and bioaccumulation (Bahadir et. al., 2007; Pérez-Marín et. al., 2007; Reddad et. al., 2003). Besides the mining and metal-related industries, there are numerous sources that discharge heavy metal-laden effluents, such as the tanning, battery, glassware, ceramics, electroplating, paints and photographic industries (Bhatnagar and Minocha, 2009).

Actually, many metals are important for human life in trace quantities, they enter our bodies through food, drinking water and air, but become toxic if their concentration increases above a certain minimum level. Heavy metals may accumulate in microorganisms, aquatic flora and fauna, which in turn may enter into the human food chain and bring into health problems (Orozco et. al., 2008).
2.1.1 Heavy Metal in Water

Heavy metals can enter water supply through industrial activities, consumer wastes or from acidic rain which breaks down soils and then releases heavy metals into streams, lakes, rivers and groundwater.

Heavy metal contaminations in water normally because of dischargeable of heavy metal which are often generated from many types of industry, such as electroplating, metal plating, batteries, mining, pigments, stabilizers, alloy industries and sewage sludge into water streams (Patnukao et al, 2008). These contaminants include copper, lead, nickel, cadmium and so on. The increase use of metals and chemicals in these industries has resulted in the generation of large amounts of polluted aqueous effluents which contain high levels of heavy metals and pose environmental disposal problems for plants, animals and human beings (Gok et al, 2008). Natural weathering processes, waste emissions, atmospheric depositions and anthropogenic activities also contribute to the heavy metals pollution in water bodies (Gok et al, 2008).

2.1.2 Sources of Heavy Metal

The sources of heavy metal ions are diverse and specific to each element. Most heavy metals are generated from industrial processes and mining activities (Ozdemir and Yapar, 2009). These industrial processes include electroplating, metal-processing, paint, plastics alloy, batteries, ammunition and the ceramic glass industries and so on (Guo et al., 2009). Besides that, some heavy metals are found in our daily use, such as aluminum is mostly encountered in kitchen utensils whereas nickel is found in cigarette and plant foods (Kasprzak et al., 2003). Moreover, Cadmium originates mainly from cigarette smoke (Waisberg et al., 2003), air pollution, batteries and Cd-containing polishing agent (Gunnar F. Nordberg, 2009).

2.1.3 Toxicity of Heavy Metal

Even at a low concentration level, heavy metal ions can cause serious health problems and in extreme cases, death. Toxic metals at trace levels contamination of soil and
REFERENCES

