CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF A NEUTRAL PROTEASE FROM *Bacillus* sp PPB15 ISOLATED FROM MANGROVES IN SABAH

SHUHADAH MUSTAPHA

UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULLFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BIOTECHNOLOGY RESEARCH INSTITUTE
UNIVERSITI MALAYSIA SABAH
2012
JUDUL : CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND
EXPRESSION OF NEUTRAL PROTEASE FROM Bacillus sp PPB15 ISOLATED FROM MANGROVES IN
SABAH.

IJAZAH : DOKTOR FALSAFAH

Saya SHUHADAH BTE MUSTAPHA, Sesi Pengajian 2006-2012, mengaku membenarkan tesis Doktor
Falsafah ini di simpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan
seperti berikut:-

1. Tesis adalah hak milik Universiti Malaysia Sabah
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan
 pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara
 institusi pengajian tinggi.
4. Sila tandakan (/)

 ☑

 (Mengandungi maklumat yang berdajah keselamatan atau
 Kepentingan Malaysia seperti yang termaktub di dalam AKTA
 RAHSIA RASMI 1972)

 ☐

 (Mengandungi maklumat TERHAD yang telah ditentukan oleh
 organisasi/badan di mana penyelidikan dijalankan)

 ☐

 (TandaTanganPenulis)

AlamatTetap:
PetiSurat 54,
89507 Penampang
Sabah

Tarikh : 24 Julai, 2012

Prof. Datin Seri Panglima Dr. Ann Anton
(PenyeliaUtama)

Prof. Madya Dr. Clemente Michael Wong Vui
(PenyeliaBersama)

Prof. Datuk Seri Panglima Dr. Kamaruzaman Bin Ampon
(PenyeliaBersama)
DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

January 2010

Shuhadah bte Mustapha
PB20068031
CERTIFICATION

NAME : SHUHADAH BTE MUSTAPHA

MATRIC NO. : PB20068031

TITLE : CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF NEUTRAL PROTEASE FROM Bacillus sp PPB15 ISOLATED FROM MANGROVES IN SABAH

DEGREE : DOCTOR OF PHILOSOPHY

VIVA DATE : 14 APRIL 2010

DECLARED BY

1. CHAIRPERSON SUPERVISION COMMITTEE
 Prof. Datin Seri Panglima Dr. Ann Anton

2. COMMITTEE MEMBER
 Prof. Madya. Dr. Clemente Michael Wong Vui Ling

3. COMMITTEE MEMBER
 Prof. Datuk Seri Panglima
 Dr. Kamaruzaman Bin Ampon

Signature

Ann Anton

K. Ampon
ACKNOWLEDGEMENT

I would like to thank Almighty Allah, the most gracious and the most merciful for having given me the continued endurance, strength and light to guide me throughout this study.

My utmost gratitude goes to my supervisory committee members: Professor Datin Seri Panglima Dr. Ann Anton (Chairperson), Associate Professor Dr. Michael Wong and Professor Datuk Seri Panglima Dr. Kamaruzaman b. Ampon for their guidance, assistance, motivation and constructive opinion during the course of this study.

Special appreciation goes to the Sabah State Government for offering me a scholarship to pursue my education at Ph D level. Without it, I would not even be able to begin with the first step in conducting this thesis.

I wish to thank Dr. Kenneth Rodrigues, Awang Sagaf b. Abu Bakar, Adrian Ng for their advice in the technical area and lab mates, for all their assistance and support. To all the lab assistants in IPB, thanks for your help.

I would also like to thank my family members and in laws, especially to my mother, Hajjah Rahmah Moludang for her undivided love, support and strength that motivated me through.

To my sons, Mohd. Irfan and Shahrul Izzat, and my daughter Nurul Izzah, for all your prayers, patience and understanding, Thank you to the three of you. Most of all, to my loving, supportive, encouraging, and patient husband Dr. Ahemad b. Sade whose tolerance, support and faith have helped me through the duration of this whole thesis, I really appreciate all of what you have done.

Shuhadah bte Mustapha
November 2012
ABSTRACT

CHARACTERIZATION OF NEWLY ISOLATED PROTEASE PRODUCING MARINE BACTERIA AND EXPRESSION OF NEUTRAL PROTEASE FROM Bacillus sp PPB15 ISOLATED FROM MANGROVES IN SABAH

A total of 112 species of marine bacteria were isolated from the mangrove habitats along the east coast of Sabah, East Malaysia. Eighteen of these isolates were protease producing bacteria (PPB). Molecular identification of these protease producing bacteria based on 16S rDNA was carried out in order to facilitate the identification of the bacterial strains. PPB1, PPB6, PPB11 and PPB13 were identified as Bacillus cereus with 99% similarity, whereas PPB3 with 99% similarity with Proteus mirabilis H4320. Strain PPB2, PPB4 and PPB10 have shown similarity with Bacillus GIDM. Strain PPB5, PPB7 and PPB18 were identified as Bacillus megaterium whereas PPB9 and PPB14 were classified as Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305. Strain PPB16 and PPB17 have shown that these species were 99% similar to Bacillus sp CNJ845PL04. Strain PPB8, PPB12 and PPB15 have shown 99% similarity with Bacillus sp 41 KBZ.

Assays for total protein and proteases activity of these isolated PPBs were conducted. Results on the protease activity study showed that Proteus mirabilis PPB3, Bacillus sp PPB8, Bacillus sp PPB15 and Bacillus megaterium PPB18 exhibited the highest protease activity with reading of 0.63, 0.61, 0.64 and 0.62 U/ml respectively. These strains grew up to 50°C with a broad pH range between 5 to 7.5. The optimal temperature and pH for growth were 35°C and 5.0 respectively.

A study to determine the effect of various protease inhibitors, namely phenylmethylsulfonylflouride (PMSF), Pepstatin A, E-64 (trans-epoxysuccinyl-Leucylamido(4-guanidino)butane and EDTA on the activity of these proteases clearly indicated the compound E-64 inhibited the protease activity of isolates from Bacillus sp strain PPB15 to a significant degree. EDTA and Pepstatin inhibited the protease isolated from Bacillus megaterium strain PPB 18. PMSF had no significant effect on the proteases derived from all PPBs. These results implied that the proteases derived from bacterial Bacillus sp PPB12, Bacillus sp PPB15 and Bacillus megaterium PPB18 can be categorized as belonging to the family of acidic mesophilic proteases and metalloprotease mesophilic proteases.

Further characterization of the proteases was carried out by utilising seven different types of p-nitroanilide synthetic substrates. Results have shown that the amino acids in the position P1 have a strong influence on the catalytic activity of proteases. The neutral protease derived from Bacillus sp PPB15 indicated preference for Leucine, phenylalanine and arginine at position P1 and exhibited high activity for Sar-Pro-Arg-pNA dihydrochloride (1.05 Units/ml enzyme) L-Leucine-pNA (0.74 Units/ml enzyme), N-Suc-Ala-Ala-Pro-Leu-pNA (0.83 Units/ml enzyme), and N-Suc-Gly-Gly-phe-pNA (0.44 Units/ml enzyme). Lower activity was observed when Ala or Gly was the amino acids residues at position P1, notably the N-Suc-gly-gly-gly-pNA or N-Suc-Ala-Ala-Ala-pNA. The K_m value for L-
Leucine-pNA and N-Suc-gly-gly-gly-pNA as substrate were 3.31μm and 18.50μm, respectively. The corresponding V_{max} value were 78.31μM/min and 3.58μM/min, respectively.

Two pairs of gene specific primers were designed to target the neutral protease genes of *Bacillus* sp PPB15 and *Bacillus* sp PPB12. PCR generated an amplicon of around 1638bp, which confirmed the identity of a neutral protease B in the genome of *Bacillus* sp PPB15. The protease gene was cloned in to pEXP5-NT vector which was expressed in *E.coli* BL21(DE3) under control of T7 promoter. SDS-PAGE analysis showed a strong neutral protease gene expression after induction by 1 mM IPTG for 5 hrs at 37°C with molecular mass approximately of 62 kDa. Further investigation on the activity of purified protease from recombinant protein (pEXP5NT-NprB) indicated that the protease activity was at 1.3U with the concentration of 0.625 ug.
ABSTRAK

Sebanyak 112 spesis bakteria marin telah dipencilkkan daripada habitat ekosistem paya-bakau di sepanjang Pantai Timur Sabah, Malaysia Timur. Lapanbelas daripada isolat merupakan bakteria pengeluar protease. Identifikasi secara molikul terhadap bakteria penghasil protease berdasarkan jujukan 16S rDNA telah dijalankan bagi memudahkan pengenalpastian setiap strain bakteria. PPB1, PPB6, PPB11 dan PPB13 telah dikenalpasti sebagai Bacillus cereus dengan 99 % kesamaan, manakala strain PPB3 mempunyai 99% kesamaan dengan strain Proteus mirabilis H4320. Strain PPB2, PPB4 dan PPB10 menunjukkan kesamaan dengan Bacillus sp. GIDM. Tiga strain iaitu PPB5, PPB7 dan PPB18 telah dikenalpasti sebagai Bacillus megaterium manakala strain yang lain seperti PPB9 dan PPB14 dikelaskan dengan Staphylococcus saprophyticus subsp. Saprophyticus ATCC 15305. Strain PPB16 dan PPB17 menunjukkan spesis ini hampir sama dengan homologi sebanyak 99% kepada Bacillus sp CNJ845PL04. Strain PPB8, PPB12 dan PPB15 menunjukkan 99% kesamaan dengan Bacillus sp 41 KBZ.

Analisis jumlah protin dan aktiviti protease telah dijalankan keatas kesemua strain PPB. Hasil kajian ke atas Proteus mirabilis PPB3, Bacillus sp PPB8, Bacillus sp PPB15 dan Bacillus megaterium PPB18 terhadap aktiviti protease menunjukkan aktiviti protease yang tertinggi dengan bacaan masing-masing 0.63, 0.61, 0.64 dan 0.62 U/ml. Kesemua strain ini dapat tumbuh sehingga suhu 50°C dan dengan pH di antara 5.0 ke 7.5. Suhu dan pH yang optima bagi tumbesaran adalah masing-masing pada 35°C dan 5.0.

Kajian kesan beberapa jenis perencat protease seperti phenylmethylsulfonylfouride (PMSF), Pepstatin A, E-64 (trans-epoxysuccinyl-Leucylamido(4-guanidino) butane dan EDTA ke atas aktiviti protease ini, menunjukkan bahawa E-64 didapati merencat aktiviti protease Bacillus sp strain PPB15 pada paras yang signifikan. EDTA merencat protease pada strain Bacillus megaterium PPB18. PMSF tidak ada kesan perencatan yang nyata terhadap aktiviti protease daripada kesemua PPB. Hasil kajian ini menunjukkan bahawa protease daripada Bacillus sp PPB12, Bacillus sp PPB15 dan Bacillus megaterium PPB18 dapat di kategorikan berasal daripada keluarga protease mesofilik asidik dan protease mesofilik metalloprotease.

Kajian pencirian lanjut ke atas protease yang dihasilkan telah dijalankan dengan menggunakan tujuh jenis substrat sintetik daripada p-nitroanilide. Hasil kajian telah menunjukkan bahawa asid amino pada kedudukan P₁ mempunyai pengaruh yang kuat terhadap aktiviti katalitik protease. Protease neutral daripada strain Bacillus sp PPB15 menunjukkan kecenderungan kepada substrat Leucine, Phenylalanine dan Arginine asid amino pada kedudukan P₁ dan menghasilkan aktiviti tertinggi untuk Sar-Pro-Arg-pNA dihydrochloride (1.05 Units/ml enzim) L-Leucine-pNA (0.74 Units/ml enzim), N-Suc-Ala-Ala-Pro-Leu-pNA (0.83 Units/ml enzim), dan N-Suc-Gly-Gly-phe-pNA (0.44 Units/ml enzim). Aktiviti rendah diperhatikan apabila Ala atau Gly sebagai residu asid amino pada kedudukan P₁, ini terutamanya bagi N-Suc-gly-gly-gly-pNA atau N-Suc-Ala-Ala-Ala-pNA. Nilai K_m adalah masing-masing 3.31μm dan 18.50μm dengan L-Leucine-pNA dan N-Suc-gly-gly-gly-pNA sebagai substrat, manakala nilai V_{max} adalah masing-masing...
78.31μM/min dan 3.58μM/min dengan L-Leucine-pNA dan N-Suc-gly-gly-gly-pNA sebagai substrat.

Dua pasang primer spesifik gen telah direkabentuk bagi memilih gen protease neutral daripada Bacillus sp PPB15. PCR mengamplifikasi amplikon pada saiz 1638bp, dimana pengesahan identiti protease B neutral di dalam genom Bacillus sp PPB15. Gen protease dikeluarkan dalam vektor pengklonan TOPO (pEXP5-NT) dizahirkan dalam E.coli DE3 dibawah kawalan promoter T7. Analisa SDS-PAGE menunjukkan gen protease neutral dizahirkan amat ketara dengan jisim molekul bersaiz 62 kDa setelah induksi dengan 1 mM IPTG selama 5 jam pada suhu 37°C. Protease rekombinan ini ditularkan, hasil analisa menunjukkan bahawa protease rekombinan menghasilkan aktiviti protease pada 1.3U dengan kepekatan 0.625 ug.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>5</td>
</tr>
</tbody>
</table>

2.1 Mangrove Ecosystem	5
2.1.1. Global distribution	5
2.1.2. Mangrove-associated flora and fauna	5
2.2 Source of Enzymes	10
2.3 Source of Proteases	13
2.4 Definition and classification of proteases	14
2.4.1 The Proteolytic Reaction	14
2.4.2. Classes of Proteases	15
2.4.3. Protease Inhibitors	21
2.4.4. Simple Versus Complex Proteases	24
2.5 Applications of proteases	24
2.5.1. Industrial applications	24
2.5.2. Proteolytic reactions in industry	27
2.5.3. Synthesis reactions in industry	31
2.5.4. Biological Importance of Proteases	32
2.6 Genetic engineering of microbial proteases	34
2.7 Sequence homology	37
2.8 Evolutionary relationship of proteases	39
2.8.1. Acidic Proteases	40
2.8.2. Neutral Proteases	42
2.8.3. Alkaline Proteases	44
CHAPTER 3: THE ISOLATION, SCREENING AND IDENTIFICATION OF SELECTED MARINE BACTERIA

3.1 Introduction

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
</tr>
</tbody>
</table>

3.2 Material and Methods

- **3.2.1. Soil Sampling and Bacteria Isolation**
- **3.2.2. Water Surface Physical Oceanographic Parameters**
- **3.2.3. Preliminary Screening of Proteolytic activity for Protease-Producing Bacteria (PPB)**
- **3.2.4 Identification of Bacteria Using Conventional Identification Tests.**
 - a. Morphological Observation
 - b. Gram Stain Characteristic
- **3.2.5 Identification of Bacteria Employing BIOLOG Microplate Analysis**

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
</tr>
<tr>
<td>52</td>
</tr>
</tbody>
</table>

3.3 Results

- **3.3.1 Isolation and Screening of Pure Cultured Bacteria for Protease Producer**
- **3.3.2 Colony morphology, Gram Reaction and Microscopy Analysis**
 - a. Colony Morphology
 - b. Gram Reaction
- **3.3.3 Physical Oceanography Parameters of Water Surface**
- **3.3.4 Phenotypic Characterization**

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>64</td>
</tr>
</tbody>
</table>

3.4 Discussion

- **3.4.1 Isolation and Screening of Pure Cultured Bacteria for Protease Producer**
- **3.4.2. Gram Staining Reaction**
- **3.4.3 Phenotypic Characterization**

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
</tr>
<tr>
<td>76</td>
</tr>
<tr>
<td>77</td>
</tr>
</tbody>
</table>

3.5 Conclusions

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

CHAPTER 4 : MOLECULAR CHARACTERIZATION AND IDENTIFICATION OF THE 18 SELECTED PROTEASES PRODUCING MARINE BACTERIA

4.1 Introduction

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
</tr>
</tbody>
</table>

4.2 Material and Methods

- **4.2.1 DNA Extraction Using Phenol Chloroform**
- **4.2.2 Measurement of DNA Concentration**
- **4.2.3 Agarose Gel Electrophoresis of DNA**
- **4.2.4 16S rDNA amplification**
- **4.2.5 Purification of PCR products**
- **4.2.6 Preparation of competent cells**
- **4.2.7 Cloning**
- **4.2.8 Screening of Transformants Harboring 16S rDNA Inserts**
- **4.2.9 Plasmid Extraction from *E. coli***

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>86</td>
</tr>
<tr>
<td>86</td>
</tr>
<tr>
<td>87</td>
</tr>
</tbody>
</table>
CHAPTER 5: CHARACTERISATION OF PROTEASES OF SELECTED MARINE BACTERIA

5.1 Introduction 114
5.2 Material and Methods 115
5.2.1 Quantification of proteolytic activity of Protease Producing Bacteria 115
5.2.2 Preparation media for protease production 115
5.2.3 Partial purification of the enzyme 115
5.2.4 Determination of time course study of protease activity 116
5.2.5 Protein assay/ Microassay Procedure 116
5.2.6 Protease Assay 116
5.2.7 Effects of pH on protease activity of the highest three (3) protease producing bacteria (based on activity) 117
5.2.8 Effects of temperature on protease activity of the highest three (3) protease producing bacteria (based on activity) 118
5.2.9 Effects of protease inhibitors on protease activity of the highest three (3) protease producing bacteria 118
5.2.10 Protease assays with synthetic substrates on protease activity of the highest protease producing bacteria (Bacillus sp PPB15) 118
5.2.11 Determination of the kinetic parameters of neutral protease from Bacillus sp PPB15 with hydrolysis of synthetic peptide substrates 119
5.2.12 Statistical analysis 120
5.3 Results
5.3.1 Determination of Proteolytic activity
5.3.2 Protease assay with four (4) hours Incubation time.
5.3.3 Effects of temperature and pH on protease activity for the best three (3) selected strains
5.3.4 Effects of protease inhibitors on proteolytic activity
5.3.5 Protease assays with synthetic substrates
5.3.6 Kinetic parameters determination with selected synthetic substrates
5.4 Discussion
5.4.1 Protein assay
5.4.2 Comparison of proteolytic activity in 24 h incubation time
5.4.3 Comparison of proteolytic activity in 4.0 h Incubation time
5.4.4 Effects of pH on protease activity
5.4.5 Effects of temperature on protease activity
5.4.6 Effects of protease inhibitors on protease activity
5.4.7 Protease assays with synthetic substrates (Substrates specificity)
5.4.8 Kinetic parameters of protease with synthetic substrates
5.5 Conclusions

CHAPTER 6: ASSESSMENTS OF GENE ENCODING NEUTRAL PROTEASE FROM SELECTED MARINE BACTERIA STRAIN Bacillus sp PPB15 and Bacillus sp PPB12

6.1 Introduction
6.2 Material and Methods
6.2.1. Bacterial Strains And Growth Conditions
6.2.2. Primer Design and PCR Conditions
6.2.3. Cloning, Sequencing And Database Analysis Of The PCR Fragments Of Protease Genes
6.2.4 Screening of Transformants Harboring Neutral Protease Gene Inserts
6.2.5 Plasmid Extraction From E. coli
6.3 Results
6.3.1. Design Of The Gene Specific Primers
6.3.2. Identification Of Discrete Protease Gene Profiles From Bacillus sp PPB15.
6.3.3. Cloning Of Protease-related Gene Fragments Amplified From The Two Different Bacillus Species
6.4 Discussion
6.4.1. Design Of The Gene Specific Primers
6.4.2. Identification Of Discrete Protease Gene Profiles From Bacillus sp PPB15 and Bacillus sp PPB12
6.4.3. Cloning Of Protease-Related Gene Fragments
CHAPTER 7: AMPLIFICATION, CLONING AND EXPRESSION OF NEUTRAL PROTEASE GENES FROM Bacillus sp PPB15 in E.coli TOP10, E.coli BL-21 AI™ AND E.coli BL21 STAR™(DE3) STRAINS

7.1 Introduction

7.2 Material and Methods

7.2.1 Genomic DNA Extractions

7.2.2 Measurement of DNA Concentration

7.2.3 Agarose Gel Electrophoresis of DNA

7.2.4 Amplification of Neutral Protease Gene (NprB)

7.2.5 Extraction of DNA/NprB gene from Agarose Gel

7.2.6 Cloning of NprB gene into Cloning Vector

7.2.7 Ligation of NprB gene

7.2.8 Preparation of E.coli Competent Cells

7.2.9 Transformation into E.coli TOP 10, E.coli BL-21 AI™ and E. coli BL21 Star™(DE3) strains.

7.2.10 Screening of Transformants Harboring NprB gene

7.2.11 Plasmid Extraction from E. coli

7.2.12 Construction of Plasmid Expression Vector for Expressing Recombinant NprB gene

7.2.13 Amplification of NprB-ORF

7.2.14 Ligation and Transformation of NprBORF into pEXP5NT-TOPO

7.2.15 Screening of Plasmids (pEXP5-NT) with NprB-ORF Inserts

7.2.16 Small scale preparation of plasmid

7.2.17 Induction and Expression of NprBORF in E. coli BL21 Star™(DE3), E.coli TOP 10, and E.coli BL-21 AI™ strain

7.2.18 Purification of NprB

7.2.19 Assay of recombinant protein (pEXPNT-NprB)

7.2.20 Preparation of Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

7.3 Result and Discussion

7.3.1 PCR Amplification of Neutral Protease Gene from Bacillus sp. PPB15.

7.3.2 Cloning of Protease Genes from Bacillus sp PPB15 in E.coli Using pJET1.2/Blunt Cloning Vector

7.3.3 Analysis of Recombinant DNA pJET1.2 nprB

7.3.4 DNA Verification by Sequencing
7.3.5 Sub-cloning of Neutral Protease Gene from *Bacillus* sp PPB15 Into *E. coli* Using pEXP5NT-TOPO Expression Plasmid

7.3.6 Expression of neutral protease gene from *Bacillus* sp PPB15 In *E.coli* BL21 Star™(DE3).

7.3.7 Purification and Assay of recombinant protein (pEXPNT-*NprB*)

7.3.8 Conclusion

CHAPTER 8: CONCLUSIONS

8.1 Overview

8.2 Isolation, Screening and Identification of Selected Marine Bacteria

8.3 Molecular Characterization and Identification Of the 18 Selected Proteases Producing Marine Bacteria (PPB)

8.4 Characterization of Proteases of Selected Marine Bacteria

8.5 Assessments of Gene Encoding Neutral Protease From Selected Marine Bacteria Strain *Bacillus* sp PPB15 and *Bacillus* sp PPB12

8.6 Amplification, Cloning and Expression of Neutral Protease Genes from *Bacillus* sp PPB15 in *E. coli* Top10, *E. coli* BL-21 AI™ And *E. coli* BL21 Star™(DE3) Strains

Future Outlook And Suggestions for Future Research

REFERENCES

APPENDIX A Agars, Broths and Chemicals preparation

APPENDIX B Alignment of the closest BLAST match of 18 Isolates and Neutral Protease Gene (*NprB*)

APPENDIX C CLUSTAL 2.0.12 multiple sequence alignment of neutral protease gene from 7 *Bacillus* strains

APPENDIX D Chromatogram of bacterial isolates sequences and Neutral Protease Gene Sequences
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Microbial enzymes in mangroves ecosystem</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.2a</td>
<td>Source of marine microbial enzymes</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.2b</td>
<td>Source of marine microbial enzymes</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Classification of exopeptidases by type of reaction catalyzed</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Definitions of the protease groups and example of known proteases within each group</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Commercial microbial proteases, sources and applications</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Cloning, sequencing, and/or expression of protease genes of cDNAs from bacteria sources</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.7a</td>
<td>Proteases selected for multiple alignment</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.7b</td>
<td>Proteases selected for multiple alignment</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.7c</td>
<td>Proteases selected for multiple alignment</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.1a</td>
<td>Physiological characteristics of the isolates /Radius of hydrolysis zone (mm) of isolates by Plate assay for protease production</td>
<td>66</td>
</tr>
<tr>
<td>Table 3.1b</td>
<td>Physiological characteristics of the isolates /Radius of hydrolysis zone (mm) of isolates by Plate assay for protease production</td>
<td>67</td>
</tr>
<tr>
<td>Table 3.2a</td>
<td>Characteristics of the eighteen (18) Protease Producing Bacteria</td>
<td>68</td>
</tr>
<tr>
<td>Table 3.2b</td>
<td>Characteristics of the eighteen (18) Protease Producing Bacteria</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.3a</td>
<td>Substrates utilized as carbon sources by 18 strains determined by Biolog microplate assays</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.3b</td>
<td>Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays</td>
<td>71</td>
</tr>
</tbody>
</table>
Table 3.3c Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays

Table 3.3d Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays

Table 3.3e Substrates utilized as carbon sources by 18 strains as determined by Biolog microplate assays

Table 4.1a Summary of BLAST result of the full 16S rDNA sequences

Table 4.1b Summary of BLAST result of the full 16S rDNA sequences

Table 5.1 Partial purification of neutral protease produces by protease producing bacteria, *Bacillus* sp PPB12, *Bacillus* sp PPB15 and *Bacillus* sp PPB4. Each value represents means ± SD (n=3)

Table 5.2 Hydrolytic activity of protease derived from *Bacillus* sp PPB15 with various synthetic peptide substrates

Table 5.3 Kinetic parameters of the neutral protease from *Bacillus* sp PPB15 with two types of synthetic substrates

Table 5.4 Partial purification of neutral protease produces by protease producing bacteria, *Bacillus* sp PPB12, *Bacillus* sp PPB15 and *Bacillus* sp PPB4. Each value represents means ± SD (n=3)

Table 5.5 Hydrolytic activity of protease derived from *Bacillus* sp PPB15 with various synthetic peptide substrates

Table 5.6 Kinetic parameters of the neutral protease from *Bacillus* sp PPB15 with two types of synthetic substrates

Table 6.1 Summary of the PCR primer sets used to amplify fragment of neutral protease gene in *Bacillus* sp PPB15 and *Bacillus* sp PPB12

Table 6.2 Summary result of BLASTn of nucleotide to protein of neutral protease

Table 6.3 Summary result of BLASTx of amino acid to protein of neutral protease

Table 6.4 Summary result of BLASTn of nucleotide to protein of 1.4 kb and 1.5 kb fragment isolated from *Bacillus* sp PPB15 using primer PF1 and PR1

Table 7.1 Solution for preparation of resolving gel (A) and solutions for 4.5% stacking gel (B)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General mechanism for the enzymatic hydrolysis of a peptide substrate</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic representation of the proteinase-substrate complex with six binding sites. Cleavage occurs between amino acid residues P1 and P1'</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Generalized downstream purification scheme as often applied to the production of bulk industrial enzymes</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of sampling sites (Tawau and Lahad Datu). Source of maps Department of Forestry, Sabah, Borneo</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>(A) showed the clearing zone at 0 mm, (B) showed clearing zone at 5-15 mm and (C) showed the clearing zone at >15 mm</td>
<td>57</td>
</tr>
<tr>
<td>3.3a</td>
<td>Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB1 (ii)PPB2 (iii) PPB3; incubation at 37°C</td>
<td>58</td>
</tr>
<tr>
<td>3.3b</td>
<td>Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i)PPB4 (ii)PPB5 (iii) PPB6; incubation at 37°C</td>
<td>59</td>
</tr>
<tr>
<td>3.3c</td>
<td>Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB7 (ii)PPB8 (iii) PPB9; incubation at 37°C</td>
<td>60</td>
</tr>
<tr>
<td>3.3d</td>
<td>Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB10 (ii) PPB11 (iii) PPB12; incubation at 37°C</td>
<td>61</td>
</tr>
<tr>
<td>3.3e</td>
<td>Physical characteristic of colony morphology (under stereo microscope) & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB13 (ii)PPB14 (iii) PPB15; incubation at 37°C</td>
<td>62</td>
</tr>
</tbody>
</table>
Figure 3.3f Physical characteristic of colony morphology & gram staining (under light microscope) of 18 isolates on nutrient agar (i) PPB16 (ii) PPB17 (iii) PPB18; incubation at 37°C

Figure 4.1a The total genomic DNA of the PPB1 (1), PPB2 (2), PPB3(3), PPB4(4), PPB5(5), PPB6(6), PPB7(7) and 1kb ladder(M) (Promega) on 1% of agarose gel

Figure 4.1b The total genomic DNA of the PPB8(1), PPB9(2), PPB10(3), PPB11(4), PPB12(5), PPB13(6), PPB14(7) and 1kb ladder(M) (Promega) on 1% of agarose gel

Figure 4.1c The total genomic DNA of the PPB15(1), PPB16(2), PPB17(3), PPB18(4) and 1kb ladder(M) (Promega) on 1% of agarose gel

Figure 4.2a The 16S rDNA fragment of isolates on 1.2% agarose gel. 1kb ladder(M) (Promega), PPB1(1), PPB2(2), PPB3(3), PPB4(4), PPB5(5), PPB6(6), PPB7(7), PPB8(8), PPB9(9)

Figure 4.2b The 16S rDNA fragment of isolates on 1.0% agarose gel. 1kb ladder(M) (Promega), PPB10(1), PPB11(2), PPB12(3), PPB13(4), PPB14(5), PPB15(6), PPB16(7), PPB17(8) and PPB18(9)

Figure 4.3a Colony PCR fragments of transformants on 1.0 % of agarose gel. 1kb ladder(M) (Promega), PPB1 (1), PPB2(2), PPB3(3), PPB4(4), PPB5(5), PPB6(6), PPB7(7), PPB8(8) and PPB9(9).

Figure 4.3b Colony PCR fragments of transformants on 1.0 % of agarase gel. 1kb ladder(M) (Promega), PPB10 (1), PPB11(2), PPB12(3), PPB13(4), PPB14(5), PPB15(6), PPB16(7), PPB17(8) and PPB18(9)

Figure 4.4a Fragment of recombinant pJet1.2 with 16S Rdna insert on 1% of agarose. 1kb ladder(M) (Promega), PPB1 (1), PPB2(2), PPB3(3), PPB4(4), PPB5(5), PPB6(6) and 1kb ladder(M) (Promega)

Figure 4.4b Fragment of recombinant pJet1.2 with 16S rDNA insert on 1% of agarose. 1kb ladder(M) (Promega), PPB7(1), PPB8(2), PPB9(3), PPB10(4), PPB11(5), PPB12(6) and 1kb ladder(M) (Promega)
Figure 5.4 Time course for proteolytic activity of marine bacteria (18 selected PPBs). Incubation was done at 37°C within 0-4 h sampling period with 0.5 h interval.

Figure 5.5 Protease activity from *Bacillus megaterium* PPB18, *Bacillus* sp PPB12 and *Bacillus* sp PPB15 at different pH. Incubation was done at 37°C with 4 h incubation time.

Figure 5.6 Protease activity from *Bacillus megaterium* PPB18, *Bacillus* sp PPB12 and *Bacillus* sp PPB15 at different temperature. Incubation was done at 30°C, 35°C, 40°C, 45°C and 50°C with 4 h incubation time.

Figure 5.7 Effects of enzyme inhibitors on protease produced from the *Bacillus* sp PPB15, *Bacillus* sp PPB12 and *Bacillus megaterium* PPB18. Incubation was done at 37°C for 4 h and each inhibitor was added to the protease and incubated at 4°C for 20 min. Each value represents mean ± SD.

Figure 5.8 Effects of synthetic substrate (L-Leucine-pNA) concentration (mM) on reaction rate of protease (Lineweaver-Burk plot).

Figure 5.9 Effects of synthetic substrate (N-Suc-Gly-Gly-Gly-pNA) concentration (mM) on reaction rate of protease (Lineweaver-Burk plot).

Figure 5.10 Selection of neutral protease producing bacteria and characterization of its enzyme.

Figure 6.1a Alignment of the 5' region from Neutral Protease gene from *Bacillus subtilis* and *Bacillus cereus* with result of phylogenetic tree of *npr* gene.

Figure 6.1b Alignment of the 5'PF2 region from *nprB* sequences of the three *Bacillus cereus* *npr* gene. The primers in the red fonts represent primer PF2 and PR2.

Figure 6.2 Amplification of fragment using PF1 and PR1 from isolate *Bacillus* sp PPB 15. Lane 1: Marker 1kb ladder (Promega, USA). Lane 2: PCR product encoding non specific fragment.

Figure 6.3 Amplification of fragment using PF12 and PR2 from isolate *Bacillus* sp PPB 15. Lane 1: Marker 1kb ladder (Promega, USA). Lane 2: PCR product encoding neutral protease gene (*nprB*).
Figure 6.4 Sequence of fragment neutral protease B gene from Bacillus sp PPB 15.

Figure 6.5 Sequence of none protease gene of fragment size 1.4kb from Bacillus sp PPB 15

Figure 6.6 Sequence of none protease gene of fragment size 1.5kb from Bacillus sp PPB 15

Figure 7.1 Genomic DNA of Bacillus sp PPB15 isolated from mangroves soil. Lane 1 : DNA Marker, Lane 2 : Genomic DNA of Bacillus sp PPB15

Figure 7.2 PCR amplification of a full length neutral protease gene of Bacillus sp PPB15 isolated from mangroves soil. Lane 1: DNA Marker, Lane 2 :PCR product of neutral protease gene from Bacillus sp PPB 15

Figure 7.3 Map of the construct pJET1.2jBlunt -NprB plasmid isolated from E.coli, harboring the neutral protease gene from Bacillus sp PPB 15

Figure 7.4 PCR colony analysis of Plasmid pJET1.2jBlunt -NprB pEXP5NT-TOPO containing Bacillus sp PPB 15 neutral protease gene from E. coli Top 10 BL21 Star™(DE3) transformant.

Figure 7.5 PCR colony analysis of Plasmid pEXP5NT-TOPO containing Bacillus sp PPB15 neutral protease gene from BL21 Star™(DE3) transformant

Figure 7.6 Map of construct and cloning site for pEXP5NT-TOPO-NprB plasmid isolated from E. coli BL21 Star™(DE3)

Figure 7.7 PCR amplification from plasmid pEXP5NT-TOPO isolated from BL21 Star™(DE3) using FNPBORF and RNPBORF primers

Figure 7.8 Result of the sequence of neutral protease gene encoding mature peptide inframe with cloning site (in yellow fonts), polyhistidine region (purple fonts) and TEV recognition site (purple fonts)

Figure 7.9 The positive result of qualitative protease producing activity that based on the formation of halo zone around the pellet (P) and supernatant (S) of transformant of protein recombinant
Figure 7.10 SDS-PAGE analysis of extracted *Bacillus* sp PPB15 neutral protease enzyme/ protein from *E. coli* BL21 Star™(DE3) strains containing recombinant pEXP5NT-NprB plasmid

Figure 7.11 Protease activity of *NprB*; Purified recombinant protein of plasmid pEXP5NT *NprB*
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
<td>percent</td>
</tr>
<tr>
<td>°C</td>
<td>degree of Celsius</td>
<td>degree of Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
<td>microgram</td>
</tr>
<tr>
<td>µg/µl</td>
<td>microgram per microliter</td>
<td>microgram per microliter</td>
</tr>
<tr>
<td>µg/ml</td>
<td>microgram per milliliter</td>
<td>microgram per milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>microliter</td>
<td>microliter</td>
</tr>
<tr>
<td>aa</td>
<td>amino acid</td>
<td>amino acid</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>BLASTN</td>
<td>basic local alignment search tool for nucleotide</td>
<td>basic local alignment search tool for nucleotide</td>
</tr>
<tr>
<td>BLASTX</td>
<td>basic local alignment search tool for protein</td>
<td>basic local alignment search tool for protein</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>calcium chloride</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>CBB R-250</td>
<td>Coomassie blue R-250</td>
<td>Coomassie blue R-250</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
<td>centimeter</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribo nucleic acid</td>
<td>deoxyribo nucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleoside-5’-triphosphate</td>
<td>deoxynucleoside-5’-triphosphate</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td>gram</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
<td>kilo base</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo dalton</td>
<td>kilo dalton</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td>kilogram</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>mA</td>
<td>mili ampere</td>
<td>mili ampere</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
<td>meter</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
<td>milligram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
<td>milliliter</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
<td>nanogram</td>
</tr>
<tr>
<td>ng/µl</td>
<td>nanogram per microliter</td>
<td>nanogram per microliter</td>
</tr>
<tr>
<td>O.D₆₀₀₀</td>
<td>optical density 600</td>
<td>optical density 600</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RBS</td>
<td>ribosomal binding site</td>
<td>ribosomal binding site</td>
</tr>
<tr>
<td>rpm</td>
<td>resolution per minute</td>
<td>resolution per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
<td>sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Tm</td>
<td>melting temperature</td>
<td>melting temperature</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-Ethylenediaminetetraacetic acid buffer</td>
<td>Tris-acetate-Ethylenediaminetetraacetic acid buffer</td>
</tr>
<tr>
<td>TE</td>
<td>Tris- Ethylenediaminetetraacetic acid buffer</td>
<td>Tris- Ethylenediaminetetraacetic acid buffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylenediamine</td>
<td>Tetramethylethylenediamine</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
<td>unit</td>
</tr>
<tr>
<td>V</td>
<td>voltage</td>
<td>voltage</td>
</tr>
</tbody>
</table>
Enzymes are undoubtedly the most efficient and environmentally-friendly protein catalyst known to have ever been synthesized by living systems. Their significant advantages clearly overrides the chemical catalysts in terms of specificity, high catalytic activity, ability to work at moderate temperatures, and the ability to produce in large amounts.

The current demand for better utilization of renewable resources and pressure exerted on certain industries to operate within environmentally compatible limits led to the onset of the inevitably new enzyme-catalyzed industrial processes (Barredo, 2005). Worldwide sales of industrial enzymes are estimated to be approximately $USD 4.8 billion with an annual growth of about 6.5 to 10% of which 75% are hydrolytic enzymes (Shikha and Darmwal, 2007). The Proteases represent one of the three largest groups of industrial enzymes and account for about 65% of the total worldwide sales of enzymes (Shikha and Darmwal, 2007).

Executing a large variety of functions, the proteases activities extend far beyond the cellular level to the organ and organism level with the sole purpose of producing cascade systems such as homeostasis and inflammation. They are particularly responsible for the complex processes involved in the normal physiology of cells as well as in the somewhat abnormal pathophysiological conditions. Their involvement in the life cycle of disease-causing organisms have ultimately led them to become a visibly potential target for developing therapeutic agents against fatal diseases such as cancer and AIDS.

In the food industry, the proteases portray a major role in nutritional processes due to their predominantly unusual ability in activities involving depolymerization. Additionally, their outstanding applications in the detergent industries have never seized to be overlooked. Similar applications of proteases in the leather industry for the dehairing and bathing purposes are clearly preferred as a substitute to the currently used toxic chemicals. Lately however, there has been
REFERENCES

Jyothi, B.S., Yan, I., Tyagi, R. D. and Surampall, R. Y. 2009. Isolation and Characterization of Protease Producing Bacteria from Quebec Soil and Water

Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S. and Ivanov, M.V. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of *Geobacillus subterraneus* gen. nov., sp. nov. and *Geobacillus ubenzensis* sp. nov. from petroleum reservoirs and transfer of *Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius* and Bacillus thermodenitrificans to *Geobacillus* as the new combinations *G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius* and *G. thermodenitrificans.*

Yeats,C., Rawlings,N.D. and Bateman,A. 2004. The PepSY domain: a regulator of peptidase activity in the microbial environment?

