ANTI-PERSISTENT MYCOBACTERIAL INHIBITORS FROM *Streptomyces* sp. H7763 TARGETING ISOCITRATE LYASE AND MALATE SYNTHASE IN THE GLYOXYLATE SHUNT OF *Mycobacterium* sp.

CH’NG AI YING

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH
2012
JUDUL: ANTI-PERSISTENT MYCOBACTERIAL INHIBITORS FROM
Strreptomyces SP. H7763 TARGETING ISOCITRATE LYASE AND
MALATE SYNTHASE IN THE GLYOXYLATE SHUNT OF
Mycobacterium SP.

IJAZAH: Doktor Falsafah

Saya Ch'ng Ai Ying, Sesi Pengajian 2008-2012, mengaku membenarkan tesis
Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan
syarat-syarat kegunaan seperti berikut:-

1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk
tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan
pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)

☐ SULIT (Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan Malaysia seperti yang termaktub di
dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah
ditentukan oleh organisasi/badan di mana
penyelidikan dijalankan)

☑ TIDAK TERHAD

Disahkan oleh,

NURULAIN BINTI ISMAIL
LIBRARIAN
UNIVERSITI MALAYSIA SABAH
(Tandatangan Pustakawan)

(Tandatangan Penulis)

Alamat Tetap: 57, Jalan Sentosa 63,
Batu Belah, Klang,
41050, Selangor.

Tarikh: 7 Julai 2013

(PROF. MADYA DR. HOW SIEW ENG)
Co-Penyelia

P.M. DR. LEE PEE CHIN
DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

20 December 2011

Ch'ng Ai Ying
PS20078316
CERTIFICATION

NAME : CH’NG AI YING
MATRIC NO. : PS20078316
TITLE : ANTI-PERSISTENT MYCOBACTERIAL INHIBITORS FROM Streptomyces SP. H7763 TARGETING ISOCITRATE LYASE AND MALATE SYNTHASE IN THE GLYOXYLATE SHUNT OF Mycobacterium SP.
DEGREE : DOCTOR OF PHILOSOPHY (BIOTECHNOLOGY)
VIVA DATE : 8 MAY 2012

DECLARED BY

1. SUPERVISOR
 Assoc. Prof. Dr. How Siew Eng

2. CO-SUPERVISOR
 Assoc. Prof. Dr. Lee Ping Chin

Signature

iii
I would like to express my deepest gratitude to my advisor, Associate Professor Dr. How Siew Eng, for her excellent scientific guidance and continuous support during my graduate studies especially during my thesis-writing period. My appreciation also goes to my co-advisor Associate Professor Dr. Lee Ping Chin for her time and useful suggestions. Thanks to MOSTI for the PGD scholarship award. Thanks to Pusat Pengajian Pascasiswa for all the assistance given to me throughout this study.

Next, I am grateful to all the external assistances given, particularly to Dr. Ho Coy Choke, Dr. Pazilah Ibrahim (USM), Mr. Thaiga (USM), Professor Habibah A. Wahab (USM), Dr. Choy Sy Bing (USM), Dr. Jalifah Latip (UKM), Ms. Norazawana (CARIF), Mr. Fateh (UM) and Mr. Azli (SPBT, UMS).

I would like to thank all the previous and current members in UMS for helpful and inspiring discussions, particularly Siak Chung, Wei Li, Khoo, Hoe Seng, Chu, Catherine, Chung Lee, Chia Yean, Meei Chyn, Glenda, Tianxin, Din, Fauze, Ain, Lyn, Nurul, Judy and Siva.

Lastly, I wish to thank Ming Hong and family members for providing me continuous financial supports, spiritually motivation and encouragements. Thanks to my parents Ch’ng Cheng Kee and Teo Bee Choon who bore me, raised me, supported me, taught me and loved me. Without their encouragements and understanding, it would have been impossible for me to finish this work. To Ming Hong and my family, I dedicate this thesis.

Ch’ng Ai Ying
20 December 2011
ABSTRACT

ANTI-PERSISTENT MYCOBACTERIAL INHIBITORS FROM *Streptomyces* SP. H7763 TARGETING ISO CITRATE LYASE AND MALATE SYNTHASE IN THE GLYOXYLATE SHUNT OF *Mycobacteria*um SP.

Globally, two billion people are infected with latent tuberculosis (TB) infection, showing asymptomatic immune response but capable to reactivate into chronic TB in life. Immunocompromised patients such as HIV preinfected people have fueled up the reactivation rate while the drug resistant bacilli which evolved without proper medications have resulted in a more complicated treatment. During dormancy, the persistent strain of *Mycobacterium tuberculosis* is non-replicative and recalci
trate to conventional TB drugs which mostly inhibit the biosynthetic cellular process. The persistent strain regulates a switch of metabolism to glyoxylate shunt and uses 2-carbon compounds such as acetate as the primary carbon source to survive. The glyoxylate shunt enzymes namely isocitrate lyase (ICL) and malate synthase (MS) have been structural solved and identified as important virulence and persistence factors. Both ICL and MS thus become attractive targets for anti-persistent TB drug discovery. In the search for persistent TB inhibitors from soil actinomycetes metabolites, a positive extract was obtained and the hits strain was identified and designated as *Streptomyces* SP. H7763. Subsequently, compound P1, P2 and P3 were purified from this butanol extract using bioassay-guided chromatography approaches. P2 was elucidated spectroscopically as 2-amino-3-(cyclohexa-1,4-dienyl) propanoic acid, which was detected for the first time to inhibit *Mycobacterium* sp. As a persistent strain inhibitor, P2 strongly inhibited the acetate grown *Mycobacterium smegmatis* mc²155, H8000 with MIC = 0.02±0.00 µg/mL using a modified resazurin-based microtiter assay (REMA) targeting the glyoxylate shunt. P2 competitively inhibited MS but not ICL against glyoxylate with Ki = 34.85 mM, showing a comparable potency with the control 3-nitropropionate which acted competitively against the acetyl-coenzyme A with Ki = 36.20 mM. Extensive molecular docking studies of P2 with MS was performed and the interaction indicated a better affinity of conformation over the glyoxylate, with a predominant salt bridge bonding between amino group of P2 and Asp 633, a bidentate coordination of the carboxylate group to the Mg²⁺ ion which is essential to the catalytic activity and the cyclohexa-1,4-dienyl ring of P2 that experienced an aromatization inactivation mechanism with Arg 339 which further interrupts the catalytic mechanism. Desiccated P2 was labile to oxidation and aromatised to yield P1, an amino acid which was not bioactive. However, calcium-alginate encapsulated P2 had succeeded to prolong its anti-mycobacterial activity for over 4 weeks and had pre-developed as a slow-release delivery inhibitor to accumulate at the intracellular environment. P2 was not toxic against *Artemia salina* (LC₅₀ > 2000 µg/mL) based on a brine shrimp lethality assay. P3 was a non-selective inhibitor, showing unstable anti-mycobacterial activity against *M. smegmatis* mc²155, H8000 and *M. tuberculosis* H37Rv, ATCC 25618. In conclusion, a persistent *Mycobacterium* sp. Inhibitor P2 targeting the MS was successfully isolated from the *Streptomyces* sp. H7763 culture and may serve as a good lead candidate for further latent TB infection drug design since the enzyme does not exist in mammals.
ABSTRAK

Kini, dua ribu juta populasi dunia telah dijangkiti penyakit tuberkulosis (TIBI) pendam dengan respon imun asimptomatik tetapi akan berakibat menjadi TIBI kronik dalam hayatnnya. Risiko keaktifan TIBI pendam ini bertambah terutamanya pada pesakit yang lemah sistem imun contohnya pesakit pra-jangkitan HIV. Penjangkit baka kebal ubat TIBI pula telah merumitkan perubatan. Semasa berhibernasi, bakteria Mycobacterium tuberculosis baka pendam ini tidak bercampak. Oleh itu, ia adalah kebal terhadap ubat konvensional TIBI yang bersasar pada sistem replikasi sel. Bakteria ini telah menggantikan sistem metabolismenya dengan kitaran glioksilat yang menggunakan sebatian 2-karbon seperti asetat untuk terus berpendam. Enzim kitaran glioksilat iaitu isositrat liase (ICL) dan malat sintase (MS) telah dikenalpasti sebagai faktor pendam dan jangkitan. Maka, kedua-dua enzim ini merupakan sasaran penemuan ubat baru TIBI pendam yang berpotensi. Dalam usaha penemuan perencat TIBI pendam dari ekstrak-ekstrak aktinomisit, satu ekstrak positif telah ditemui dan penghasil metabolit tersebut telah dikena/pasti sebagai Streptomyces sp. H7763. Kemudian, sebatian P1, P2 dan P3 telah ditulenkan daripada ekstrak butanol kultur Streptomyces sp. H7763 tersebut melalui teknik kromatografi berpaduan biosasi. P2 telah dikenalpasti strukturnya sebagai 2-amino-3-(sikloheksa-1,4-diena) propanoik asid secara spektroskopi dan disahkan selanjutnya melalui sintesis. Sebagai perencat baka pendam, P2 telah merencatkan penumbuhan Mycobacterium smegmatis mc²155, H8000 pada sumber karbon asetate dengan MIC 0.02±0.00 µg/mL dalam ujian REMA (resazurin-based microtiter assay) bersasar pada kitaran glioksilat. P2 merencatkan MS dan bakan pada ICL secara berkompetitif dengan glioksilat (Ki = 34.85 mM), aktivitinya setanding dengan kawalan 3-nitropropionat yang merencatkan MS secara berkompetitif dengan asetil-koenzim A. Kajian simulasi pendokan P2 dengan MS telah menunjukkan tarikan affiniti yang lebih baik berbanding dengan glioksilat, terutamanya pada tarakan antara amino P2 dengan Asp 633, satu tarakan 'bidentate' antara karbosilat P2 dengan Mg²⁺ yang penting dalam pemangkinan aktiviti MS dan akhirnya sistem sikloheksa-1,4-diena yang mengalami perencatan secara pengaromatik dengan Arg 339. P2 mudah teroksida dan bertukar strukturnya kepada P1, suatu asid amino yang tidak bioaktif. Sehubungan itu, pengkapsulan P2 dengan kalsium-alginat telah berjaya mengekalkan aktiviti perencatannya lebih daripada 4 minggu dan ia telah dipraperforma untuk berkumpul dalam intrasel supaya lebih bertumpu pada bahagian pendaman. P2 tidak toksik terhadap pertumbuhan Artemia salina (LC₅₀>2000 µg/mL) dalam ujian ketoksikan udang. P3 merupakan sebatian ketiga, menunjukkan aktiviti perencatan yang kurang stabil dan tidak dikenalpasti sasarannya terhadap M. smegmatis mc²155, H8000 dan M. tuberculosis H37Rv, H8000. Kesimpulannya, perencat MS iaitu P2 telah berjaya ditulenkan daripada ekstrak Streptomyces sp. H7763 di mana sebatian ini berpotensi sebagian calon ubat untuk perekaan ubat baru anti-TIBI pendam kerana enzim MS ini tidak wujud dalam mamalia.
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Introduction 1
1.2 Rationale of the study 3
1.3 Objectives of the study 4
1.4 Scope of study 4

CHAPTER 2: LITERATURE REVIEW

2.1 Tuberculosis 5
2.2 *Mycobacterium* sp. 12
2.3 Natural products as a natural source of new anti-TB inhibitors 13
2.4 From conventional drugs to new structure-based TB drug discovery 23
2.5 Glyoxylate-shunt enzymes as the structure-based drug discovery targets 33

CHAPTER 3: METHODOLOGIES

3.1 Microorganisms 42
3.2 General experimental procedures 42
3.3 Identification of *Streptomyces* sp. H7763 43
3.4 Fermentation, extraction, purification and structure elucidation 44
3.5 Biological assays
 3.5.1 Cell-based anti-mycobacterial agar diffusion assay 45
 3.5.2 MIC determination 46
 3.5.3 Enzymatic inhibitory assays 47
 3.5.4 Anti-microbial agar diffusion assay 49
 3.5.5 Brine shrimp lethality assay 50
3.6 KI determination against glyoxylate shunt enzyme 50
3.7 Molecular docking 51
CHAPTER 6: MOLECULAR DOCKING OF THE SELECTED COMPOUNDS AGAINST MS

6.1 Introduction 111
6.2 Methodologies 112
 6.2.1 Preparation of protein receptor and ligands 112
 6.2.2 Grid generation 112
 6.2.3 Docking 113
 6.2.4 Evaluation and visualisation 113
6.3 Result and discussion 113
 6.3.1 Molecular docking of selected compounds against MS 113
 6.3.2 In silico comparison of P2 and MS inhibitors of PKBA derivatives 124
6.4 Summary 127

CHAPTER 7: CONCLUSION 129
REFERENCES 132
APPENDIX 159
LIST OF TABLES

Table 2.1	Drug regimens for the treatment of latent TB infection	Page 10
Table 2.2	Classification of mycobacteria based on pigmentation and growth rate	Page 12
Table 2.3	Clinical used antibiotics originated from actinomycetes	Page 14
Table 2.4	Antimycobacterial agents originated from microorganisms	Page 16
Table 2.5	Conventional TB drugs and new TB antibiotics in clinical trial	Page 25
Table 2.6	New regimens currently under clinical trial	Page 26
Table 2.7	Reviews on the structure-based TB drug developments	Page 30
Table 2.8	New structure-based TB drug developments against persistent strains	Page 31
Table 4.1	Inhibition of acetone crude extracts obtained from the fermented colony A-F against the growth of *M. smegmatis* mc²155, H8000 using an agar diffusion assay	Page 56
Table 4.2	Inhibition of the small-scale fractionated extracts against the growth of *M. smegmatis* mc²155, H8000 using the agar diffusion assay	Page 59
Table 4.3	The solvent combinations used in the first stage glass column chromatography	Page 60
Table 4.4	The solvent combinations used in the second stage glass column chromatography	Page 61
Table 4.5	Cultural and morphological comparison of H7763 with related organism grown on an oatmeal agar	Page 67
Table 4.6	TLC observation of the seven fractions pooled from the first stage chromatography of butanol extract	Page 71
Table 4.7	Inhibition of the eight fraction pooled from the seven fractions pooled from the first stage column chromatography of butanol extract against the *M. smegmatis* mc²155, H8000 using the agar diffusion assay	Page 71
Table 4.8	Inhibition of the fractions pooled from rechromatographed fraction F4 and F5 against the *M. smegmatis* mc²155, H8000 using the agar diffusion assay	
Table 5.1	Concentration dependency inhibition of P2 and P3 against the acetate and glucose grown H8000	
Table 5.2	Stability of P2 and P3 against the acetate and glucose grown H8000	
Table 5.3	Inhibition activity of the encapsulated compounds against the growth of *M. smegmatis* mc²155, H8000 using an agar diffusion assay	
Table 5.4	Percentage inhibition of selected compounds against the MS activity	
Table 6.1	AutoDock 4.0 estimated free energy of binding and calculated inhibitory constant of the selected compounds	
Table 6.2	Comparison of docking data between P2 and PKBA derivatives ST01 – ST04	
LIST OF FIGURES

Figure 2.1	First line and second line anti-TB drugs	7
Figure 2.2	Granuloma environment of hypoxia during latent TB infection	9
Figure 2.3	Peptides as inhibitors of mycobacterial	18
Figure 2.4	Alkaloids as inhibitors of mycobacterial	19
Figure 2.5	Terpenoids as inhibitors of mycobacterial	20
Figure 2.6	Nucleotides as inhibitors of mycobacterial	21
Figure 2.7	Phenolic compounds as inhibitors of mycobacterial	22
Figure 2.8	Metabolism targets of the conventional TB drugs and new TB drug candidates	26
Figure 2.9	New TB drug candidates redeveloped from established known compounds	28
Figure 2.10	Glyoxylate bypass replenish TCA cycle in the latent TB infection	34
Figure 2.11	Some ICL and MS inhibitors	36
Figure 2.12	Three dimensional structure of ICL	37
Figure 2.13	Three dimensional structure of MS	37
Figure 2.14	Indole-containing, hydroquinone and 3-nitropropionamides derivatives as ICL inhibitors	39
Figure 2.15	PKBA derivatives as potential inhibitors of MS	41
Figure 3.1	*Streptomyces* sp. H7763 recovered from an glycerol stock on an oatmeal agar at day-14. Selected colonies were fermented in small scale	44
Figure 3.2	Mechanism of ICL inhibitory assay. ICL catalyses the substrate of isocitrate into the end products of GLC and succinate. Phenylhydrazone in this enzymatic assay reacts with GLV to form glyoxylic acid phenylhydrazone which detected at 324 nm in the increasing rate	48
Mechanism of MS inhibitory assay. MS catalyses the substrates of GLV and acetyl-coenzyme A into end products of MLT and coenzyme A. In this enzymatic assay, acetyl-coenzyme A is measured at 232 nm for the breakage of acetyl-coenzyme A upon catalysation by MS

Growth phase of *Streptomyces* sp. H7763 and the bioactive secondary metabolites production plot

Yield of the extracted cultures and peak₆.₆₂₅ₘ₉ height of the 1 mg/mL crude extracts at 210 nm

Fermentation of H7763

Streptomyces sp. H7763 grown on an oatmeal agar at day-14

Streptomyces sp. H7763 under light microscope

SEM observation of H7763

Agarose gel of extracted H7763 genomic DNAs and Lambda HindIII ladder

Agarose gel of H7763 PCR products.

Aligned partial 16S rRNA gene sequences fragment obtained from the H7763

NJ phylogenetic tree showing the relationship between H7763 and the related organism based on the 16S rRNA partial gene sequences with the bootstrap value of 1000 resampled datasets

Separated butanol extract using TLC

Inhibition of fraction 4F8, 5F4, 5F5 against the acetate grown *M. smegmatis* mc²155, H8000 using the agar diffusion assay

Enzymatic reactions of the glyoxylate shunt and TCA cycle

RP-HPLC profiling of fraction ASP

Fraction and isolation flow chart of P1, P2 and P3

P1, 2-amino-3-phenylpropanoic acid

P2, 2-amino-3-(cyclohexa-1,3-dienyl) propanoic acid
Figure 5.4 The concentration of the eluted fraction from the Ni$^+$ affinity column

Figure 5.5 SDS-PAGE visualisation of the selected fractions

Figure 5.6 P2 and P1 purified from fraction B

Figure 5.7 HPLC-DAD$_{210\text{nm}}$ spectrum of P1

Figure 5.8 HPLC spectral of P2

Figure 5.9 HPLC-DAD$_{210\text{nm}}$ spectral of compound P2 in different stages

Figure 5.10 Scheme of L-2,5-dihydrophenylalanine biosynthesis in \textit{Streptomyces} sp.

Figure 5.11 Compound P3 purified from fraction A

Figure 5.12 HPLC-DAD$_{210\text{nm}}$ spectrum and TLC plate of P3

Figure 5.13 Inhibition of P2 against glucose and acetate grown H8000

Figure 5.14 Concentration dependency inhibition of P3 against the acetate and glucose grown H8000

Figure 5.15 Chemical structure of AMC and P2

Figure 5.16 Competitive inhibition of P2 against GLV in the MS enzymatic assay

Figure 5.17 Competitive inhibition of 3NP against acetyl-coenzyme A in the MS enzymatic assay

Figure 6.1 AutoDock 4.0 estimated free energy of binding and calculated inhibitory constant of the selected compounds

Figure 6.2 Catalytic role of Asp 663, Arg 339 and Mg$^{2+}$ ion in the chemical mechanism of MS

Figure 6.3 Three dimensional hydrophobic interaction binding mode of P1 and P2

Figure 6.4 Proposed enzyme-catalysed aromatisation inactivation of MS at the binding site by P2
Figure 6.5 Proposed aromatisation inactivation mechanisms by ACM, AFCA and gabaculin 120

Figure 6.6 Four selected derivatives ST01 – ST04 125

Figure 6.7 Three dimensional binding mode of selected structure-modified PKBA derivatives overlapped with P2 126
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3NP</td>
<td>3-nitropropionate</td>
</tr>
<tr>
<td>ACM</td>
<td>Amiclenomycin</td>
</tr>
<tr>
<td>AFCA</td>
<td>(±)-(1S,2R,5S)-5-amino-2-fluorocyclohex-3-ene carboxylic acid</td>
</tr>
<tr>
<td>AMK</td>
<td>Amikacin</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asp</td>
<td>Asparagin</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette-Guérin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CAP</td>
<td>Capreomycin</td>
</tr>
<tr>
<td>CD$_3$OD</td>
<td>Deuterated methanol</td>
</tr>
<tr>
<td>CD$_3$SOCD$_3$</td>
<td>Deuterated DMSO</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming unit</td>
</tr>
<tr>
<td>COSY</td>
<td>Homonuclear correlation spectroscopy</td>
</tr>
<tr>
<td>CYS</td>
<td>Cycloserine</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>Deuterated water</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode array detector</td>
</tr>
<tr>
<td>DAPA</td>
<td>Diaminopelargnic acid synthase</td>
</tr>
<tr>
<td>DNTB</td>
<td>5,5'-dithio-bis-2-nitrobenzoic acid</td>
</tr>
<tr>
<td>DOTS</td>
<td>Directly observed treatment, short-course</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EMB</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>ETA</td>
<td>Ethionamide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GABA-AT</td>
<td>γ-aminobutyric acid aminotransferase</td>
</tr>
<tr>
<td>GATI</td>
<td>Gatifloxacin</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>GLV</td>
<td>Glyoxylate</td>
</tr>
<tr>
<td>H-bond</td>
<td>Hydrogen bonding</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multi-bond correlation spectroscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single-quantum correlation spectroscopy</td>
</tr>
<tr>
<td>HTS</td>
<td>High-throughput screening</td>
</tr>
<tr>
<td>ICL</td>
<td>Isocitrate lyase</td>
</tr>
<tr>
<td>IGRA</td>
<td>Interferon gamma release assay</td>
</tr>
<tr>
<td>INH</td>
<td>Isoniazid</td>
</tr>
<tr>
<td>IPT</td>
<td>Isoniazid preventive therapy</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl β-D-1-thiogalactopyranoside</td>
</tr>
<tr>
<td>KAN</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>Ki</td>
<td>Inhibitory constant</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>LEV</td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>LIN</td>
<td>Linezolid</td>
</tr>
<tr>
<td>MDR</td>
<td>Multi-drug resistant</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>MLT</td>
<td>Malate</td>
</tr>
<tr>
<td>MS</td>
<td>Malate synthase</td>
</tr>
<tr>
<td>MXF</td>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour-joining</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear overhauser effect spectroscopy</td>
</tr>
<tr>
<td>OADC</td>
<td>Oleic acid-albumin-dextrose-catalase supplement</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PKBA</td>
<td>Phenyl keto butanoic acid</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>PO</td>
<td>Potassium oxalate</td>
</tr>
<tr>
<td>PRO</td>
<td>Prothionamide</td>
</tr>
<tr>
<td>PYR</td>
<td>Pyruvate</td>
</tr>
<tr>
<td>PZA</td>
<td>Pyrazinamide</td>
</tr>
<tr>
<td>QSAR</td>
<td>Quantitative structure activity relationship</td>
</tr>
<tr>
<td>REMA</td>
<td>Resazurin-based microtiter assay</td>
</tr>
<tr>
<td>RIF</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>RIFAB</td>
<td>Rifabutin</td>
</tr>
<tr>
<td>RIFAZ</td>
<td>Rifalazil</td>
</tr>
<tr>
<td>RIFAP</td>
<td>Rifapentine</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root-mean-square deviation</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reverse phase high pressure liquid chromatography</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure activity relationship</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>STR</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris base-acetatic acid-EDTA</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acids cycle</td>
</tr>
<tr>
<td>TEMA</td>
<td>Tetrazolium bromide microtiter assay</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TNB</td>
<td>2-nitro-5-thiobenzoic acid</td>
</tr>
<tr>
<td>TST</td>
<td>Tuberculin skin test</td>
</tr>
<tr>
<td>UPLC</td>
<td>Ultra performance liquid chromatography</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Media and ingredients</td>
<td>159</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Calculation of the enzyme extract concentration</td>
<td>162</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Recombinant ICL and MS expression and purification</td>
<td>163</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Structure elucidation</td>
<td>171</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Synthesis of P2 using Birch reduction method</td>
<td>183</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Preliminary toxicity assessment of P2 and P3</td>
<td>184</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Stability (anti-persistent mycobacterial activity) evaluation of free and encapsulated compounds</td>
<td>185</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction
In 2009, 9.4 million people are infected with tuberculosis (TB) and 1.7 million of them were killed (WHO, 2010). TB is treatable with the discovery of the first antibiotic Streptomycin in 1944 (McKinney, 2000) but the eradication of tubercles still remains an unachievable goal without introduction of more effective medications. Indeed, there have been no novel TB drugs in the market for nearly 50 years; Conventional TB treatment requires an administration of at least six months drugs regimens and 24 months if the tubercles are detected to be drug resistant strains (WHO, 2006a).

Communities with high TB burden are usually world’s poorest people who cannot afford the expensive and protracted medication. Therefore, it is difficult for them to complete the treatments and thereby half million of the impoverished TB patients from China, India, South Africa, Nigeria and Indonesia are infected with multi-drug resistant TB (WHO, 2010). With an over-crowded living condition, this air-borne infectious disease spreads fast within the marginalised communities. Moreover, the exposure of travelers or hospital staff to these communities has increased the infection rate globally and currently two billion people are carrying the tubercles asymptotically as latent TB infection (TB Alliance, 2010).

Patients with latent TB infection are detected positively in tuberculin skin tests or γ-interferon tests but show no clinical symptoms as the tubercles have been arrested by the intracellular activated macrophages in a hypoxic environment (Young et al., 2009). The persistent tubercles realign themselves to increase cell wall thickness and eventually shut off their active replication in order to survive in the oxidative-stressed and nutrient-starved hypoxic environment (Tischler and McKinney, 2010; Russell et al., 2009). Ten percent of these patients will go on to develop active TB in their life and the risk of reactivation is higher if they are
immunocompromised by HIV or chemotherapies. Reactivation of these tuberculosis can lead to chronically active TB which accelerates the spread via blood to all organs in the body.

Conventional TB drugs fail to achieve optimal level within TB lesions against the persistent strains of *Mycobacterium tuberculosis* as the regimens are mainly targeting at the biosynthetic cellular mechanism (WHO, 2006b; TB Alliance, 2008a; Koul et al., 2011). For instance, TB drugs of the aminoglycosides (streptomycin [STR], kanamycin [KAN], amikacin [AMK] or capreomycin [CAP]) inhibit protein synthesis, pyridines (isoniazid [INH], ethionamide [ETA] or prothionamide [PRO]) inhibit cell wall synthesis, quinolones (moxifloxacin [MXF], levofloxacn [LEV] or gatifloxacin [GAT]) inhibit DNA synthesis and ansamycins (rifampicin [RIF]) inhibit RNA synthesis. Therefore, a new inhibitor which has new mode of action or effective against the persistent strains is desired.

When the persistent strains shielding themselves in the sugar limited hypoxic environment, bloated fatty acids (derived from the inflammatory response and dead cells) surrounding thus become their main carbon sources (Ehrt and Schnappinger, 2007). The fatty acids are converted into simpler units such as acetyl-coenzyme A or propionyl-coenzyme A through a β-oxidation pathway and these two- or three-carbon compounds are then utilised in a glyoxylate shunt that bypass the tricarboxylic acids (TCA) cycle to generate energy. Glyoxylate shunt enzymes of isocitrate lyase (ICL) and malate synthase (MS) are therefore serve as essential drug targets to combat latent TB infection as the persistent strains rely on the glyoxylate shunt to continue to survive within the macrophages.

ICL and MS have been genetically reported to be important virulence factors as the gene-deleted mutant strains have failed to persist in the infected mice (McKinney et al., 2000; Sharma et al., 2000; Muñoz-Elías et al., 2005). The crystal structures of ICL and MS have been fully studied (Sharma et al., 2000; Anstrom and Remington, 2006) and thereby reveal the active site configurations at the atomic level which allow the enzyme-inhibitor interaction to be studied using the computational aided drug discovery tools such as molecular docking and dynamic
simulation. In addition, glyoxylate shunt does not exist in mammalian host as the mammals require sugar as the survival carbon source. Therefore, an ICL or MS inhibitor might be able to minimise the side effects towards the host.

1.2 Rationale of the study
Glaxo Smith Kline (GSK) and TB Alliance have performed an extensive high throughput screening (HTS) to identify ICL and MS inhibitors. From a library of more than one million organic molecules, only a number of leads with phenyl keto butanoic acid (PKBA) backbone have been identified to inhibit MS and currently they are still in the optimisation stage (Freundlich et al., 2010; TB Alliance, 2010). In contrast, the HTS project to search for ICL inhibitors has been discontinued due to the lack of druggability of the ICL targets. Therefore, a more biological variance and diverse scaffolds library is crucial.

Natural product collections have a much higher hit rate than do combinational libraries as it provides novelty and complexity with respect to the number of chirality centers, rings, bridges and functional groups in the molecule. As novel scaffolds are continually needed, natural products and their derivatives remain to be the core resources to obtain novel chemical structures which are active against the ICL or MS.

Bacteria represent the largest source for the natural product drug discovery, followed by plants, fungi and animals (Lawrance, 1999). Among the bacteria, actinomycetes remain to be the most promising novel compound producer as 50% of the reported 22,500 microbe-derived bioactive compounds are actinobacterial members such as Micromonosporineae, Pseudonocardineae, Streptomycineae, Streptosporangineae and some other saprophytic microorganisms (Peláez, 2006; Ashforth et al., 2010). With the fact that top 10 cm of global soil contains $10^{25} - 10^{26}$ actinomycetes, yet only about 10^7 have been screened for antibiotic production (Baltz, 2007). Therefore, the search of new inhibitors against ICL or MS from these soil organisms is still far from exhaustive.
REFERENCES

Alston, T. A., Mela, L. and Bright, H. J. 1977. 3-nitropropionate, the toxic substance of *Indigofera* is a suicide inactivator of succinate dehydrogenase. *Proceedings of the National Academy of Sciences, 74*(9): 3767-3771

Arora, S. 2009. Design of phenyl keto butanoic acid derivatives as inhibitors against malate synthase of M. tuberculosis based on docking and MD simulation studies. Master of Technology in Biotechnology and Medical Engineering. National Institute of Technology Rourkela

Ch'ng, A. Y. 2007. Screening of microbial and plant extracts for new anti-Mycobacterium drugs. Final Year Project. Universiti Malaysia Sabah

Journal of Ethnopharmacology, **106**: 290-302

139

141

Loh, F. F. 2011. TB on the rise, 18,000 cases in 2010. *The Star Online,* 16 March.

Rabideau, P. W. 1977. The conformational analysis of 1,4-cyclohexadienes: 1,4-dihydrobenzenes, 1,4-dihydronaphthalenes, and 9,10-dihydroanthracenes. *Accounts of Chemical Research*, 11: 141-147

153

TB Alliance. 2007. *Advancing the Pathway: Novel Approaches to Getting Faster and Better TB Drugs to Patients.* TB Alliance 2007 Annual Report

World Health Organization (WHO). 2006c. The Stop TB Strategy: Building on and enhancing DOTS to meet the TB-related Millennium Development Goals. World Health Organization (WHO)

