HEAVY METALS CONCENTRATION IN THE WATER AND SEDIMENTS OF LOHAN RIVER, RANAU

CHOW GEH TSUNG

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

ENVIRONMENTAL SCIENCE PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

APRIL 2009
UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS@

JUDUL: HEAVY METALS CONCENTRATION IN THE WATER AND SEDIMENTS OF LOHAN RIVER, RANAU

IJAZAH: BACHELOR OF SCIENCE WITH HONOURS

SAYA CHOW GEH TSUNG (HURUF BESAR) SESI PENGAJIAN: 2009/2010

mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/) (Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
 □ SULIT
 □ TERHAD
 / TIDAK TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan Oleh

NURULAIN BINTI ISMAIL
LEAD LIBRARIAN
UNIVERSITI MALAYSIA SABAH

Alamat Tetap: 62 JALAN HIJAU
Emas 3, Overseas Union
Garden, 58200, Kuala Lumpur.

Tarikh: 5TH MAY 2009

Nama Penyelia

Prof. Dr. Mohd. Harun Abdullah

TARikh: ___

CATATAN: - Potong yang tidak berkenaan.
**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa /organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I declare that this thesis entitled "Heavy Metals Concentration in the Water and Sediments of Lohan River, Ranau" is the result of my own research except as cited in the references. This thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Date : 5th May 2009

CHOW GEH TSUNG
HS2006-3593
CERTIFICATION

1. SUPERVISOR
 (PROF. DR. MOHD. HARIUN ABDULLAH)

2. EXAMINER 1
 (SITI AISHAH BINTI MOHD. ALI)

3. EXAMINER 2
 ()

4. DEAN
 (PROF. DR. MOHD. HARIUN ABDULLAH)
ACKNOWLEDGEMENT

I wish to express my sincerest appreciation to my supervisor, Prof. Dr. Mohd. Harun Abdullah for his guidance, encouragement and invaluable support throughout the course of my research study.

My appreciation also extends to Master student Lin Chin Yik for assisting me during my sampling trip, and for sharing his experience and views which had been a great help in the writing of this thesis. I also want to thank PhD student Miss Sarva Mangala Praveena for her advice and help over the course of my research study. I really like to thank fellow course mate Lee Qai-Li for her cooperation, support, and most importantly for being a true friend even during the most crucial moments.

Grateful I am as well, to the laboratory assistants, En. Neldin, En. Recyheidy, and En. Syaufie who had assisted me in many ways during the laboratory analysis. I am also thankful to the Vice Director of the Mine & Quarry Development Unit of JMG Malaysia, En. Zainal Abidin Md. Nor for his assistance in obtaining past analytical data of rivers in the Ranau area. It was also most fortunate that I had financial support from United Nation University – International Environmental Research Centre, Korea Grant 2009.

Over everything else, I am ultimately grateful to my parents and family members for their love and support. They are, and will always be, my strongest driving force.
ABSTRACT

The Lohan River is one of many river systems in the Ranau region which was once severely affected by the Mamut copper mine. The purpose of this study was to assess the level of heavy metals in the water and sediments of the Lohan River. Sampling was done on 26th November 2008. Water and sediment samples were collected from four sampling stations along downstream of the Lohan River. Water samples were filtered with a 0.45-μm membrane filter and acidified to pH<2 prior to analysis, whereas sediment samples were digested using aqua regia for the determination of total heavy metal concentrations. 10 heavy metals (i.e. As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, and Zn) were analyzed for this study, both in water and sediment samples collected. The results obtained were then compared with the Interim National Water Quality Standards (INWQS) for Malaysia, the United Nations Food and Agriculture Organization (UNFAO) irrigation water standards, and for sediment analysis, the Provincial Sediment Quality Guidelines (PSQG) Ontario, Canada. Sample analyses were conducted by means of an Inductively Coupled Plasma – Optical Emission Spectrometer (ICP-OES). From the results obtained, only three heavy metals – Cd, Cu, and Mn – showed non-compliance with the Malaysian INWQS threshold limits, whereas cadmium was the only element to have exceeded its UNFAO recommended maximum for irrigation water. For sediment analysis; with reference to the PSQG; As, Cd, Cr, Cu, Fe, and Ni showed concentrations in Lohan River to exceed their respective Severe Effect Levels (SEL). This is an indication of heavy pollution of Lohan River’s sediments in terms of the mentioned heavy metals. The trend of heavy metal concentration in Lohan River’s water was Fe>Mn>Ni>Cu>As>Zn>Cd>Co>Pb>Cr, whereas in sediment the trend was Fe>Cu>Ni>Mn>Cr>Zn>Pb>Co>As>Cd.
ABSTRAK

Sungai Lohan merupakan salah satu sungai di kawasan Ranau yang pernah pada suatu masa dahulu teruk terjejas oleh lombong tembaga Mamut. Tujuan kajian ini adalah untuk mengkaji tahap logam berat di dalam air dan sedimen Sungai Lohan. Persampelan telah dibuat pada 26 November 2008. Sampel-sampel air dan sedimen diambil daripada empat stesen persampelan sepanjang Sungai Lohan ke hilir. Sampel air dituras menerusi membran penuras 0.45-μm dan diasidkan ke pH<2 sebelum analisis dijalankan, manakala sampel sedimen dihadamkan dengan aqua regia untuk penentuan konsentrasi logam berat keseluruhan. 10 jenis logam berat (i.e. As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, dan Zn) telah dianalisis untuk kajian ini dalam sampel air dan sedimen yang telah di kumpulkan.

Keputusan yang diperolehi di bandingkan dengan Piawaian Kualiti Air Kebangsaan Sementara Malaysia (INWQS), piawaian air pengairan Organisasi Makanan dan Pertanian Pertubuhan Bangsa-Bangsa Bersatu (UNFAO), dan untuk analisis sedimen, Garis Panduan Kualiti Sedimen Wilayah (PSQG) Ontario, Kanada. Analisis sampel dibuat dengan penggunaan alat Inductively Coupled Plasma – Optical Emission Spectrometer (ICP-OES). Daripada keputusan yang diperolehi, hanya tiga logam berat - Cd, Cu, dan Mn - tidak memenuhi INWQS Malaysia, manakala kadmium merupakan elemen tunggal yang telah melampaui konsentrasi maksimum yang disyorkan oleh UNFAO bagi air pengairan. Bagi analisis sedimen; merujuk kepada PSQG; As, Cd, Cr, Cu, Fe, dan Ni menunjukkan konsentrasi dalam Sungai Lohan melebihi Severe Effect Level (SEL) yang ditetapkan masing-masing. Ini menunjukkan keadaan sedimen Sungai Lohan yang kuat tercemar oleh logam-logam berat tersebut. Trend konsentrasi logam berat di dalam air Sungai Lohan yang telah ditentukan adalah Fe>Mn>Ni>Cu>As>Zn>Cd>Co>Pb>Cr, manakala untuk sedimen trendnya adalah Fe>Cu>Ni>Mn>Cr>Zn>Pb>Co>As>Cd.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Importance of Water 1
1.2 The Water Resource Problem 2
1.3 Water Pollution 3
1.4 The Malaysian Scenario 4
1.5 Background of Study Area 6
 1.5.1 The Lohan Tailings Dam 7
1.6 Objectives of Study 8
1.7 Scope of Study 9
1.8 Importance of Study 10
CHAPTER 2 LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mining and its Impacts</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Sulphide Ores</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Acid Mine Drainage</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Formation of Acid Mine Drainage</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Heavy Metals</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Arsenic (As)</td>
<td>17</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Cadmium (Cd)</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Chromium (Cr)</td>
<td>20</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Cobalt (Co)</td>
<td>21</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Copper (Cu)</td>
<td>22</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Iron (Fe)</td>
<td>24</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Lead (Pb)</td>
<td>25</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Manganese (Mn)</td>
<td>27</td>
</tr>
<tr>
<td>2.4.9</td>
<td>Nickel (Ni)</td>
<td>28</td>
</tr>
<tr>
<td>2.4.10</td>
<td>Zinc (Zn)</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Sediment in Aquatic Systems</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Heavy Metals in Stream Sediments</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Mobilization of Metals from Sediments</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Previous Studies on the Lohan River</td>
<td>33</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Comparison between Previous Studies on the Lohan River</td>
<td>34</td>
</tr>
<tr>
<td>2.7</td>
<td>Previous Studies on Other Rivers with Similar Conditions</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>Interim National Water Quality Standards (INWQS)</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>United Nations Food and Agriculture Organization (UNFAO) Irrigation Water Standards</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Provincial Sediment Quality Guidelines (Ontario, Canada)</td>
<td>37</td>
</tr>
</tbody>
</table>
CHAPTER 3 MATERIALS AND METHODS

3.1 Sampling

3.2 Heavy Metal Analysis
 3.2.1 Sampling Methods
 3.2.2 Sample Preparation (Sediment Digestion)
 3.2.3 Instrument Settings
 3.2.4 Instrument Calibration
 3.2.5 Sample Analysis

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Quality Control Analysis: Precision and Accuracy
4.2 Results Overview
4.3 As
 4.3.1 Water Analysis
 4.3.2 Sediment Analysis
4.4 Cd
 4.4.1 Water Analysis
 4.4.2 Sediment Analysis
4.5 Cr
 4.5.1 Water Analysis
 4.5.2 Sediment Analysis
4.6 Co
 4.6.1 Water Analysis
 4.6.2 Sediment Analysis
4.7 Cu
 4.7.1 Water Analysis
 4.7.2 Sediment Analysis
4.8 Fe
4.8.1 Water Analysis
4.8.2 Sediment Analysis
4.9 Pb
4.9.1 Water Analysis
4.9.2 Sediment Analysis
4.10 Mn
4.10.1 Water Analysis
4.10.2 Sediment Analysis
4.11 Ni
4.11.1 Water Analysis
4.11.2 Sediment Analysis
4.12 Zn
4.12.1 Water Analysis
4.12.2 Sediment Analysis
4.13 Trend Analysis for Water
4.14 Trend Analysis for Sediment
4.15 Comparison between Trends for Water and Sediment

CHAPTER 5 CONCLUSION AND SUGGESTIONS

5.1 Conclusion
5.2 Suggestions

REFERENCES

APPENDIX A

APPENDIX B
APPENDIX C 139
APPENDIX D 141
APPENDIX E 142
APPENDIX F 143
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Results of previous heavy metal assessments on the Lohan River.</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling Stations</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Operational parameters for the ICP-OES (After Karacan and Aslantaş, 2008)</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Wavelength for each element analyzed</td>
<td>44</td>
</tr>
<tr>
<td>4.1(i)</td>
<td>Quality Control Results of ICP-OES (water analysis)</td>
<td>49</td>
</tr>
<tr>
<td>4.1(ii)</td>
<td>Quality Control Results of ICP-OES (sediment analysis)</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Average elemental concentrations in the water of Lohan River (mg/L)</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Average elemental concentrations in the sediments of Lohan River (mg/kg)</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Concentrations of arsenic in water and sediment from the Lohan River</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Concentrations of cadmium in water and sediment from the Lohan River</td>
<td>62</td>
</tr>
</tbody>
</table>
4.6 Concentrations of chromium in water and sediment from the Lohan River

4.7 Concentrations of cobalt in water and sediment from the Lohan River

4.8 Concentrations of copper in water and sediment from the Lohan River

4.9 Concentrations of iron in water and sediment from the Lohan River

4.10 Concentrations of lead in water and sediment from the Lohan River

4.11 Concentrations of manganese in water and sediment from the Lohan River

4.12 Concentrations of nickel in water and sediment from the Lohan River

4.13 Concentrations of zinc in water and sediment from the Lohan River
4.14 Overall average heavy metal concentrations in water for the present study 107

4.15 Overall average heavy metal concentrations in sediment for the present study 108

4.16 Comparison between trends of heavy metal concentration in water and sediment for the present study 109
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Map of the study area (Sourced from the Director of National Mapping, Malaysia, 2006)</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of the sediment digestion method used in this study</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>An overview of the methodology used in the present study</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Average elemental concentrations detected in the water samples collected from Lohan River.</td>
<td>53</td>
</tr>
<tr>
<td>4.2(i)</td>
<td>Average iron (Fe) levels in Lohan River’s sediments</td>
<td>54</td>
</tr>
<tr>
<td>4.2(ii)</td>
<td>Average elemental concentrations detected in the sediment samples collected from Lohan River</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Average As concentrations in water samples collected from the Lohan River.</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Average As concentrations in sediment samples collected from the Lohan River.</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Average Cd concentrations in water samples collected from the Lohan River.</td>
<td>62</td>
</tr>
</tbody>
</table>
4.6 Average Cd concentrations in sediment samples collected from the Lohan River.

4.7 Average Cr concentrations in water samples collected from the Lohan River.

4.8 Average Cr concentrations in sediment samples collected from the Lohan River.

4.9 Average Co concentrations in water samples collected from the Lohan River.

4.10 Average Co concentrations in sediment samples collected from the Lohan River.

4.11 Average Cu concentrations in water samples collected from the Lohan River.

4.12 Average Cu concentrations in sediment samples collected from the Lohan River.

4.13 Average Fe concentrations in water samples collected from the Lohan River.
4.14 Average Fe concentrations in sediment samples collected from the Lohan River.

4.15 Average Pb concentrations in water samples collected from the Lohan River

4.16 Average Pb concentrations in sediment samples collected from the Lohan River.

4.17 Average Mn concentrations in water samples collected from the Lohan River

4.18 Average Mn concentrations in sediment samples collected from the Lohan River.

4.19 Average Ni concentrations in water samples collected from the Lohan River

4.20 Average Ni concentrations in sediment samples collected from the Lohan River.

4.21 Average Zn concentrations in water samples collected from the Lohan River
4.22 Average Zn concentrations in sediment samples collected from the Lohan River.
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mgL(^{-1})</td>
<td>milligram per liter</td>
</tr>
<tr>
<td>µgL(^{-1})</td>
<td>microgram per liter</td>
</tr>
<tr>
<td>mgkg(^{-1})</td>
<td>milligram per kilogram</td>
</tr>
<tr>
<td>µgg(^{-1})</td>
<td>microgram per gram</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>H(_2)SO(_4)</td>
<td>sulphuric acid</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HNO(_3)</td>
<td>nitric acid</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentration</td>
</tr>
<tr>
<td>Ele.</td>
<td>Element</td>
</tr>
<tr>
<td>As</td>
<td>arsenic</td>
</tr>
<tr>
<td>Cd</td>
<td>cadmium</td>
</tr>
<tr>
<td>Cr</td>
<td>chromium</td>
</tr>
<tr>
<td>Co</td>
<td>cobalt</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>Fe</td>
<td>iron</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>Mn</td>
<td>manganese</td>
</tr>
<tr>
<td>Ni</td>
<td>nickel</td>
</tr>
<tr>
<td>Zn</td>
<td>zinc</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>JMG</td>
<td>Jabatan Mineral dan Geosains (Minerals and Geoscience Department)</td>
</tr>
<tr>
<td>INWQS</td>
<td>Interim National Water Quality Standards</td>
</tr>
<tr>
<td>UNFAO</td>
<td>United Nations Food and Agriculture Organization</td>
</tr>
<tr>
<td>PSQGs</td>
<td>Provincial Sediment Quality Guidelines</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively Coupled Plasma Optical Emission Spectrometry</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Importance of Water

Water is a basic and essential necessity to living organisms. Without water, earth would not sustain as we know it and many things would not be possible. All living things consist of 60 to 95 percent water (Biswas, 1997). Even the basic unit of living systems; cells, are approximately 85 – 95% water (Somero et al., 1992). Water is the essence of life. In addition, water is the universal solvent – it can dissolve a good range of compounds from simple salts to minerals - and it also reacts with complex organic compounds such as the many amino acids found in the human body (Botkin and Keller, 2005). Water has many important roles and functions in the human community as well; it is widely used for irrigation, sewage, food processing, and for a number of industrial purposes.

In the past, great civilizations developed and flourished on the banks of rivers such as the Nile, Euphrates, Tigris, and Indus. Human history can generally be considered to revolve around water (Biswas, 1997). However, important as it is to humans; plants and animals need water just as much as we do and survival has every bit to do with the
availability of clean water supplies. The quality of water is therefore of utmost importance for both the well-being of humans and the balance of ecosystems alike.

1.2 The Water Resource Problem

While the importance of water is known to many, few are aware of its vulnerability. With about 97% of the earth's water in the oceans (saline), freshwater only accounts for a meager 2.5% (Radojevic et al., 2007). Yet, not all of this 2.5% are readily available for human use – most are locked up in ice caps and glaciers. The growing population and industrial production will accelerate the use of already-scarce water supplies (Botkin and Keller, 2005), not forgetting the increasing pollution and contamination - which would only make things worse.

With the rising awareness of water scarcity in recent years, it is of much concern if the earth’s water supplies can stand our increasing demands – just about three decades back in 1975, the total human use of water was about 3850 km\(^3\)/year; in 2005 this figure increased to about 6000 km\(^3\)/year, which is a generous portion of the naturally available freshwater (Botkin and Keller, 2005).

This problem becomes more complex with the fact that water resources are not evenly distributed (Vajpeyi, 1998). Already limited in amount, freshwater may not even be present at places where it is needed most. It is a great challenge to find sufficient
freshwater resources and at the same time maintain its quality. The quantity of water itself may not be a problem at the global level; however the issue is on finding good quality freshwater at the time and place (when and where) it is needed (Radojevic et al., 2007).

1.3 Water Pollution

The pollution and contamination of water resources further reduces the availability of already-limited supplies. When the quality or composition of water gets changed – either naturally or as a result of human activities – so as to become less suitable for drinking, domestic, agricultural, industrial, recreational, wildlife and other uses for which it would have been otherwise suitable in its natural or unmodified state; the water can be regarded as being polluted (Goel, 2006). In general when defining pollution, the following are considered; the intended use of the water, how far its quality differs from the norm, its effects on public health or its ecological impacts (Botkin and Keller, 2005).

There are many ways in which water can be polluted. Human use of water degrades the quality of water as it involves various types of pollutants. While natural water bodies such as the oceans and streams have innate purification abilities, these are limited to only certain levels of pollution. Once the purification potential is exceeded, the water body is vulnerable to contamination whether in the form of biological, physical or chemical pollutants. These are threats to living organisms including humans. (Radojevic et al. 2007).
Water pollutants include heavy metals, sediment, certain radioactive isotopes, heat, fecal coliform bacteria, certain pathogenic bacteria and viruses, nitrogen, sodium, phosphorus as well as a range of other elements. A material may in certain instances be considered a pollutant to a particular segment of the population although it is harmless to other segments (Botkin and Keller, 2005). It depends on the conditions and parties involved.

There are different levels of water quality for different purposes of water use. Like for example, drinking water would require more stringent standards than that of water used for irrigation. Water pollution is often linked to public health. Humans can get ill from drinking, washing or bathing in contaminated water (Radojevic et al., 2007). The frequent monitoring and maintenance of water quality would therefore help to prevent the emergence of epidemics and improve the quality of life in general.

1.4 The Malaysian Scenario

Ever since the country’s economy shifted towards industrialization in the 1980s followed by population increase and urban growth, the demands for residential and industrial water supply has greatly increased (WWF-Malaysia, 2007). Water scarcity and pollution became increasingly important matters. In 1995, Malaysia recorded a total freshwater withdrawal of 12.73 km³/yr. Out of this amount, 10% was used for domestic purposes, 13% for industrial purposes, and 77% used solely for agriculture (UN FAO, 1999). More
REFERENCES

Karacan, M. S., and Aslantaş, N., 2008. Simultaneous preconcentration and removal of iron, chromium, nickel with *N,N*-etylenebis-(ethane sulfonamide) ligand on

MII, 2008a. Manganese. Mineral Information Institute, USA.

http://www.mii.org/Minerals/photoman.html

MII, 2008b. Nickel. Mineral Information Institute, USA.

http://www.mii.org/Minerals/photonickI.html
MII, 2008c. Zinc. Mineral Information Institute, USA.

http://www.mii.org/Minerals/photozinc.html

http://www.inchem.org/documents/ehc/ehc/ehc108.htm#PartNumber:4

of the Mamut River, Malaysia, Caused by Copper Mine Discharge. *Bulletin of Environmental Contamination and Toxicology* 73, pp. 535-542.

http://www.wwf.org.my/media_and_information/learning_sharing/freshwater_main/index.cfm