SYNTHESIS AND CHARACTERIZATION OF ROD-SHAPED LIQUID CRYSTALS WITH AZOBOZENZENE AS MESOGENIC CORES

MOHD FADZRUL HASRIE

DISSERTATION SUBMITTED AS PARTIAL FULFILMENT FOR THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOUR.

INDUSTRIAL CHEMISTRY PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

APRIL 2010
BORANG PENGESAHAN STATUS TESIS

JUDUL: Synthesis and Characterization of rod-shaped liquid crystals with as benzene as mesogenic core.

IJAZAH: Sarjana Muda gains kenar lulusan.

SESJI PENGAJIAN: 2009/2010

Saya Mohd Fadzilul Kasri B. BAMLAN
(HURUF BESAR)
mengaku membenarkan tesis (LPS/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sabaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (/)

 [] SULIT
 [] TERHAD
 [] TIDAK TERHAD

(Mengandungi maklumat yang berda'jah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh

[Signature]

(TANDATANGAN PENULIS)

[Signature]

(TANDATANGAN PUSTUARAN)

Alamat Tetap: 28, Taman Seraya,
Jalan Langgeng, 86400,

Alamat: [Address]

Tarikh: 13/05/2010

Tarikh: __________________________

Nama Penyelia

Dr. Md. Lutfiur Rahman

PERPUSTAKAAN UMS

1000353826

UNIVERSITI MALAYSIA SABAH
DECLARATION

I hereby declared that this dissertation is based on my original work, except for quotations and summaries each of which have been fully acknowledged.

April, 2010.

MOHD FADZRUHL HASRIE
HS2006 - 1957
VERIFICATION

Name : Mohd Fadzrul Hasrie.
Title : Synthesis and Characterization of Rod Shaped Liquid Crystals with Azobenzene as Mesogenic Cores.

1. SUPERVISOR
 (DR. Md. LUTFOR RAHMAN)

2. EXAMINER 1
 (DR. NOUMIE SURUGAU)

3. EXAMINER 2
 (Ms. RUBIA IDRIS)

4. DEAN
 (PROF. DR. HARUN ABDULLAH)
ACKNOWLEDGEMENT

First of all, I would like to take this opportunity to express my sincere appreciation to the supervisor of my project, which is Dr. Md. Lutfor Rahman. Throughout this project, he has been a great guardian and a great instructor in providing his assistant and knowledge that contributed to the completion of this project. He is very supportive and has really helped me a lot in gaining more knowledge about the project.

Secondly, I would like to sincerely thank my good friend, Mr. Wong Hai Fatt who is undergoing his master degree study in UMS. He has guided me through out this project about the correct method to handle all the apparatuses and instruments. He has been a great teacher and a better friend to me.

Last but not least, I would like to thank my family, because of all the moral and financial support they had given me all this time. I am very lucky to have a very supporting and comforting family. Without them, I would not be here today. Other than my family, I would also like to thank my friends and roommates, Nur Fadzli, Mohd Nazmi and Sabri for their ongoing supports and assistances.
ABSTRACT

Rod shaped liquid crystals is probably the most important type of liquid crystals nowadays. This is because, rod shaped liquid crystals serve as the cores of the most complicated liquid crystals which means that it can be used to synthesized other types of liquid crystals. In this study four types of organic reactions were conducted in order to obtain the target liquid crystals molecule. The first reaction is the Diazonium coupling reaction. The starting material which is 4-Aminoacetophenone was coupled with phenol to yield compound 1 which is 4-(4-Hydroxyphenylazo) acetophenone. The second reaction is the Williamson’s ether synthesis reaction. In this reaction, compound 1 was reacted with Ethyl-6-bromohexanoate to produce compound 2 which is 6-[4-(4-Acetylphenylazo) phenoxy] hexanoate. The third reaction is the alkaline hydrolysis reaction. In this reaction, compound 2 was reacted with potassium hydroxide to yield 6-[4-(4-Acetylphenylazo) phenoxy] hexanoic acid, compound 3. The last reaction done was esterification reaction. Compound 3 was reacted with resorcinol in the presence of DCC and DMAP to yield the target molecule which is {4-(4-Acetylphenylazo) phenoxy} pentyl} benzoate, compound 4. The percentage yield of the target compound obtained was calculated to be 51.02%. The functional group of the intermediates and the target compound was determined using FT-IR. The phase transition temperature and phase transition enthalpy of the target compound was determined using DSC. The Phase transition temperatures are 123.88 °C for endothermic and 99.97 °C for exothermic. From the DSC thermogram, it can be observed that the target compound has mesophase characteristic which means that the target compound has liquid crystals phase.
SINTESIS DAN PENCIRIAN HABLUR CECAIR BERBENTUK ROD DENGAN AZOBENZENA SEBAGAI TERAS MESOGENIK.

ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF PHOTOS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction to Liquid Crystals 1
1.2 Application of Liquid Crystals 2
1.3 Objectives of the Study 4
1.4 Scope of the Study 5

CHAPTER 2 LITERATURE REVIEW

2.1 Liquid Crystals 6
2.2 Thermotropic Liquid Crystals 6
2.3 Rod Shaped (calamatic) Liquid Crystals 8
 2.3.1 Nematic Liquid Crystals 10
 2.3.2 Chiral Nematic Liquid Crystals 11
 2.3.3 Smectic Liquid Crystals 13
2.4 Liquid Crystals with Azobenzene Unit 16
CHAPTER 3 METHODOLOGY

3.1 Materials and Instruments

3.2 Synthesize of Target Molecules
a. 4-(4-Hydroxyphenylazo) acetophenone.

b. Ethyl 6-[4-(4-acetylphenylazo) phenoxy] hexanoate.

c. 6-[4-(4-acetylphenylazo) phenoxy] hexanoic acid.

d. {[4-(4-Acetylphenylazo) phenoxy] pentyl} benzoate.

3.3 Mesomorphic Determination via Differential Scanning Calorimetry (DSC).

3.4 Structural Analysis via Fourier Transform Infrared Spectrometry.

CHAPTER 4 RESULTS AND DISCUSSION

4.1 4-(4-Hydroxyphenylazo)acetophenone

4.1.1 FT-IR Analysis of 4-(4-hydroxyphenylazo)acetophenone.

4.2 Ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate.

4.2.1 FT-IR analysis of Ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate.

4.3 6-[4-(4-Acetylphenylazo)phenoxy] hexanoic acid.

4.3.1 FT-IR Analysis of 6-[4-(4-Acetylphenylazo)phenoxy] hexanoic acid.

4.4 {[4-(4-Acetylphenylazo) phenoxy] pentyl} benzoate.

4.4.1 FT-IR Analysis of {[4-(4-Acetylphenylazo) phenoxy] pentyl} benzoate.

4.5 Phase Transition Properties of final product.

CHAPTER 5 CONCLUSION

REFERENCES

APPENDIXES

APPENDIX A: PERCENTAGE YIELD
Appendix A2: Percentage Yield of Compound 2.
Appendix A3: Percentage Yield of Compound 3.
Appendix A4: Percentage Yield of Compound 4.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Instruments used for analysis.</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical compounds used.</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Details of 4-(4-hydroxyphenylazo)acetophenone, Compound 1.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Functional group identification of compound 1.</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Details of Ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate, compound 2.</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Functional group identification of compound 2.</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Details of 6-[4-(4-Acetophenylazo)phenoxy] hexanoic acid, compound 3.</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Functional group identification of compound 3.</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Details of {[4-(4-Acetylphenylazo) phenoxy] pentyl} benzoate, compound 4.</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Functional group identification of compound 4.</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Summary of Phase transition temperature and enthalpy of compound 4.</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of the usage of liquid crystal.</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Example of calamatic liquid crystal.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of discotic liquid crystal.</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical structure of rod-shaped liquid crystal.</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Molecular structure of nematic liquid crystals phase.</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Helical pitch of chiral nematic liquid crystals.</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Molecules arrangement of smectic A phase.</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Molecules arrangement of smectic C phase.</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Chiral smectic phase.</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Photophysical isomerization of azobenzene.</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Synthesis of compound 1 from 4-aminoacetophenone by diazonium coupling</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Synthesis of compound 2, ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate.</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Synthesis of compound 3, 6-[4-(4-acetylphenylazo)phenoxy] hexanoic acid.</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Synthesis of compound 4, {[4-(4-Acetylphenylazo)phenoxy] pentyl } benzoate</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Projected structure of 4-(4-Hydroxyphenylazo)acetophenone.</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>FT-IR spectrum of 4-(4-Hydroxyphenylazo)acetophenone.</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Projected structure of Ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate.</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>FT-IR spectrum of Ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate.</td>
<td>37</td>
</tr>
<tr>
<td>4.5</td>
<td>Projected structure of 6-[4-(4-Acetylphenylazo)phenoxy] hexanoic acid.</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>FT-IR spectrum of 6-[4-(4-Acetylphenylazo)phenoxy] hexanoic acid.</td>
<td>42</td>
</tr>
<tr>
<td>4.7</td>
<td>Chemical structure of resorcinol.</td>
<td>43</td>
</tr>
<tr>
<td>4.8</td>
<td>Projected structure of {[4-(4-Acetylphenylazo) phenoxy] pentyl} benzoate.</td>
<td>45</td>
</tr>
</tbody>
</table>
Figure 4.9 FT-IR spectrum of \{(4-(4-Acetylphenylazo) phenoxy) pentyl\} benzoate.

Figure 4.10 DSC thermogram of \{(4-(4-Acetylphenylazo) phenoxy) pentyl\} benzoate.
LIST OF PHOTOS

<table>
<thead>
<tr>
<th>Photo</th>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo 4.1</td>
<td>4-(4-hydroxyphenylazo)acetophenone.</td>
<td>27</td>
</tr>
<tr>
<td>Photo 4.2</td>
<td>Ethyl 6-[4-(4-acetylphenylazo)phenoxy] hexanoate.</td>
<td>33</td>
</tr>
<tr>
<td>Photo 4.3</td>
<td>6-[4-(4-Acetylphenylazo)phenoxy] hexanoic acid.</td>
<td>38</td>
</tr>
<tr>
<td>Photo 4.4</td>
<td>{[4-(4-Acetylphenylazo)phenoxy] pentyl} benzoate.</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

N Nematic phase.
Sm Smectic phase.
SmA Smectic A phase.
SmB Smectic B phase.
SmC Smectic C phase.
T Temperature.
Tg Glass transition temperature.
H Enthalpy
% Percentage.
°C Celcius.
g Gram.
ml Millimeter.
Mw Molecular weight.
Mmol Milimol
TLC Thermotropic liquid crystals.
MBBA n-(p-methoxybenzylidene)-p-butyllanilene.
DCC Dichloroethylcarbodiimide.
DMAP 4-\(N,N\)-dimethylaminopyradine.
P Pitch.
CHAPTER 1

INTRODUCTION

1.1 Introduction to Liquid Crystals

Liquid crystal science is a science of human knowledge that was discovered and started to bloom at the end of the 19th century. An Austrian botanist, Friedrich Reinitzer accidentally discovered liquid crystal when he was doing microscopic observation about the unusual thermal behavior of molten sample of cholesterol benzoate. This first observation of optical anisotropies phenomena in organic compound opened a new and fascinating class of soft materials (Ritter et al., 2006).

Liquid crystals are systems that have the ability to self organized due to mesogenic groups which show short and long range collective interaction among them. This is the origin of interesting liquid crystals properties which were exploited extensively in the early 70's, mostly in TN-LC technology (Ritter et al., 2006). The molecular self-organization and self assembly at a nanometer and micrometer scale are useful strategies in the development of novel function materials and are currently exciting areas of intense research. Liquid crystalline materials are known to be able to self-assemble by nature and can offer a very elegant and effective way of controlling and tuning the physical properties that ultimately define the self-organization and self-assembly process (C.Zhang et al., 2008).
1.2 Application of liquid Crystals.

Nowadays, liquid crystals have been most extensively used as display materials. Some are applied as liquid crystals display for calculators, sentences display, word processors, portable notebook computers, speedometer, mobile phones, wave plates, polarizers and full-color TV display. Polymer liquid crystals (PLC) for image storage materials, has also been reported by several groups, etc (Silong et al., 2001).

![Figure 1.1 Example of the usage of liquid crystals; display screen of Playstation Portable.](image)

Liquid crystals technology has dominated the display market due to their compactness, low weight, low-voltage operation, and lower power consumption. In our technological society, liquid crystal displays gives an interface between human and machines and are expected to play an even bigger role in the future as the need of displaying information grows.
The urgency to develop liquid crystals materials, batteries, polarizers, electrodes, semiconductors, compensation films spacers and etc, has been the most essential driving force behind liquid crystals research.

The liquid crystals science growth was dependent on the parallel progress and development of the other field of science namely synthetic organic chemistry, electronics, physics and device engineering (Ritter et al., 2006).
1.3 OBJECTIVES OF THE STUDY

The objectives of the study are:

a. to synthesize rod shaped liquid crystals containing azobenzene as mesogenic cores.
b. to determine the mesophase properties of rod-shaped liquid crystals using Differential Scanning Calorimeter (DSC).
d. to identify the functional group of the intermediates and target compound using Fourier Transform Infra Red (FTIR)
1.4 Scope of the Study.

The study was focused on the synthesis of rod shaped liquid crystals having azobenzene mesogenic cores and the characterization of its mesophase properties using Differential Scanning Calorimeter (DSC). It also includes the functional groups identification of the target compound and its intermediates by using Fourier-Transform Infra Red Spectroscopy (FTIR).
CHAPTER 2

LITERATURE REVIEW

2.1 LIQUID CRYSTALS.

Liquid crystals are substances that exhibit a phase of matter that has properties between those of conventional liquid and those of solid crystals. Liquid crystal can be divided into a few phases which are thermotropic, lyotropic and metallotropic phase (Munk and Aminabhavi, 2001) but the most important and most abundant is the thermotrophic phase of liquid crystals.

2.2 THERMOTROPIC LIQUID CRYSTALS, TLC.

The thermotropic phase of liquid crystals appears as a definite region on the phase diagram but is not however thought of as fourth state (the other three are solid, liquid and gas). Thermotropic phase is viewed as a transition between the two states solid and liquid and it is a state in which the molecular order exhibits a size range similar to that of a crystal with the viscosity varying from that of oil to water. The terms mesophase and the mesomorphic state can also be used to define this state. A mesogen is the molecule or a part of it, which gives rise to a mesophase (Guittard et al., 1999).

The mesophase of thermotropic liquid crystals are thermodynamically stable but only partially ordered phases. Each mesophase can be described by its degree of order. If the mesophase have orientational order only, it is called nematic (N), if it has both orientational order and positional order; it is called smectic (Sm) (Silong et al., 2009).

Thermotropic liquid crystals are formed either by cooling isotropic liquid below the point of clarification (clearing point) or by heating solid liquid crystals above the melting point.
These thermotropic liquid crystals can be classified into two types which are enantiotropic and monotropic.

Enantiotropic and monotropic liquid crystals can be reached by both melting and cooling. Enantotropic. If the formation is reversible, the liquid crystals are considered as enantotropic and if the process is irreversible (the liquid crystal phase can only be reached from one direction in thermal cycle), it is considered as monotropic. In a thermotropic mesophase, varying degrees of positional order are lost, giving fluidity, while orientational (supermolecular) order is retain, giving the anisotropy. The consequence of this anisotropy is that the mesophases can have two (or even three) different refractive indices; magnetic susceptibilities and electric permittivities. As a result, some thermotropic molecules can be oriented by applied electric and magnetic fields. This is the basis of their application. Thermotropic then can further be subdivided into calamatic and discotic (Guittard et al., 1999).

In a calamatic liquid crystal, the mesogen (the fundamental unit of a liquid crystal that induces structural order in the crystals) is a rod-like structure composed of two or more aromatic and aliphatic ring connected in one direction. In a discotic liquid crystal, the mesogen is the flat-shaped aromatic core that makes molecules stack in one direction.

Figure 2.1 An example of calamatic liquid crystal.
2.3 Rod-shaped (calamatic) Liquid Crystals

Most of the thermotropic liquid crystals are found to be calamitic structurally. A calamitic mesogen consist of a core, terminal chains and lateral substituents. The core of rod-shaped liquid crystals actually provides rigidity which is required for anisotropy. On the other hand, the terminal chains of the rod-shaped liquid crystals provide flexibility to stabilize the molecular alignment within the mesophase.

The core is usually a linearly linked aromatic ring system and the rings can be directly linked or they may be joined by a linking group. The terminal chain of rod-shaped liquid crystals are either straight alkyl or alkoxy chain, however one terminal unit is often a polar substituent. These calamitic molecules form both nematic and smectic mesophases depending upon the types of substituents and their combinations (Kılıç & Cınar, 2007).
Figure 2.3: Typical structure of a rod-shaped liquid crystal.

Optically, rod-shaped liquid crystals exhibit uniaxial positive birefringence. Birefringence or also known as double refraction is the decomposition of one ray of light into two rays which is ordinary ray and extraordinary ray. When the ray of light passes through material, such as calcite crystals or boron nitride, it will disperse into two rays depending on the polarization of the light. This effect can only occur if the structure of the materials is anisotropic (Wing, 2008).

The rod-shaped liquid crystals can be divided into three main classes of mesophases which are nematic, chiral nematic and smectic.
REFERENCES

