ACID BUFFERING CHARACTERISTICS OF ACID MINE DRAINAGE

OOI MEI HONG

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

PROGRAMME INDUSTRIAL CHEMISTRY
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITY MALAYSIA SABAH

MAY - 2010
Universiti Malaysia Sabah

Borang Pengesahan Status Tesis

Judul: Acid Buffing characteristics of acid mine drainage.

Ijazah: Ijazah Sarjana Muda Jaws dengan Kerjai

(Yimia Industr)

Saya Ooi Mei Heng

(Huruf Besar)

Sesi Pengajian: 2007/2008

Saya mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (I)

☐ SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

☐ TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan Oleh:

Nurulain Binti Ismail

Library Perpustakaan Universiti Malaysia Sabah

Alamat Tetap:

44, Lebuh

Kota Kinabalu, 88600, Sabah

Tarikh: 7 May 2010

Catatan: *Potong yang tidak berkenaan.

**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa /organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that the materials in this thesis is my own except for quotations, excerpts, equations, summaries and references, each of which have been fully acknowledge.

OOI MEI HONG
(BS07110497)

12 April 2010
1. SUPERVISOR
 (PROF. DR. MARCUS JOPONY)

2. EXAMINER 1
 (Dr. Noumie Surugau)

3. EXAMINER 2
 (Dr. Sazmal Effendi bin Arshad)

4. DEAN
 (PROF. DR. MOHD. HARUN ABDULLAH)
First and foremost, I would like to express my sincere gratitude towards my supervisor, Prof. Dr. Marcus Jopony for his valuable advice, guidance, support, perseverance, motivation and help throughout the dissertation. On the other hands, I would like to thank Mr. Mohd Recheidy Mohd Rashid, the lab assistant for his help throughout the lab work providing all the necessary apparatus and chemicals. Besides, I also appreciate the Mr. Jerry who providing me with the apparatus and chemicals required. Furthermore, I truly appreciate the guidance from Mr. Wong Hai Fatt. I would like to thank all my supportive friends for their helping hands. Many thanks are to my family members for their undying love and emotional support. I am also grateful to all who are not mention but have help in this research a successful one. Last but not least, not forgetting to express my sincere thank to School of Science and Technology for providing the opportunity as well as the amenities to enable this research carried out successfully.

Ooi Mel Hong
BS07110497
April 2010
Acid mine drainage (AMD) samples, AMD S1 and AMD S2, from Mamut Copper Mine (MCM), Ranau, Sabah were investigated for its acid buffering characteristics by potentiometric titration with NaOH. The AMD has the following characteristics: pH~2.56, total acid= 343-365 mg CaCO₃/L, dissolved Fe= 2.4-2.5 mg/L, Mn= 11.3-11.9 mg/L, Cu= 4.4-4.5 mg/L, Zn= 2.6-2.7 mg/L, Al= 3.1 mg/L. For comparison, acidified distilled water as well as Fe(III) and Al(III) solutions were also tested. The results showed that acidified distilled water exhibited a gradual increase in pH with increasing amount of base added. Comparatively, Fe(III) and Al(III) solutions required higher amount of base to attain pH 7.0, and this increased with the concentration of Fe(III) and Al(III). In the case of AMD, a much higher amount of base was required to raise its pH to 7.0. This can be attributed to the strong buffering at pH 3.5-5.0, which was more apparent than those exhibited by the Fe(III) and Al(III) solutions.
ABSTRAK

Sampel saliran asid lombong (AMD), AMD S1 dan AMD S2 dari Lombong Tembaga Mamut (LTM), Ranau, Sabah telah dikaji ciri-ciri penimbalan asid secara titratan potensiometrik dengan NaOH. AMD mempunyai ciri-ciri berikut: pH~2.56, keasidan jumlah= 343-365 mg CaCO3/L, kepekatan logam Fe= 2.4-2.5 mg/L, Mn= 11.3-11.9mg/L, Cu= 4.4-4.5 mg/L, Zn= 2.6-2.7 mg/L, Al= 3.1 mg/L. Air suling berasid, serta larutan Fe(III) dan Al(III) juga dikaji untuk tujuan perbandingan. Hasil kajian menunjukkan bahawa air suling berasid menunjukkan peningkatan pH yang berperingkatan dengan amaun bes yang ditambahkan. Larutan Fe(III) dan Al(III) pula memerlukan amaun bes yang lebih tinggi untuk mencapai pH 7.0 dan ini meningkat dengan kepekatan Fe(III) dan Al(III). Untuk kes AMD, amaun bes yang diperlukan untuk mencapai pH 7.0 adalah jauh lebih tinggi dan ini dapat dikaitkan dengan penimbalan pH di pH 3.5-5.0, magnitud peningkatan pH ini lebih ketara berbanding larutan Fe(III) dan Al(III).
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Mining and the Environment

1.2 Acid Mine Drainage in Sabah

1.3 Objectives of Study

1.4 Scope of Study

CHAPTER 2 LITERATURE REVIEW

2.1 Acid Mine Drainage Formation and Characteristic

2.1.1 Oxidation of Pyrite
2.1.2 Factors Affecting Acid Generation During Pyrite Oxidation
 a. Effects of pH
 b. Effects of oxygen concentration
 c. Effects of bacteria
 d. Effects of particle size of pyrite
 e. Presence of carbonate minerals
 f. Effects of the type of sulphide mineral

2.1.3 Oxidation of other sulphide minerals

2.1.4 Dissolution of mineral matrices

2.1.5 Characteristics of AMD

2.2 Environment Impacts of AMD
 2.2.1 Effects on water quality
 2.2.2 Effects on aquatic life

2.3 Total Acidity of AMD
 2.3.1 Mineral Acidity

2.4 Neutralization of AMD
 2.4.1 Neutralization Process
 2.4.2 Buffering ability of AMD

CHAPTER 3 METHODOLOGY

3.1 Aqueous Samples
 3.1.1 Acid mine drainage samples
 3.1.2 Acidified Distilled Water
 3.1.3 Aqueous solutions of Fe(III)
 3.1.4 Aqueous solution of Al(III)
 3.1.5 Preparation of NaOH Solution
2.1.2 Factors Affecting Acid Generation During Pyrite Oxidation

a. Effects of pH
8

b. Effects of oxygen concentration
10

c. Effects of bacteria
10

d. Effects of particle size of pyrite
11

e. Presence of carbonate minerals
11

f. Effects of the type of sulphide mineral
12

2.1.3 Oxidation of other sulphide minerals
13

2.1.4 Dissolution of mineral matrices
14

2.1.5 Characteristics of AMD
14

2.2 Environment Impacts of AMD
17

2.2.1 Effects on water quality
17

2.2.2 Effects on aquatic life
18

2.3 Total Acidity of AMD
20

2.3.1 Mineral Acidity
21

2.4 Neutralization of AMD
24

2.4.1 Neutralization Process
24

2.4.2 Buffering ability of AMD
28

CHAPTER 3 METHODOLOGY
32

3.1 Aqueous Samples
32

3.1.1 Acid mine drainage samples
32

3.1.2 Acidified Distilled Water
32

3.1.3 Aqueous solutions of Fe(III)
32

3.1.4 Aqueous solution of Al(III)
33

3.1.5 Preparation of NaOH Solution
33
3.2 Determination of Physico-chemical Characteristics

3.2.1 pH

3.2.2 Total acidity

3.2.3 Fe, Mn, Cu and Zn
 a. Instrumentation
 b. Preparation of standard solutions
 c. Preparation of calibration curve
 d. Analysis of samples

3.2.4 Aluminium
 a. Preparation of aluminium stock solution
 b. Preparation of H2SO4 solution
 c. Preparation of ascorbic acid solution
 d. Preparation of buffer reagent
 e. Preparation of dye stock solution
 f. Preparation of Al standard solutions
 g. Analysis of sample

3.3 Potentiometric Titration

3.3.1 Titration of AMD samples

3.3.2 Titration of Fe(III) Solutions

3.3.3 Titration of Al(III) Solutions

3.3.4 Titration of acidified distilled water

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Physico-chemical characteristics of AMDs from Mamut Copper Mine

4.1.1 pH

4.1.2 Total acidity
4.1.3 Dissolved metals (Fe, Mn, Cu, Zn, and Al) 42

4.2 Acid buffering characteristics 43

4.2.1 Acidified distilled water 43

4.2.2 Fe(III) solutions 44

4.2.3 Al(III) solutions 45

4.2.4 AMD S1 and AMD S2 47

CHAPTER 5 CONCLUSION 51

REFERENCES 52

APPENDIX 62
LIST OF TABLES

Table 2.1 Common carbonate minerals in mine overburden, listed in descending order of their capability to neutralize acid 12
Table 2.2 Acid-producing sulphides and non-acid-producing sulphides 12
Table 2.3 Acid production according to the type of acid producing sulphides 13
Table 2.4 Characteristics of AMDs from various types of mine and locations 15
Table 2.5 Water quality data of selected AMD impacted rivers/streams 16
Table 2.6 Major effects of AMD 18
Table 2.7 Biological effects of metals on fish 19
Table 2.8 Chemical compounds used in AMDs treatment 26
Table 2.9 pH range for the formation of metal precipitate 28
Table 3.1 Standard conditions and characteristic concentration checks for atomic absorption spectrometer, AAS 34
Table 3.2 Concentrations range of standard solutions prepared according to metal 35
Table 4.1 Concentration of dissolved metals in AMD samples 43
Table 4.2 Concentration of dissolved metals in decreasing order 43
Table 4.3 No. of moles of NaOH used in potentiometric titration to achieve pH 7.0 for acidified distilled water and standard solution of Fe(III) 44
Table 4.4 No. of moles of NaOH used in potentiometric titration to achieve pH 7.0 for acidified distilled water and standard solution of Al(III) 46
Table 4.5 No. of moles of NaOH used in potentiometric titration to achieve pH 7.0 for acidified distilled water, AMD S1 and S2 48
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mamut Copper Mine in Ranau, Sabah</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>The simplified diagram illustrating reaction pathways for pyrite oxidation</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Yellow boy in a stream receiving acid drainage from surface coal mining</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Oxidation rate of ferrous iron (Fe(^{2+})) to ferric iron (Fe(^{3+})) as a function of pH (P_{O2}=0.20 bar)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Solubility diagram of which is dependent on pH</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Acidic components of the water samples</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Measured titration curve of the acidic lake water and composition of the precipitates; the grey shades denote the different buffering sections</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>pH values of AMD samples</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Average of total acidity of AMD samples</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Titration curves for acidified distilled water and standard solutions of Fe(III)</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Titration curves for acidified distilled water and standard solutions of Al(III)</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Titration curve for AMD S1</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Titration curve for AMD S2</td>
<td>48</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>~</td>
<td></td>
<td>nearly to/ about</td>
</tr>
<tr>
<td><</td>
<td></td>
<td>less than</td>
</tr>
<tr>
<td>></td>
<td></td>
<td>more than</td>
</tr>
<tr>
<td>AAS</td>
<td></td>
<td>Atomic absorption spectrophotometer</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>aluminium</td>
</tr>
<tr>
<td>AMD</td>
<td></td>
<td>Acid mine drainage</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td>copper</td>
</tr>
<tr>
<td>Eq</td>
<td></td>
<td>equation</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>iron</td>
</tr>
<tr>
<td>MCM</td>
<td></td>
<td>Mamut Copper Mine</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td>manganese</td>
</tr>
<tr>
<td>TDS</td>
<td></td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td>zinc</td>
</tr>
<tr>
<td>Ec</td>
<td></td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>mg/L</td>
<td></td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td>Part per million</td>
</tr>
<tr>
<td>mg/ml</td>
<td></td>
<td>Millgram per millimeter</td>
</tr>
<tr>
<td>mg CaCO₃/L</td>
<td></td>
<td>Milligram calcium carbonate per liter</td>
</tr>
<tr>
<td>μS/cm</td>
<td></td>
<td>Microsiemens per centimeter</td>
</tr>
<tr>
<td>μg/L</td>
<td></td>
<td>Microgram per liter</td>
</tr>
<tr>
<td>Ksp</td>
<td></td>
<td>Solubility product</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>Percent</td>
</tr>
<tr>
<td>mmol L⁻¹</td>
<td></td>
<td>Milimole per liter</td>
</tr>
<tr>
<td>μm</td>
<td></td>
<td>micrometer</td>
</tr>
<tr>
<td>μm/ml</td>
<td></td>
<td>micrometer per millimeter</td>
</tr>
<tr>
<td>nm</td>
<td></td>
<td>nanometer</td>
</tr>
<tr>
<td>mL</td>
<td></td>
<td>Milliliter</td>
</tr>
<tr>
<td>NaOH</td>
<td></td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>H₂O₂</td>
<td></td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCl</td>
<td></td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td></td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>CaCO₃</td>
<td></td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>OH⁻</td>
<td></td>
<td>Hydroxide</td>
</tr>
<tr>
<td>H⁺</td>
<td></td>
<td>Proton</td>
</tr>
<tr>
<td>H₂CO₃</td>
<td></td>
<td>Carbonic acid</td>
</tr>
<tr>
<td>Fe(III)</td>
<td></td>
<td>Iron(III)</td>
</tr>
<tr>
<td>Al(III)</td>
<td></td>
<td>Aluminium(III)</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Mining and the Environment

Mining is a process where valuable minerals or other geological materials from the earth are extracted, usually from ore bodies or veins. The industry provides the impetus to open up new lands, creating towns, providing numerous jobs to the local population and improvements of basic infrastructures (Sengupta, 1993). Locally, mining has an important place in the annals of Malaysia’s development and presently it is one of the important income earners for the country (Wu, 1999).

Mining, like other industrial activities, however have negative impacts to the surrounding environment. The deleterious effects include deposition of huge amounts of solid wastes including mine tailings (Dudka and Adriano, 1997), contamination of soils by heavy metals (Ciccu et al., 2003), turning land into a useless wasteland, and
destruction of aquatic life (Swift, 1982). In fact, many present-day problems are associated with abandoned historical mines (Banks et al., 1997).

One of the most common and significant post-mining environmental problems is acid mine drainage, AMD (Gray, 1997). Typically, AMD is characterized by low pH, high acidity, high TDS, high conductivity, high sulfate and elevated concentration of heavy metals (Singh 1987; Gray 1998; Nordstrom et al., 2000; Bell et al., 2001).

Inputs of AMD can have adverse effects on the receiving water quality. Typically, AMD-impacted rivers have acidic pH, low alkalinity, high TDS, sulphate and dissolved metals (Filipek et al., 1987; Sengupta, 1993; Nordstrom et al., 2000; Shaver et al., 2006). This has lead to various environmental problems. Therefore, AMD need to be treated prior to discharge.

One of the treatment methods for AMD is neutralization using alkaline or calcareous materials (i.e. to increase the pH to near 7). This neutralization process, however, is not as simple and easy as it may seem. It can be hindered by the low solubility of the alkaline or calcareous materials as well as the significant presence of dissolved metals in the AMD (Younger et al., 2002; Hammarstrom et al., 2003; Hedin, 2006). The dissolved metals, in particular Fe and Al, will contribute towards mineral acidity, which in turn enables the AMD to resist the changes in pH during neutralization. Consequently, the efficiency of a neutralization process can be dependent on the characteristics of the AMD.
1.2 Acid Mine Drainage in Sabah

The Mamut Copper Mine in Ranau, Sabah (Figure 1.1) ceased operation in 1999. During its operational phase, various environmental issues have been reported (Murtedza et al., 1985; Jopony & Murtedza, 1994). Like other abandoned mines elsewhere, this mine left behind a legacy of AMD problem. Presently, AMD at this mine area are left untreated. As a result, several rivers in the area are showing signs of AMD pollution.

1.3 Objectives of Study

The objectives of the study are:

(i) To determine the changes in pH of the local acid mine drainage (AMD) during neutralization process.
To determine the effect of dissolved heavy metals (Fe and Al) in solution on neutralization process.

1.4 Scope of Study

This study focused on the changes in pH of AMD samples collected from Mamut Copper Mine, in Ranau Sabah during neutralization process. The significance of dissolved metals (Fe and Al) in the neutralization process is further investigated using acidic aqueous solutions containing varying concentrations of Fe and Al.
CHAPTER 2

LITERATURE REVIEW

2.1 Acid Mine Drainage Formation and Characteristics

AMD is a widespread environmental issue resulting from the oxidation of sulfide minerals on to exposure to both oxygen and water. There are various types of sulfide minerals but pyrite, marcasite and pyrrhotite are perhaps the most common sources of AMD production. The oxidation process result in the production of iron- and aluminium- rich sulphuric acid solutions with high levels of trace metals (Singer and Stumm 1970; Drever 1997).

2.1.1 Oxidation of Pyrite

The oxidation of pyrite, FeS₂, can involve the following reactions (Eq. 2.1-2.4) (Singer & Stumm, 1970; Sengupta, 1993; Evangelou, 1995):

Oxidation of pyrite by O₂:

\[2\text{FeS}_2 + 7\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + 4\text{SO}_4^{2-} + 4\text{H}^+ \] (2.1)
Oxidation of Fe$^{2+}$ by O$_2$:

$$4\text{Fe}^{2+} + \text{O}_2 + 4\text{H}^+ \rightarrow 4\text{Fe}^{3+} + 2\text{H}_2\text{O}$$ \hspace{1cm} (2.2)

Precipitation Of Fe$^{3+}$:

$$\text{Fe}^{3+} + 3\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 3\text{H}^+$$ \hspace{1cm} (2.3)

Oxidation of pyrite by Fe$^{3+}$:

$$\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+$$ \hspace{1cm} (2.4)

The first important reaction is the oxidation of the sulfide mineral in the presence of oxygen. The mineral is oxidized into dissolved ferrous iron (Fe$^{2+}$), sulfate and hydrogen (Eq. 2.1). The dissolved ferrous iron (Fe$^{2+}$) as well as the sulfate (SO$_4^{2-}$), and the two moles of hydrogen ions represent an increase in the total dissolved solids and total acidity of water. If the environment is sufficiently oxidizing, which is dependent on O$_2$ concentration, pH and bacteria activity, much of the liberated ferrous iron (Fe$^{2+}$) will be oxidized to ferric iron (Fe$^{3+}$) according to the Equation 2.2 with the consumption of acidity. Equation 2.2 is the rate-determining step in pyrite oxidation as the conversion of ferrous iron to ferric iron is slow at pH below 5 under abiotic conditions.

The ferric iron (Fe$^{3+}$) formed (Eq. 2.2) will remain in solution if the pH maintain below 3.5. It however, undergoes hydrolysis and precipitation as the pH > 3.5. The precipitation as into ferric hydroxide (Fe(OH)$_3$) simultaneously lowering the pH (Eq. 2.3) by producing three moles of hydrogen ions.

Any Fe$^{3+}$ which does not undergo precipitation from solution can oxidize additional pyrite (Eq. 2.4), generating much greater amounts of ferrous iron, sulphate, and acidity.
2.1.2 Factors Affecting Acid Generation During Pyrite Oxidation

The primary factors determining the rate of acid generation during pyrite oxidation include oxygen concentration and solution pH (Smith and Shumate, 1970), the presence of Thiobacillus bacteria (USEPA, 1971), particle size (McKibben & Barnes, 1986), presence of carbonate minerals, and type of sulphide mineral.

a. Effects of pH

The kinetics of oxidation of ferrous iron which can occur either abiotically or biotically, is dependent on pH. According to Stumm and Morgan (1996), the kinetic of the oxidation can be represented as follows:

\[
\frac{-d[Fe^{2+}]}{dt} = k[Fe^{2+}][OH^-]P_{O_2}
\]

(2.6)
The oxidation rate is independent of pH at low pH. On the contrary, at higher pH (>5) the second order dependence on [OH⁻] is apparent (Figure 2.3).

Figure 2.3: Oxidation rate of ferrous iron (Fe²⁺) to ferric iron (Fe³⁺) as a function pH (pO₂ = 0.20 bar).

Also, the hydrolysis reaction of iron depends on total Fe³⁺ and pH as well. Under equilibrium conditions, only a negligible concentration of dissolved ferric iron exist at pH 3 (Figure 2.4).
b. Effect of oxygen concentration

Oxidation of pyrite only occurs in the presence of both water and oxygen. Oxygen plays the role as the terminal electron acceptor by oxidation of ferrous iron (Fe$^{2+}$) to ferric ion (Fe$^{3+}$) (Evangelou & Seta, 1999). The rate of pyrite oxidation will rise when the concentration of oxygen increase. This leads to more generation of acid. Hence, it can be concluded that the overall rate of pyrite oxidation is dependent on the oxygen concentration.

c. Effects of bacteria

Bacteria play a major role in accelerating the rate of acid generation. The sulfide-oxidation process is accelerated by about 100 times in the presence of *Thiobacillus* bacteria compared with an abiotic control (Mielke et al., 2003).