PRESENCES OF MISSING VALUES IN SHARE MARKET FORECASTING

MOHANAESWARI KANNAN

THIS DISSERTATION IS SUMMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS.

MATHEMATICS WITH ECONOMICS PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

April 2009
Universiti Malaysia Sabah

Borang Pengesahan Status Tesis

JUDUL: EFFECT OF MISSING VALUE PRESENCE IN PHARE FORECASTING

Ijazah: Ijazah Sarjana Muda Program Kerjasama Dengan Economics (Republik)

Saya Mohd. Eshabri Kamarul

(HURUF BESAR)

sesi pengajian: 2008/2009

mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)
 - [] SULIT
 - [] TERHAD
 - [] TIDAK TERHAD

(TANDATANGAN PENULIS)

(ANDATANGAN FUSTAKAHAN)

Nurulain Binti Ismail

Librarian

Universiti Malaysia Sabah

Alamat Tetap: Pekan Buntong, Tetamu 9, Pekan Buntong, 88100, Jepun

Tariik: 5 May 2009

Disahkan Oleh

Prof. Dr. Tuan Din Hj. Jauk

Nama Penyelia

Tariik: 5 May 09

CATATAN: *Potong yang tidak berkenaan.

**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuaasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I declare that this dissertation is the result of my work, except the quotations and summaries each of which the source has been mentioned.

30th April 2009.

[Signature]

Mohanaeswari Kannan
HS2006-4093
CERTIFIED BY

1. SUPERVISOR
 (PROF. DR. ZAINODIN HJ JUBOK)

2. EXAMINER
 (PUAN SURIANI HASSAN)

3. DEAN
 (PROF. DR. MOHD. HARUN ABDULLAH)
ACKNOWLEDGEMENT

First of all, I would like to express my thankfulness and appreciation to my supervisor, Prof. Dr. Zainodin Haji Jubok. Along the way of project 1 and project 2, there were many times that I struggled and faced failures and each time he was there making me to move on. Without his encouragement and guidance, surely I couldn’t have done up to this level. Under his supervision, I have learnt a lot of skills which are very useful and applicable to enhance my life. Besides that, he guided me to be independent especially in making decisions and built the self confidence in me. He leaded us to create our own image.

Also, I would like to show my gratefulness to Mr. Ng Ying Kee, who writes the cubic spline approach programme. This programme had helped me a lot in case of estimating the missing values in share price series and less time consuming.

In addition, I would like to thank all Mathematics with Economics lecturers for their precious support and guidance they have been giving to me.

My hearty gratefulness for my parents, Mr. & Mrs. Kannan and my brother Mr. Vinothan for their full support and encouragement when I faced obstacles. Lastly to all my close friends who always guided me and gave me moral support throughout this project.
ABSTRACT

This dissertation is on observing the influence of the missing values towards the prediction of NSTP (M) Berhad share price. The opening and the closing price of NSTP (M) Berhad will be forecasted starting from 1st September 2008 till 31st December 2008. The missing values in this study are estimated using the cubic spline interpolation using C programming. The stationarity of each series is achieved using transformation before the elimination is carried out. Since the ARMA with \(p + q \leq 10 \) is used, 65 possible models are generated and by using the Eviews software elimination is done based on the \(p \) value. Eight selection criteria (8SC) are used to choose the best model out of the selected for each series. From the selection using 8SC the series without missing values for both opening and closing price is selected as the best models. The forecasting is done using both best models and the accuracy is compared. Besides checking the accuracy of the forecasting, the Mean Absolute Percentage Error (MAPE) is used to check the time period that this best model can be used to forecast. The closing price is known to give a better forecast compared to the opening. Also found that, the forecasting using this ARMA best model is applicable for short period prediction.

Keywords: stationarity, missing values, forecasting, ARMA, 8SC, Eviews.
ABSTRAK

Kata kunci: pegun, data tak tercerap, ramalan, ARMA, 8SC, Eviews.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION.

1.1. OVERVIEW | 1 |
1.2. SHARE/STOCK | 1 |
1.3. TYPES OF STOCKS | 2 |
1.4. TYPES OF INVESTMENT RISKS | 3 |
1.5. PROBLEM STATEMENT | 4 |
1.6. THE NEW STRAITS TIMES PUBLICATION (M) BERHAD | 5 |
1.7. THE OBJECTIVE OF STUDY | 6 |
1.8. RATIONALE OF STUDY

1.9. SCOPE AND LIMITATION

CHAPTER 2 LITERATURE REVIEWS.

2.1. OVERVIEW

2.2. COMPARISON OF METHODS OF HANDLING MISSING

 TIME INVARIANT COVARIATES IN LATENT GROWTH

 MODELS UNDER THE ASSUMPTIONS OF MISSING

 COMPLETELY AT RANDOM.

2.3. MODELLING OF COMPOSITE INDEX RETURN OF THE

 KLSE USING THE GARCH TECHNIQUES: A COMPARISON

 TO THE ARMA MODEL.

2.4. A BOOTSTRAP STIMULATION STUDY OF ARMA (P,Q) OF

 ORDER P + Q = 3.

2.5. USING VOLUME TO FORECAST STOCK MARKET VOLATILITY

 AROUND THE TIME OF THE 1929 CRASH.

2.6. FORECASTING BUSINESS AND CONSUMER SURVEYS

 INDICATORS: A TIME SERIES MODELS COMPETITION.

CHAPTER 3 METHODOLOGY.

3.1. INTRODUCTION

3.2. MISSING VALUE

3.3. SPLINE INTERPOLATION
3.4. STATIONARITY

3.5. STATIONARITY TESTS
 3.5.1. TEST OF EQUAL MEAN
 3.5.2. TEST OF EQUAL VARIANCE
 3.5.3. THE Dickey Fuller TEST
 3.5.4. ACF AND PACF PLOTTING

3.6. AUTOREGRESSIVE MOVING AVERAGE

3.7. MAXIMUM LIKELIHOOD

3.8. SELECTION CRITERIA

3.9. RANDOMNESS TEST AND WALD TEST
 3.9.1. RANDOMNESS TEST
 3.9.2. WALD TEST

3.10. FORECASTING

CHAPTER 4 DESCRIPTION OF DATA

4.1. OVERVIEW

4.2. STATIONARITY OF DATA
 4.2.1. STATIONARITY OF NSTP OPENING SHARE PRICE
 (WITHOUT MISSING VALUE)
 4.2.2. STATIONARITY OF NSTP OPENING SHARE PRICE
 (WITH MISSING VALUE)
 4.2.3. STATIONARITY OF NSTP CLOSING SHARE PRICE
 (WITHOUT MISSING VALUE)
4.2.4. STATIONARITY OF NSTP CLOSING SHARE PRICE (WITH MISSING VALUE)

4.3. CONCLUSION

CHAPTER 5 ANALYSIS OF DATA AND RESULTS.

5.1. OVERVIEW

5.2. POSSIBLE MODELS

5.3. SELECTED MODEL FOR OPENING SHARE PRICE WITHOUT AND WITH MISSING VALUES

5.4. SELECTED MODEL FOR CLOSING SHARE PRICE WITHOUT AND WITH MISSING VALUES

5.5. THE BEST MODEL FOR OPENING AND CLOSING PRICE SERIES WITHOUT AND WITH MISSING VALUES

5.5.1. THE BEST MODEL FOR OPENING PRICE WITHOUT MISSING VALUES

5.5.2. THE BEST MODEL FOR OPENING PRICE WITH MISSING VALUES

5.5.3. THE BEST MODEL FOR CLOSING PRICE WITHOUT MISSING VALUES

5.5.4. THE BEST MODEL FOR CLOSING PRICE WITH MISSING VALUES

5.6. EXAMINING THE ADEQUACY OF BEST MODELS

5.6.1. TESTS FOR BEST MODEL OF OPENING PRICE WITHOUT MISSING VALUES
5.6.2. TESTS FOR BEST MODEL OF OPENING PRICE WITH MISSING VALUES

5.6.3. TESTS FOR BEST MODEL OF CLOSING PRICE WITHOUT MISSING VALUES

5.6.4. TESTS FOR BEST MODEL OF CLOSING PRICE WITH MISSING VALUES

5.7. BEST MODEL SELECTION OF OPENING AND CLOSING PRICE SERIES.

5.8. FORECASTING USING BEST OPENING SERIES MODEL AND BEST CLOSING SERIES MODEL.

5.8.1. FORECAST OF OPENING SERIES

5.8.2. FORECAST OF CLOSING SERIES

5.9. BEST OF BEST MODEL USING MEAN ABSOLUTE PERCENTAGE ERROR (MAPE).

CHAPTER 6 DISCUSSION AND RECOMMENDATION

6.1. OVERVIEW

6.2. DISCUSSION

6.3. CONCLUSION

6.4. RECOMMENDATION

REFERENCE

APPENDIX
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The conditions of cubic spline interpolation</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>The ANOVA table.</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>The Test of Equal Variance.</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Table of Eight Selection Criteria.</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>The ANOVA table for Wald test.</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>The Augmented Dickey Fuller Test for Opening Price of NSTP Share Price</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(without missing value).</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>The Augmented Dickey Fuller Test after taking square root and first differencing.</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>The ANOVA table to test for equality of means for the series after</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>taking square root transformation and first differencing.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>The Augmented Dickey Fuller Unit Root test on the series after</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>being transformed by taking square root (Ladder Transformation) and first differencing.</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>The ANOVA table to test for equality of means for the series after</td>
<td></td>
</tr>
</tbody>
</table>
taking square root transformation and first differencing. 71

4.6 The Augmented Dickey Fuller Unit Root Test for the Original Closing Share Prices of NSTP. 74

4.7 The Augmented Dickey Fuller Unit Root Test on the series after being transformed by taking square root and first differencing. 80

4.8 The ANOVA table for equal mean test of the series (without missing value) after taking square root and first differencing. 81

4.9 The Dickey Fuller Unit Root Test for Original Closing Share Prices of NSTP. 84

4.10 The Augmented Dickey Fuller Unit Root Test on the series after being transformed by taking square root and first differencing. 89

4.11 The ANOVA table for equal mean test of the series (with missing value) after taking square root and first differencing. 90

4.12 Summary table for stationarity achievement 91

5.1 The possible combination of models from p + q = 6. 93

5.2 Eviews output for p + q = 6 with p= 2 and q = 4. 94

5.3 Eviews Output for M25 95
5.4 Eviews Output for M25.1 (after elimination of MA(2)). 96
5.5 Eviews output for M58 with p = 7 and q = 3. 97
5.6 Eviews output for M58.1 98
5.7 Eviews output for M58.5 99
5.8 Eviews output for M59. 100
5.9 Eviews output for M42. 101
5.10 Eviews output for M42.6 102
5.11 Eviews output for M40.1 105
5.12 The table of actual values and forecast values for September 2008. 122
5.13 MAPE for September to December for opening and closing share price. 125
5.14 Comparison of MAPE according to number of days. 127
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Trend variation.</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Seasonal variation</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Cyclic variation</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>Cubic spline model</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>Nonstationarity graph</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Stationarity graph</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>The non stationary ACF plot</td>
<td>38</td>
</tr>
<tr>
<td>3.8</td>
<td>The non stationary PACF plot</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>The Stationary ACF plot</td>
<td>39</td>
</tr>
<tr>
<td>3.10</td>
<td>The Stationary PACF plot</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>The Opening Share Price of NSTP (without missing value)</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>ACF Plot for Opening Price of NSTP until lag 36.</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>ACF plot of opening price after Ladder Transformation and first differencing.</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Box plot of opening price of NSTP without missing values after the transformation of first differencing.</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Boxplot of log transformation and first differencing on NSTP opening price without missing values.</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Box plot of Ln transformation and first differencing on opening</td>
<td></td>
</tr>
</tbody>
</table>
price without missing values.

4.7 Box plot of power two transformation and first differencing on NSTP opening price without missing values.

4.8 Box plot of inverse transformation and first differencing on NSTP opening price without missing values.

4.9 ACF Plot of Opening Price After Ladder Transformation (square root).

4.10 Opening Price Series After square root and First Order Differencing.

4.11 Box plot of square root transformation followed by first differencing on NSTP opening price without missing values.

4.12 The Original Opening Share Price (with missing value).

4.13 ACF plot of opening share price with missing values.

4.14 Box plot after the first differencing on the original data of opening price with missing values of NSTP.

4.15 ACF plot of after the first differencing.

4.16 Box plot of log transformation.

4.17 Box plot after the log transformation and first differencing.

4.18 Box plot of Ln transformation

4.19 Box plot after the Ln transformation and first differencing.

4.20 Box plot after the Ln transformation, first differencing and second differencing.

4.21 ACF plot after the power two transformation (Ladder Transformation).
4.22 ACF plot after the power two (Ladder transformation) and first differencing.

4.23 ACF Plot of Opening Price (with missing values) After Ladder Transformation (square root).

4.24 ACF Plot of Opening Price (with missing values) After Ladder Transformation (square root) and first differencing.

4.25 The plot of the stationary series (with missing values).

4.26 The Original Closing Share Price of NSTP (without missing value).

4.27 ACF plot after log transformation.

4.28 Box plot of closing price without missing values after log transformation and first differencing.

4.29 Box plot after first differencing on closing price without missing values series.

4.30 ACF plot to the power of two on closing price without missing values series.

4.31 Box plot after the power two and first differencing.

4.32 ACF plot of closing price after the inverse.

4.33 Result after the inverse and first differencing on the closing price without missing values.

4.34 ACF plotting for the Closing Price after taking Ladder transformation (square root).
4.35 Closing Prices after taking square root transformation and first differencing. 80
4.36 ACF plot of closing price after taking square root transformation (Ladder Transformation) and first differencing. 82
4.37 The Original Closing Share Price (with missing values). 83
4.38 Box plot after the first differencing on the closing price series with missing values. 85
4.39 ACF plot after the log transformation. 86
4.40 ACF plot after the log transformation and first differencing. 86
4.41 ACF dies off extremely slowly after the transformation. 87
4.42 Lags of 36 are not all in between UCL and LCL. 87
4.43 ACF plot for the Closing Prices with missing values after taking square root (Ladder Transformation). 88
4.44 Plot of the Series after taking square root and first differencing. 88
4.45 ACF plot of closing price after taking square root transformation (Ladder Transformation) and first differencing. 90
5.1 The distribution of residuals for opening price series without missing value. 109
5.2 Distribution of the opening series without missing values residuals. 109
5.3 The distribution of residuals of the opening price series with missing value. 112
5.4 Distribution of the opening series with missing values residuals. 113
5.5 The distribution of residuals of closing price without missing values. 115
5.6 Distribution of the closing series without missing values residuals. 116
5.7 The distribution of residuals of closing price series with missing values. 119
5.8 Distribution of the closing series with missing values residuals. 120
5.9 Comparison of MAPE for overall forecasted price 126
5.9 Comparison of MAPE according to number of days. 127
LIST OF SYMBOLS

p order of autoregressive models
q order of moving average models
≤ less than or equal
≥ greater than or equal
= equal
≠ not equal
+ addition
− subtraction
× multiplication
÷ division
Σ summation
n number of observations
k number of parameters
SSE sum of squared error/ sum of squared residuals
df degree of freedom
UCL upper control limit
LCL lower control limit
CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

In this fast moving world with just a click of mouse, trading which was once only for the rich has reached different level of people. For many, share market has a high potential in money making but less realized that share market has high risk too. According to Gray (1991), it is not impossible for an outstanding performance with a good planning and information about share market. It depends to individual to decide wisely before making any moves regarding selling and buying shares. Yet one has to make their move carefully so that they don’t have to lose what they own in a second. Investing has to be done at the right time to optimize the profit.

1.2 SHARE/STOCK

A share as defined by Bersteins (2000) is a part of ownership in the company. When a company is selling their shares to public, the company is said to be going public. According to Little and Rhodes (2004) a shareholder has a share in the success of the business and a part owner in the company. Extend of ownership depends to the amount of share a person owns. They also explained that stock price depends to the demand for it. The value of a stock depends on many factors. Investors will be looking on the company’s profile dividend prospects and financial
condition. For those who are interested they can buy these stocks according to their capability.
Owning a company share need to be given importance as an investors eventually become a part of the company. Hence, an investor needs to spend time surveying before doing the stock selection. They need to investigate a large market before selecting few promising ones and finally the best that promise profit significantly.

1.3 TYPES OF STOCKS.

Stocks can be divided into few different stocks. According to Case (1994), some of the stocks are blue chip stocks. Blue chips stocks are the major gigantic companies stocks. These stocks are less likely to fall and can be considered safe. Even if the share price goes down the companies is most likely to pay dividend to its stockholders. Based on White (1994), privatization issues are more likely for political reasons compare to economical reasons.

Growth stocks are stocks that as defined by Case (1994), are from smaller and newer upcoming companies. The dividends received are less likely to be as much as the blue chip. The risk in this type of stock is high as the possibility of the stock value going down is high. While as said by Gray (1991), it is much safer to buy much potential recovery stocks rather than growth stocks as this companies which are more likely to go bankrupt will start climbing back. Investment in these companies can bring gains yet it still has the tendency of bankruptcy. According to Lim (2006), value stocks are shares of companies that are undervalued or overlooked. Normally, these kinds of shares are less attracting the investors as the growth of the
shares is fairly low. Value stocks are popular due to the high dividends paid. This is a way to keep the shareholders stick with value stock of a particular company.

1.4 TYPES OF INVESTMENT RISKS.

As much as profit one’s investment could give, as much risk it put one’s money at. Investment need to be done carefully as the risk in it is quite high. There several types of risks identified in investing. According to Hall (1993), one of the risks in investing is the business risk. If the company one invested could not generate their sales and when management not able to bring the company to a higher level the share value of that particular company most likely will remain the same and the possibilities of falling is high as well.

Stock specific risk or also known as unsystematic risk is where one will lost the capital based on the percentage of share value. This can be overcome by investing in many different companies as if one fall the possibilities to the other to rise are still there to cover the fall. According to Lim (2007), the risk of not being in the market of also known as marketability risk is when one is ready to liquidate and the risk of not being in the stock market or hard to do so since there maybe too few investors in the market. This lead to shortage of reaching financial goals.

Based on Hall (1993), there also systematic risk or market risk where it is associated with the whole market movement. For example, if the entre market declines then the value of all shares will decline too. Political risk is more to the places where the political environment is unstable. Political instability can lead to productivity reduction of the company thus can lead to
REFERENCE

 Journal of Econometric History 53: 549-574.

Wiley & Sons, Inc, New Jersey.

