A subclass of quasi-convex functions with respect to symmetric points

Abstract

Let $C_s(A, B)$ denote the class of functions f which are analytic in an open unit disc $D = \{z: z < 1\}$ and satisfying the condition $2(zf'(z))/(f(z)-f(-z))' < 1+Az/1+Bz, -1 \leq B < A \leq 1, z \in D$. In this paper, we consider the class $K_{s^*}(A, B)$ consisting of analytic functions f and satisfying $(zf'(z))/(g(z)-g(-z))' < 1+Az/1+Bz, g \in Cs(A,B), -1 \leq B < A \leq 1, z \in D$. The aims of paper are to determine coefficient estimates, distortion bounds and preserving property for a certain integral operator for the class $K_{s^*}(A, B)$.