Self-aligned double-gate (DG) nanoscale vertical MOSFET'S with reduced parasitic capacitance

Razali Ismail, and Ismail Saad, (2008) Self-aligned double-gate (DG) nanoscale vertical MOSFET'S with reduced parasitic capacitance. In: Smart Structures, Devices, and Systems IV, 10-12 December 2008, Melbourne, Australia.

Full text not available from this repository.


Enhanced symmetrical self-aligned double-gate (DG) vertical nMOSFET with low parasitic capacitance is presented. The process utilizes the oblique rotating ion implantation (ORI) method combined with fillet local oxidation (FILOX) technology (FILOX + ORI). Self-aligned region forms a sharp vertical channel profile that increased the number of electrons in the channel. These have improved drive-on current and drain-induced-barrier-lowering (DIBL) effect with a reduced off-state leakage current tremendously. The gate-to-drain capacitance is significantly reduced while having a small difference of gate-to-source capacitance compared to FILOX device. The drain overlap capacitance is a factor of 0.2 lower and the source overlap capacitance is a factor of 1.5 lower than standard vertical MOSFETs. © 2008 SPIE.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Uncontrolled Keywords: Double gate, Nanoscale FET, Oblique rotating ion implantation, Self-aligned, Vertical MOSFETs
Subjects: ?? TK7800-8360 ??
Divisions: SCHOOL > School of Engineering and Information Technology
Depositing User: Unnamed user with email
Date Deposited: 25 Mar 2011 04:23
Last Modified: 30 Dec 2014 07:00

Actions (login required)

View Item View Item

Browse Repository
   UMS News
Quick Search

   Latest Repository

Link to other Malaysia University Institutional Repository

Malaysia University Institutional Repository