SCREENING FOR PHYTOCHEMICAL AND ANTIMICROBIAL PROPERTIES OF *Annona muricata* L. LEAF

ADIBAH SOLEHAH BINTI CHE HASAN

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF AGRICULTURE SCIENCE WITH HONOURS

CROP PRODUCTION PROGRAMME
SCHOOL OF SUSTAINABLE AGRICULTURE
UNIVERSITI MALAYSIA SABAH
2013
PENGESAHAN STATUS TESIS

JUDUL: SCREENING FOR PHYTOCHEMICALS AND ANTIMICROBIAL PROPERTIES OF AMONG MURICOTA L. LEAF

IIAZAH: SARJANA MUDA SAINS PERTANIAN DENGAN KEPUPUAN (PENGELUARAN TANAMAN)

SAYA: ADIYAN SOLEHAN BIN CHE HASAN SESI PENG AJIAN: 2009 (HURUF BESAR)

Mengaku membenarkan tesis * (LPSM/Sarjana/Doktor-Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membawa salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan ()

SULIT (Mengandungi maklumat yang berdaur keelamatan atau kepentingan Malaysia seperti yang termaktub di AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana Penyelidik dijalankan)

TIDAK TERHAD

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

Dinakkan Oleh:

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

DEVINA DAVID
Pensyarah/ Penasihat Akademik
Sekolah Pertanian Lestari

Alamat Tetap: NO.19, LORONG 8 R1
MAKMUR 3, TAMAN SEIRI MAKMUR,
27000, JERANTUT, PALAHN,
MALAYSIA.

Tarikh: 23/01/2013

Catatan: - * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak yang berkuasa/organisasi berkenaan dengan menyatakan sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.
Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM)
DECLARATION

I hereby declare that this dissertation is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that no part of this dissertation has been previously or concurrently submitted for a degree at this or any other university.

ADIBAH SOLEH Ah BINTI CHE HASAN

BR 09110011

23 JANUARY 2013
VERIFIED BY

1. MADAM DEVINA DAVID
 SUPERVISOR

2. MR. CLAMENT CHIN FUI SEUNG
 EXAMINER 1

3. MR. SIM KHENG YUEN
 EXAMINER 2

4. DR. SITTI RAEHANAH BINTI MUHAMAD SHALEH
 DEAN
 SCHOOL OF SUSTAINABLE AGRICULTURE
ACKNOWLEDGEMENT

Praise to God for His help and guidance, I have been able to complete this dissertation for my project. In preparing this thesis, I was in contact with many people that have been very helpful to me. First of all is my supervisor, Madam Devina David, who always give her opinion and suggestion for me to get ideas for this project.

Not to forget my Personal Advisor, Dr. Mohammadu Boyie Jalloh, who always give me words of wisdom and also to all lectures that have been taught me through all the years. To my fellow course mates, I also want to express my gratitude for giving me supports especially during hard times.

Last but not least is my sincerely appreciation to my family. My late father, Che Hasan Bin Che Daud and, mother Norrafida Binti Ibrahim, whose both made me promised to do my best in my life and also my siblings, thank you for always being there for me, giving me full support and courage every time when I feel lost. With all the love I have been received, that what make me who am I today.
ABSTRACT

Annona muricata L. (A. muricata L.) or traditionally known as soursop is well known for its deliciously sweet sour taste of its fruits. The other parts of the tree also have been used in remedies in traditional medicinal history including the bark, leaves, and root, fruit, and fruit seeds. Previous research on A. muricata L. has focused on the bark of the tree and root for pharmaceutical purposes by testing it on laboratory animals. Little attention has been paid to the research on the leaves which actually possessed valuable phytochemical constituents that have the potential as antimicrobial properties in treating diseases that caused by some bacterial strains. The main objective of this study is to do phytochemical and antimicrobial activity screenings of the A. muricata L. leaves extract. The analysis result obtained had been compared to previous study done in other countries. The leaves of A. muricata L. collected randomly from rural area in Jerantut, Pahang. The process of extraction, screenings and analysis were done in Laboratory of Sekolah Pertanian Lestari, UMS Kampus Sandakan. The solvents used for the extraction of plants are aqueous, chloroform and ethanol. The in vitro antibacterial activity was performed by disc diffusion method and tested on bacteria strains which were three Gram negative; Escherichia coli, Salmonella enteritidis, Citrobacter freundii along with one Gram positive bacteria which is Staphylococcus aureus . In this study, it was found that aqueous leaves extract gave the highest percentage of yield extraction. In phytochemical screening, the leaves extract showed the presence of glycoside, tannin, saponin and flavonoid. For antimicrobial activity screening, aqueous leaves extract showed the highest zone of inhibition on tested bacterial strains .The phytochemical and antimicrobial activity screenings suggest that A. muricata has antimicrobial properties.

Keyword: phytochemical screening, antimicrobial, bacteria strains, solvents
ABSTRAK

Kata kunci: saringan fitokimia, antimikrob, strain bakteria, pelarut
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTARK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS, UNITS AND ABBREVIATIONS</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 General Introduction

1.2 Justification of Study

1.3 Objective of Study

CHAPTER 2 LITERATURE REVIEW

2.1 Botany of Plant Studied

2.1.1 Family of Annonaceae

2.1.2 Genus of Annona

2.1.3 Annona muricata L. species

2.2 Chemical Constituents of Annona sp.

2.2.1 Nutritional value and chemicals of Annona sp.

2.2.2 Previous study on phytochemical screening of Annona sp

2.3 Biological activities properties of Annona sp.

2.3.1 Previous study on antimicrobial screening of Annona sp.

2.4 Screening for Major Phytochemical Constituents
2.4.1 Alkaloid
2.4.2 Flavonoid
2.4.3 Saponin
2.4.4 Glycoside
2.4.5 Tannin

2.5 Bacterial Strains Used - Gram positive and Gram negative Bacteria
 2.5.1 *Staphylococcus aureus*
 2.5.2 *Escherichia coli*
 2.5.3 *Salmonella enteritidis*
 2.5.4 *Citrobacter freundii*

2.6 Selection of Solvent for Leaves Sample Extraction
 2.6.1 Aqueous extraction
 2.6.2 Ethanol extraction
 2.6.3 Chloroform extraction

2.7 Antimicrobial Screening Method
 2.7.1 Disc diffusion method
 2.7.2 Minimum inhibitory concentration

CHAPTER 3 METHODOLOGI

3.1 Experimental Design
3.2 Collection and Preparation of Plant Material
3.3 Extraction of Plant Material
3.4 Preliminary Screening of Phytochemical Constituents
 3.4.1 Alkaloids (Mayer’s test)
 3.4.2 Glycoside (Fehling’s test)
 3.4.3 Saponin (Frothing test)
 3.4.5 Flavonoid (Aluminum chloride test)
3.5 Selection and Preparation of Bacterial Strains

3.6 Media Preparation and Antimicrobial Activity Screenings
 3.6.1 Disc diffusion method
 3.6.2 Determination of minimum concentration for inhibition zone

CHAPTER 4 RESULTS
4.1 Annona muricata L. Leaf
4.2 Solvent Extraction Yield
4.3 Phytochemical Screening
 4.3.1 Alkaloid
 4.3.2 Flavonoid
 4.3.3 Tannin
 4.3.4 Glycoside
 4.3.5 Saponin
4.4 Aqueous Leaves Extract
4.5 Chloroform Leaves Extract
4.6 Ethanol Leaves Extract
4.7 Antibacterial Activity Screening
4.8 Minimum Concentration for Inhibition Zone

CHAPTER 5 DISCUSSIONS
5.1 Effects of Solvent Selection on Extraction Yield
5.2 Preliminary Phytochemical Constituents Screening
5.3 Preliminary Antimicrobial Activities Screening

CHAPTER 6 CONCLUSION AND RECOMMENDATION
REFERENCES
APPENDIX A
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Result of phytochemical screening for A. muricata L. alkaloid</td>
<td>21</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Result of phytochemical screening for A. muricata L. flavonoid</td>
<td>22</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Result of phytochemical screening for A. muricata L. tannin</td>
<td>23</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Result of phytochemical screening for A. muricata L. glycoside</td>
<td>24</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Result of phytochemical screening for A. muricata L. saponin</td>
<td>25</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Diameter of inhibition zone of A. muricata L. leaves extract</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>against different types of bacteria.</td>
<td></td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Diameter of inhibition zone of A. muricata L. aqueous leaves extract</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>against different types of bacteria.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td>A. muricata L. Leaf</td>
<td>20</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Result of phytochemical screening for A. muricata L. alkaloid</td>
<td>21</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Result of phytochemical screening for A. muricata L. flavonoid</td>
<td>22</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Result of phytochemical screening for A. muricata L. tannin</td>
<td>23</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Result of phytochemical screening for A. muricata L. glycoside</td>
<td>24</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Result of phytochemical screening for A. muricata L. saponin</td>
<td>25</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Antimicrobial activity screening</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Minimum concentration for inhibitory zone of A. muricata L. aqueous leaves extract</td>
<td>29</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>±</td>
<td>Plus-minus</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
<td></td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
<td></td>
</tr>
<tr>
<td>FeCl₃</td>
<td>Iron (III) chloride</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td></td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS, UNITS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>±</td>
<td>Plus-minus</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>Iron (III) chloride</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Malaysia can be called as a blessed country which has fertile soil, good climatic condition, and rich in biodiversity. Malaysia also owned the oldest rainforest, which have a lot of natural good plants, especially medicinal plants. Malaysia has been classified as one of mega diversity of the world. Altogether, these twelve countries comprise at least 60% of world’s known species (Norhajar et al., 2010).

Malaysia has an abundance of flowering plants as well as non flowering plants, which is said that quarter of it has medicinal values. In Malaysia rainforest, some 8,100 plants species were found, and about 10% are reported to have medicinal value (Syamkumar et al., 2003; Zaidah et al., 2006). However, only few had been fully investigated for their potential (Zaidah et al., 2006).

According to the World Health Organization (WHO), medicinal plants could be a good source in foundation of new drugs. Therefore, such plants should be investigated to better understand their properties, safety and efficacy (Nascimento et al., 2000). Medicinal plants can be define as various plants that being used in herbalism practices, thought to have medicinal properties. Basically from the plants, the roots, leaves, stem,
bark, or seeds of some medicinal plants are known for their medicinal value. Their effectiveness and popularity depend not only on new research findings but also the usage experience and ethnic beliefs of the multi-ethnic society.

Many infectious diseases have been known to be treated with herbal remedies throughout the history of mankind. Since antiquity, man has used plants to treat common infectious diseases and some of these traditional medicine are still included as part of the habitual treatment of various maladies (Doughari et al., 2008). However, scientific research needed in order to give better understanding about phytocconstituents compound that have may have different potential value in treating difference and various diseases.

Natural products, either as pure compounds or as standardized plant extracts, provide unlimited opportunities for new drug leads because of the unmatched availability of chemical diversity (Pathak et al., 2010). As a result, a number of medicinal plants used in indigenous medicine have been tested and found to possess bactericidal properties (Vieira et al., 2001).

In the past five decades, medicinal plants research in Malaysia has been carried out mainly by researches from government-funded universities and research institutes with little involvement of industries and multinationals. The earliest report on medicinal plant research in Malaysia was on the phytochemical screening of 205 plants in Sabah (Arthur, 1954), followed by few years later by screening of 200 species in Peninsular Malaysia for presence of alkaloids (Douglas and Kiang, 1957). These two publications marked the beginnings of medicinal plant research in Malaysia (Ibrahim, 2004).

Phytochemical screening is very important methods of identifying bioactive compound that useful in creating new drugs. These simple, cheap, sensitive, selective and rapid chemical tests to determine the presence of certain groups of compounds is an initial step to select plants for further phytochemical studies (Ibrahim, 2004).
Along with the increasing public interests on medicinal plants, recently there are lots of researches done on various potential medicinal plants. One of them is *Annona muricata* L. (*A. muricata* L.) or commonly known as soursop. However, previous research on *A. muricata* L. has focused on the bark of the tree and roots for pharmaceutical purposes (Kimbonguila *et al.*, 2010) and little attention has been paid to the leaves, in which usually used in traditional medicine remedies. To date, there are only few research publications about phytochemical screening of *A. muricata* L. leaves and their antimicrobial activity against Gram-positive and Gram-negative bacteria.

1.2 Justification of the study

This study was conducted in order to carry on screening of the potential phytochemical constituents of the *A. muricata* L. leaves for its biological activities against bacteria. It is well-known that *A. muricata* L. fruits are good to keep a good health. The leaves are also used traditionally to keep away pests such as cockroach in the houses due its strong aroma. Nevertheless, there are lacks of scientific research conducted especially in Malaysia to reveal the potential of *A. muricata* L. leaves on antimicrobial purposes since the research mainly focus on pulp, seeds and bark of the plant. A very little research also done with regards to ascertain the extraction yield based on solvent polarity (Mohd *et al.*, 2012). Thus, the influence of solvents with different polarities on extraction yield was investigated. Thus, hopefully this study will help to add more findings on *A. muricata* L. leaves properties and potential, so it can be further developed for more advanced purposes in medicinal aspect.

1.3 Objective of the study

To determine the effects of different solvents extraction by carry on preliminary screening of *A. muricata* L. leaves extract for its antimicrobial activities against selected bacterial strains that cause common illness such as skin infection, diarrhea and others.
CHAPTER 2

LITERATURE REVIEW

2.1 Botany of Plant Studied

2.1.1 Family of Annonaceae

Annonaceae, the custard apple, or annona family is the largest family of magnolia order (Magnoliales). Some authorities sated that it contain 129 genera and 2,220 species, and many of species are valuable for its large pulpy fruits, some useful for their timber also as ornamentals. The family consists of trees, shrubs and woody climbers found mainly in the tropic, although few species extended into temperate regions. Among the characters that give Annonaceae their unmistakable appearance is the fibrous and aromatic bark, wood with fine tangential bands of parenchyma, alternate, distichous leaves, a trimerous perianth, and ruminate endosperm.

The Annonaceae economic importance is derived from the considerable range of non-timber products obtainable from its species including kernels, edible fruits and medicines while the woods of some species are valued for fuel wood, furniture and in pharmaceutical research (Focho et al., 2010). Recently some Annonaceae became important in pharmaceutic research because of the antifungal, bacteriostatic, and especially cytostatic capability of some chemical constituents of the leaves and bark.

2.1.2 Genus of Annona

Annona is a genus of flowering plants in the Annonaceae. It is the second largest genus in the family after Guatteria containing approximately 110 species of mostly neotropical and afrotropical trees and shrubs. Annona species typically grown for it domestic or commercial use, mostly for the edible and nutritious fruits.
Many of the species are used in traditional medicines for the treatment of a variety of diseases. The fruits of Annona are haematinic, cooling, sedative, stimulant, expectorant, maturant, and tonic. They are useful in anaemia, burning sensation. The seeds are abortifacient and insecticidal (Mona et al., 2012). Several annonaceous species have been found to contain acetogenins, a class of natural compounds with a wide variety of biological activities.

2.1.3 *Annona muricata* L. species

A. muricata L. or infamously known as soursop is one of Malaysian exotic fruits from family *Annonaceae*. In Malay language, it is called *durian belanda*. The tree is a low-branching and bushy but slender plant. It can reach a height of 25 to 30 ft. It is a typical tropical tree with heart shaped edible fruits with the flesh is white and juicy. The leaves are lanceolate with glossy and dark green in color. This species are widely distributed in most of tropical countries (De Feo, 1992; Sulaiman et al., 2012).

A. muricata L. has a long, rich history of use in herbal medicine as well as a lengthy recorded indigenous use. All parts of the soursop plant are used in natural medicine in the tropics, including the bark, leaves, roots, fruit, and fruit seeds. Different properties and uses are attributed to the different parts of the tree.

Generally, the fruit and fruit juice are taken for worms and parasites, to cool fevers, to increase mother's milk after childbirth, and as an astringent for diarrhea and dysentery. The crushed seeds are used against internal and external parasites, head lice, and worms. The barks, leaves, and roots are considered sedative, antispasmodic, hypotensive, and nerveine, and a tea is made for various disorders toward those effects (Stephen and Ezkiel, 2006).

2.2 Chemical Constituents of *Annona* sp.

2.2.1 Nutritional value and chemicals of *Annona* species

A. muricata L. has quite high nutritional value. The white juicy pulp of the fruit is high in carbohydrates and sugars and fair amount of vitamin C, vitamin B1, vitamin B2, potassium and dietary fibre. However, it is poor in vitamin A.
Recent studies have supported many of *A. muricata*’s traditional medicinal uses and also showed that various parts of the tree contain acetogenins, which have been shown to be responsible for its myriad array of its medicinal attributes.

Annonaceous acetogenins are only found in the Annonaceae family (to which *Annona muricata* L. belongs). These chemicals in general have been documented with antitumorous, antiparasitic, insecticidal, and antimicrobial activities.

2.2.2 Previous study on phytochemical screening of *Annona* sp.

The evaluation requirement of the toxicity profile of *A. muricata* leaves extract was prompted by the increasing awareness and interest in medicinal plants and their preparations commonly known as herbal medicine. Herbal medicines have been receiving greater attention as alternatives to orthodox therapy, leading to their increase in demand (Crook, 2006).

Recently, there are lots of studies conducted on Annonaceae sp. on their leaves, bark, seeds, and fruits for their phytochemical constituents. In one of studies, a preliminary phytochemical analysis revealed the presence of secondary metabolites like tannins, steroid, cardiac glycosides, etc. were present in trace amounts in the leaves of *A. muricata* (Pathak et al., 2010).

Other phytochemical analysis of the n-butanolic leaf extract of *A. muricata* revealed the presence of flavonoids, terpenoids, tannins, cardiac glycosides and reducing sugars. Whereas, the extract showed the absence of saponins, steroids, phlobatannins, oil and anthraquinones tested (Kumar et al., 2009).

The phytochemical screening of the *A. muricata* different plant parts also showed the presence of flavonoids, terpenoids, reducing sugar, anthraquinone, tannins and cardiac glycosides. Phytoconstituents in the leaves of *A. muricata* L. contain an alkaloidal principle named 6-Hydroxyundulatine and other alkaloids (Vimala et al., 2012).

In other study of *Annona squamosa*, the results of phytochemical screening of ethanolic extract, chloroform and water fractions of the plant revealed the presence of alkaloids, flavonoids, reducing sugars, saponins, steroids,
tannins and glycosides. These metabolites have been reported to possess antimicrobial activity (Yusha’u et al., 2011). In particular the flavonoids were reported to be responsible for antimicrobial activity associated with some ethnomedicinal plants (Singh and Bhat, 2003; Yusha’u et al., 2011).

In each studies there are different findings on the phytochemical constituents obtained, thus it is not surprising that there are differences in the antimicrobial effects of plant species, due to the phytochemical properties and differences among species. (Pathak et al., 2010).

Phytochemical analysis helps detect the chemical constituents of plants extract in search of bioactive agents as basis for drug synthesis (Ogbonnia et al., 2009). The presence of saponins, condensed tannins and glycosides as the major constituents and trace amounts of flavonoids contribute immensely to the bioactivity of _A. muricata_ and also to its usage in treating various diseases. These have included antioxidant activity (Adewole et al., 2009) as well as hepatoprotective effect and antibacterial agent by (Chukwuka et al., 2011).

2.3 Biological Activities Properties of _Annona_ sp.

2.3.1 Previous study on antimicrobial screening of _Annona_ sp.

Along with the phytochemical screening of _Annona_ sp., their antimicrobial properties also had been evaluated through screening process. In one of study, it was revealed that the aqueous extracts of _A. muricata_ L showed an antibacterial effect against _S. aureus_ and _V. cholerae_, but the antibacterial activity by the ethanol extracts of this plant was not demonstrated (Vieira et al., 2010).

A study also had been conducted in which _A. muricata_ extract was screened against Herpes simplex virus-1 (HSV-1) and clinical isolate (obtained from the human keratitis lesion) in order to check whether they inhibit the cytopathic effect of HSV-1 on vero cells which is the indicative of anti-HSV-1 potential. The minimum inhibitory concentration of ethanolic extract of _A. muricata_ was found to be 1 mg/ml which shows that the _A. muricata_ could be used as the potential antiherptic drugs (Isela et al., 2008).
In one study of *Annona squamosa* antimicrobial properties, it was observed that water fraction were active against *S. pneumoniae* and α-haemolytic *streptococci* but inactive against the other test isolates while chloroform fraction was active against *S. aureus* and *S. pneumoniae* respectively but inactive against all other test isolates. In contrast, ethanolic extract was inactive against the other test isolates at the same disc concentration of 50μg (Yusha’u et al., 2011).

2.4 Screening for Major Phytochemical Constituents

2.4.1 Alkaloid

Alkaloid occurs in plant as salts. They are found in seeds, barks, leaves, roots and other parts of plant. The extraction of the alkaloids is based on their basic character and solubility pattern. The bassist of alkaloid depends upon number of nitrogen items in the molecule, structure of the molecule and presence of other functional group.

The alkaloids are one of the most diverse groups of secondary metabolites found in living organisms and have an array of structure types, biosynthetic pathways, and pharmacological activities. Alkaloids have many other pharmacological activities including antihypertensive effects (many indole alkaloids), antiarrhythmic effects (quinidine, ajmaline, sparteine), antimalaria activity (quinine), and anticancer actions (dimeric indoles, vincristine, vinblastine) (Margaret and Micheal, 1998).

2.4.2 Flavonoid

Flavonoids are polyphenolic compounds that are ubiquitously present in practically all dietary plants, like fruits and vegetables. A great number of plant medicines contain flavonoids, which have been reported by many authors as having antibacterial, anti-inflammatory, antiallergic, antimutagenic, antiviral, antineoplastic, anti-thrombotic, vasodilatory actions (Alan and Miller, 1996), radical scavenger and antileukemic. In the present study, the total phenol content & total flavonoidal content were determined and this in terms helps in gauging the antioxidant potential of the tuberous plant not only helping for establishing the phytochemical standardization but also in authentication of this drug.
2.4.3 Saponin

Saponins are secondary plant metabolites that occur in a wide range of plant species (Hostettmann and Marston, 1995). They are stored in plant cells as inactive precursors but are readily converted into biologically active antibiotics by plant enzymes in response to pathogen attack. The natural role of saponins in plants is thought to be protection against attack by pathogens and pets (Price et al. 1987; Morrissey and Osbourn, 1999).

2.4.4 Glycoside

Glycoside are condensation products of sugar and aglycon. These are soluble in water as well as alcohol. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications.

2.4.5 Tannin

Tannins are present in cell sap soluble in water and alcohol. They are classified into two major categories, the hydrolysable and condensed tannins (Koukoura and Nastis). They are distributed in different parts of plants depending upon the source of the however, tannins usually found in the bark but often in fruits and leaves. It is used as herbs since it possessed complex chemicals which act as an astringent, drawing the tissues together and contracting them and hence was useful for treating surfaces such as the inflamed mucous membranes characteristic of coughs and colds and bathing wounds.

2.5 Bacterial Strains Used - Gram positive and Gram negative Bacteria

2.5.1 Staphylococcus aureus (S. aureus)

S. aureus or also known as "golden staph" and Oro staphira, it is a facultative anaerobic Gram-positive coccal bacterium. It is frequently found as part of the normal skin flora on the skin and nasal passagess. It has been known for as long as we have
had medical literature, that it is a pathogen that capable to causing human infection. *S. aureus* secrets exotoxins called superantigens, which stimulate a large proportion of T cell that induce allergic reactions (for example, the release of inflammatory mediators such as leukotrienes and histamine) (Mustafa et al., 1996).

S. aureus can cause a range of illnesses, from minor skin infections, such as pimples, impetigo, boils (furuncles), cellulitis folliculitis, carbuncles, scalded skin syndrome, and abscesses, to life-threatening diseases such as pneumonia, meningitis, osteomyelitis, endocarditis, toxic shock syndrome (TSS), bacteremia, and sepsis.

Its incidence ranges from skin, soft tissue, respiratory, bone, joint, endovascular to wound infections. In fact, when this microorganism enters the blood, it represents one of the most lethal human pathogens also because it is often characterized by multidrug resistance. It can survive for hours to weeks, or even months, on dry environmental surfaces, depending on strain.

2.5.2 *Escherichia coli* (*E. coli*)

E. coli is a Gram-negative, is a rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most *E. coli* strains are harmless, but some serotypes can cause serious food poisoning in humans, and are occasionally responsible for people making product recalls. *E. coli* is a common inhabitant of the human and animal gut, but can also be found in water, soil and vegetation. It is the leading pathogen causing urinary tract infections (Wagenlehner et al., 2008). It is also among the most common pathogens causing blood stream infections, wounds, otitis media and other complications in humans. *E. coli* is also the most common cause of food and water-borne human diarrhea worldwide and in developing countries, causing many deaths in children under the age of five years (Turner et al., 2006).

2.5.3 *Salmonella enteritidis* (*S. enteritidis*)

S. enteritidis are presented separately from other sero-types of Salmonella because these bacteria are often specifically cited in zoonosis control legislation and also because there are differences in the epidemiology as compared to other salmonellae, which are the predominant sero-types associated with human disease in most
REFERENCES

