IDENTIFICATION, CHARACTERIZATION AND APPLICATION OF THE POTENTIAL TRICHODERMA SPECIES LOCALLY ISOLATED FROM LAHAD DATU, SABAH

NUR SHAFAWATI BINTI SAILI

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTERS OF SCIENCE (BIOTECHNOLOGY)

BIOTECHNOLOGY RESEARCH INSTITUTE
UNIVERSITI MALAYSIA SABAH
2016
JUDUL: IDENTIFICATION, CHARACTERIZATION AND APPLICATION OF THE POTENTIAL TRICHODERMA SPECIES LOCALLY ISOLATED FROM LAHAD DATU, SABAH

IJAZAH: MASTER OF SCIENCE (BIOTECHNOLOGY)

Saya, NUR SHAFAWATI BINTI SAILI, Sesi Pengajian 2011-2016, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan berikut;

1. Tesis ini hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institut pengajian tinggi.
4. Sila tandakan (/)

☐ SULIT (Mengandungi maklumat berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub dalam AKTA RAHSIA 1972)

☐ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi / badan dimana penyelidikan dijalankan)

☐ TIDAK TERHAD

Disahkan oleh,

NURULAIN BINTI ISMAIL
LIBRARIAN
UNIVERSITI MALAYSIA SABAH
(Tandatangan Pustakawan)

Tariikh: 28 Julai 2016

(Assoc. Prof. Dr. Md Shafiquzzaman Siddiquee)
Penyelia
DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

28 July 2016

Nur Shafawati Binti Saili
PB20118056
CERTIFICATION

NAME : NUR SHAFAWATI BINTI SAILI

MATRIC NO. : PB20118056

TITLE : IDENTIFICATION, CHARACTERIZATION AND APPLICATION OF THE POTENTIAL TRICHODERMA SPECIES LOCALLY ISOLATED FROM LAHAD DATU, SABAH

DEGREE : MASTER OF SCIENCE (BIOTECHNOLOGY)

VIVA DATE : 5 FEBRUARY 2016

DECLARED BY;

1. SUPERVISOR

Assoc. Prof. Dr. Md. Shafiquzzaman Siddiquee

Signature

25/07/2016
ACKNOWLEDGEMENTS

Firstly, I would like to praise Allah the Almighty for every chances He had given. Alhamdulillah.

Next, I would like to express my sincere gratitude to my supervisor, Dr. Shafiquzzaman Siddiquee for the continuous support of my Masters, related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor and mentor for my Masters study.

I would like to thank my parents, Saili Libi and Rusimi Mohamad, my brother, Mohd Faez Saili and my dear husband, Afendi Saripudin for the love, patience and financial support. Also not to be forgotten, my soul, my baby and my love, Muhammad Fatih Bukhari. Thank you for becoming my strength and inspiration to go through the study process. Thank you for your endless support, kind and understanding during the process.

The completion of this undertaking could not have been possible without the contribution of raw material in form of EFB by IPP Felda Sahabat and Ladang Sahabat 33, Felda Sahabat Lahad Datu, Sabah. My deep appreciation for them in making this project possible.

For the Director of BRI, the lecturers, my friend, my labmates, lab assistants and for those who involved directly or indirectly in this project. Without all of you, I am nobody.

Thank you everyone.

Nur Shafawati binti Saili
28 July 2016
Specific strains of *Trichoderma* species have been commercially applied as biocontrol agents against several plant pathogenic fungi due to their production of antifungal metabolites, competition for nutrients and space, and mycoparasitism. The main aim of this study was to identify the specific potential of *Trichoderma* strains from an oil palm plantation in Lahad Datu for the application in the biocomposting of oil palm empty fruit bunches. This compost able to enhanced plant growth performance and also produced high yield production. Generally, compost is not only a good biofertilizer but also a good biocontrol agent against soil-borne pathogens. Isolation of *Trichoderma* species from soil was done using dilution technique. A total of 138 colonies of fungus found, and only 97 isolates were physically identified as *Trichoderma* species. Apart from that, only 52 *Trichoderma* isolates were further identified based on the morphological characteristics and molecular data analysis. From the results, all 52 isolates were belong to eight *Trichoderma* species namely *Trichoderma asperellum*, *T. harzianum*, *T. koningiopsis*, *T. hamatum*, *T. theobromicola*, *T. erinaceum*, *T. viride* and *Hypocrea melanomagna*. Next, the lignocellulolytic activities of all isolates were studied based on their ability to degrade cellulose, lignin and starch and the best potential strains were selected as the decomposers. Strains 2H, 5D and 10L2 were found to give the largest halo zone in the order of 4.40 ± 0.46 cm for cellulose, 4.93 ± 0.06 cm for lignin and 7.47 ± 0.15 cm for starch, respectively. Based on these results, two strains (11B and SICCI) were selected for the composting of oil palm fibre. Over the four weeks of the composting period, analysis of pH of the compost was found to be slightly alkaline at the earlier stage and slowly become acidic. The temperature recorded was almost the same being the 24°C during the laboratory assay. Field experiments were done to test the effectiveness of the compost for 15 weeks by using chilli plants and two types of compost (Compost A and Compost B) together with a control group. Based on the results, *Trichoderma* propagules were found dominant with 72% abundancy in soil when compared to the other fungi. Compost A showed better results in length (90 cm), number of leaves (95.5), stem diameter (0.8 cm), branching root development, flower formation (21 during week 13), and yield of Chilli (58) compared to compost B and control. However, chilli tree mixed with compost B had an average higher branch formation (7.8), higher percentage of moisture in plant (58.93 %) and longer root development (32.6 cm). Analysis of soil electrical conductivity showed it to be 50.40 \(\mu \text{S/cm} \) for compost A, 42.10 \(\mu \text{S/cm} \) for compost B and 40.11 \(\mu \text{S/cm} \) for the control, respectively. Higher CN ratio was found in compost A and B (3.21:0.26, 3.18: 0.26) as compared to control (2.71: 0.26). Analysis on week eight showed the ratio of NPK to be in the order, compost A (4.30) > compost B (2.79) > control (1.55). To conclude, either by using compost A or compost B, composting of oil palm fibres shows a great potential for application in agricultural fields to improve soil fertility, soil texture, enhance plant growth and high yield of production.
ABSTRAK

IDENTIFIKASI, PENCIRIAN, DAN APLIKASI SPESIS TRICHODERMA BERPOTENSI YANG DIISOLASI DARI LAHAD DATU, SABAH

Strain tertentu bagi spesis Trichoderma digunakan secara komersial sebagai agen kawalan biologi terhadap beberapa tumbuhan kulat patogen disebabkan kebolehannya menghasilkan metabolit antikulat, persaingan untuk nutrien dan ruang, dan mycoparasitisme. Tujuan utama kajian ini adalah untuk meningkatkan kesuburan tanah dan meningkatkan hasil tanaman dengan menggunakan biokompos baja dari bahan mentah tandan kosong kelapa sawit. Ia boleh meningkatkan prestasi pertumbuhan tanaman dan pengeluaran hasil tanaman pertanian yang tinggi. Pengeluaran kompos bukan sahaja biobaja yang baik tetapi juga agen kawalan biologi yang baik terhadap patogen bawaan-tanah. Terdapat 52 kultur telah dikenal pasti sebagai spesies Trichoderma berdasarkan karateristik fisiologi dan penelitian mikroskopik berdasarkan sampel tanah yang diambil dari ladang kelapa sawit di Lahad Datu, Sabah. Identifikasi di peringkat spesis Trichoderma yang ditemui telah dilakukan berdasarkan gabungan kaedah penilitian morfologi dan penelitian molekular telah menemui 11 spesis Trichoderma yang dinamakan sebagai Trichoderma asperellum, T. harzianum, T. koningiopsis, T. hamatum, T. theobromicola, T. erinaceum, T. viride dan Hypocrea melanomagna. Seterusnya, saringan biokompos berdasarkan keupayaan fungus tersebut untuk merendahkan kadar selulosa, lignin dan kanji telah dilakukan untuk memilih fungus yang terbaik supaya dapat digunakan sebagai pengurai kepada kompos. Sampel kultur 2H, 5D dan 10L2 menunjukkan zon halo terbesar; 4.40 ± 0.46 cm, 4.93 ± 0.06 cm dan 7.47 ± 0.15 cm terhadap penguraian enzim selulosa, lignin dan kanji. Berdasarkan keputusan ini, dua strain Trichoderma terbaik (118 dan Sicci) telah dipilih untuk menjadi pengurai untuk kompos. Empt minggu diperuntukkan untuk kompos mengurai dan analisis pH awal kompos mendapati pH sedikit alkali pada permulaan proses dan selepas itu menjadi sedikit asid. Suhu kompos yang direkodkan sepanjang empat minggu proses pengkomposan adalah 24 °C iaitu suhu maksimal. Pokok cili telah digunakan untuk eksperimen di lapangan dan telah dilakukan selama 15 minggu dengan menggunakan dua jenis kompos bersama strain fungus yang telah dipilih dan kumpulan kawalan. Berdasarkan keputusan eksperimen, sejumlah 72% propagul Trichoderma telah ditemui dan setelah dibandingkan dengan pertumbuhan kulat dalam tanah yang lain propag Trichoderma mendominasi jumlah populasi fungus di dalam tanah. Pokok cili yang dicampur dengan kompos A menunjukkan keputusan yang baik dari segi panjang pokok dengan purata 90 cm, jumlah daun (95.5), diameter stem pokok (0.8 cm), perkembangan akar yang lebih tersebar, pembentukan bunga (21 bunga terbentuk pada minggu 13), dan hasil buah cili (58%) dihasilkan berbanding dengan tumbuhan dirawat dengan kompos B dan kawalan. Walau bagaimanapun, pokok cili yang ditambah dengan kompos B membentuk dahan yang lebih banyak (7.8), peratusan kelembapan dalam tumbuhan yang lebih tinggi (58.93%) dan perkembangan akar yang lebih panjang (32.6 cm). Analisis tanah terhadap kekonduksian elektrik mendapati 50.40μS/cm untuk kompos A, 42.10μS/cm untuk kompos B dan 40.11μS/cm untuk kawalan. Analisis pada minggu 8, nisbah NPK yang lebih tinggi...
terdapat dalam kompos A (4.30) > kompos B (2.79) > kawalan (1.55). Oleh itu, kompos daripada kelapa sawit menunjukkan potensi yang besar untuk digunakan di dalam bidang pertanian untuk meningkatkan kesuburan tanah dan tekstur tanah, meningkatkan pertumbuhan tumbuhan dan hasil pengeluaran yang tinggi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF PHOTOGRAPHS</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Research Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Objectives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Trichoderma sp. and Its Role as a Biocontrol Agent</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Enzymatic Abilities in Trichoderma sp.</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Antibiosis, Competition, Mycoparasitism, Chitin Production and</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Herbacidal Actions by Trichoderma sp.</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Malaysian Oil Palm Industry</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Wastes Produced by the Oil Palm Industry</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Oil Palm Biomass</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Current Solutions to Reduce Wastes from Oil Palm Industry</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Composting as the Sustainable Way in Recycling Oil Palm Waste</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Composting of Empty Fruit Bunch (EFB)</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER 3: ISOLATION AND IDENTIFICATION OF TRICHODERMA STRAIN BASED ON MORPHOLOGICAL CHARACTERISTICS AND DNA SEQUENCING

3.1 Introduction

3.2 Material and Methods

3.2.1 Sample collection

3.2.2 Isolation of Trichoderma sp.

3.2.3 Stock culture

3.2.4 Morphological Analysis

3.2.5 Molecular Analysis

3.2.6 Phylogenetic Reconstruction Analysis

3.3 Results

3.3.1 Isolation of Trichoderma Species

3.3.2 Population Diversity of Trichoderma in Lahad Datu

3.3.3 Morphological Analysis

3.3.3 (a) Macroscopic and Microscopic Analysis

i. Trichoderma asperellum
ii. Trichoderma koningopsis
iii. Trichoderma harzianum
iv. Trichoderma hamatum
v. Trichoderma erinaceum
vi. *Hypocrea melanomagna* 57
vii. *Trichoderma viride* 59
viii. *Trichoderma theobromicola* 61

3.3.3 (b) Growth Rate 63

3.3.4 Molecular Analysis 66
3.3.4 (a) DNA Extraction 66
3.3.4 (b) DNA Amplification and Purification 67
3.3.4 (c) Sequence Analysis of ITS 1 and ITS 2 Regions 68

3.3.5 Phylogenetic Reconstruction Analysis 74

3.3.6 Species Diversity of *Trichoderma* in Lahad Datu 76

3.4 Discussions 77
3.4.1 Isolation of *Trichoderma* species 77
3.4.2 Population Diversity of *Trichoderma* Species in Lahad Datu 77
3.4.3 Species Identification 78
3.4.3 (a) Morphological Analysis 78
3.4.3 (b) Molecular Analysis 82
3.4.4 Phylogenetic Reconstruction Analysis 84
3.4.5 Species Diversity of *Trichoderma* in Lahad Datu 86

CHAPTER 4: SCREENING ON THE BASIS OF LIGNOCELLULOLYTIC ACTIVITIES OF *TRICHODERMA* SPECIES 88

4.1 Introduction 90
4.2 Materials and Methods 90
4.2.1 Selection of *Trichoderma* isolates 90
4.2.2 Enzymatic activity of lignin degradation 90
4.2.3 Enzymatic activity of cellulose degradation 90
4.2.4 Enzymatic activity of α-amylase degradation 91
4.2.5 Data analysis 91
4.3 Results 91
4.3.1 Enzymatic activity of lignin degradation 91
4.3.2 Enzymatic activity of cellulose degradation 92
4.3.3 Enzymatic activity of α-amylase degradation

4.4 Discussion

4.4.1 Enzymatic activity of lignin degradation

4.4.2 Enzymatic activity of cellulose degradation

4.4.3 Enzymatic activity of α-amylase degradation

CHAPTER 5: STUDIES ON THE CHEMICAL AND BIOLOGICAL CHANGES DURING AND AFTER THE COMPOSTING OF EMPTY FRUIT BUNCH (EFB) USING THE POTENTIAL TRICHODERMA

5.1 Introduction

5.2 Materials and Methods

5.2.1 Preparation of Compost and the Composting Process

5.2.2 Changes in Temperature

5.2.3 Changes in pH

5.2.4 Electrical conductivity (EC)

5.2.5 Carbon (C)

5.2.6 Nitrogen (N)

5.2.7 C/N Ratio

5.2.8 Macronutrients Analysis

a) Nitrogen Analysis

b) Phosphorus and Potassium Analysis

5.2.9 Statistical Analysis

5.3 Results

5.3.1 Changes in Temperature

5.3.2 Changes in pH

5.3.3 Electrical conductivity (EC)

5.3.4 C/N Ratio

5.3.5 Macronutrients Analysis

a) Nitrogen Analysis

b) Phosphorus Analysis

c) Potassium Analysis

5.4 Discussion

5.4.1 Changes in Temperature
CHAPTER 6: EVALUATION ON THE PLANT GROWTH ENHANCEMENT OF CHILLI PLANTS TREATED WITH COMPOST ENRICHED SELECTED STRAINS OF TRICHODERMA SPECIES

6.1 Introduction
6.2 Materials and Methods
 6.2.1 Trichoderma Colony Forming Unit (CFU) Estimation
 6.2.2 Height of tree
 6.2.3 Number of leaves
 6.2.4 Stem diameter
 6.2.5 Flower formation
 6.2.6 Yield of chilli
 6.2.7 Branch formation
 6.2.8 Plant dry weight
 6.2.9 Root development
6.3 Results
 6.3.1 Trichoderma Colony Forming Unit (CFU) Estimation
 6.3.2 Height of tree
 6.3.3 Number of leaves
 6.3.4 Stem diameter
 6.3.5 Flower formation
 6.3.6 Yield of chilli
 6.3.7 Branch formation
 6.3.8 Plant dry weight
 6.3.9 Root development
6.4 Discussion
 6.4.1 Trichoderma Colony Forming Unit (CFU) Estimation
 6.4.2 Height of tree
 6.4.3 Number of leaves
6.4.4 Stem diameter 131
6.4.5 Flower formation 131
6.4.6 Yield of chilli 132
6.4.7 Branch formation 132
6.4.8 Plant dry weight 132
6.4.9 Root development 132

CHAPTER 7: CONCLUSIONS 134
REFERENCES 137
APPENDICES 166
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Comparison between Bacteria and Trichoderma sp. based BCA’s</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Wastes from oil palm industry</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Factors affecting the composting process</td>
<td>22</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Isolates code, origin of the Trichoderma species, number of isolates and types of sample used</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>BLAST and TrichOKEY 2 search result for all Trichoderma isolates</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Changes in temperature during four weeks of composting process</td>
<td>103</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Changes of C:N ratio of EFB composts during field experiment</td>
<td>105</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Comparison of compost in completing their composting process</td>
<td>109</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Comparison on C/N ratio of compost during composting process</td>
<td>111</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Comparison of macronutrients analysis</td>
<td>112</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Percentage of Trichoderma and Non-Trichoderma found in soil samples during 15 weeks of field experiment</td>
<td>118</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Number of chilli fruits produced during 15 weeks of field experiment</td>
<td>125</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Percentage of moisture content in chilli plants</td>
<td>126</td>
</tr>
</tbody>
</table>
| Figure 2.1 | Growth promotional activities of *Trichoderma spp.*
Indirect: (a) mycoparasitism, (b) Competition; direct: (c) Mycelia growth around plant rhizosphere and production of metabolites | 13 |
| Figure 2.2 | Wastes, residues and byproducts from palm tree | 16 |
| Figure 2.3 | Material flow for conventional composting process | 20 |
| Figure 3.1 | Location of the experimental site and its surroundings for sampling points | 37 |
| Figure 3.2 | Population number (CFU) of *Trichoderma* species versus Non-*Trichoderma* at Lahad Datu, Sabah | 45 |
| Figure 3.3 | Population number of *Trichoderma* at Lahad Datu, Sabah | 46 |
| Figure 3.4 | A representative [1gB] morphological characteristics of *Trichoderma asperellum*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidioshores; X. Phialides. c-f were observed with 400x magnification. | 48 |
| Figure 3.5 | A representative [10L2] morphological characteristics of *Trichoderma koningiopsis*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidioshores; X. Phialides. c-f were observed 400x magnification. | 50 |
| Figure 3.6 | A representative [S15] morphological characteristics of *Trichoderma harzianum*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidioshores; X. Phialides. c-f were observed 400x magnification. | 52 |
| Figure 3.7 | A representative [1gC] morphological characteristics of *Trichoderma hamatum*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidioshores; X. Phialides. Figure 3.8 A representative [12M] morphological characteristics of *Trichoderma erinaceum*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidioshores; X. Phialides. c-f were observed 400x magnification. | 54 |
Figure 3.8 A representative [12M] morphological characteristics of *Trichoderma erinaceum*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidiosphores; X. Phialides. c-f were observed 400x magnification.

Figure 3.9 A representative [11K] morphological characteristics of *Hypocrea melanomagna*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidiosphores; X. Phialides. c-f were observed 400x magnification.

Figure 3.10 A representative [1gG] morphological characteristics of *Trichoderma viride*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidiosphores; X. Phialides. c-f were observed 400x magnification.

Figure 3.11 A representative [S14] morphological characteristics of *Trichoderma theobromicola*. a. Front colony which has grown in PDA for 4 days; b. Reverse colony; c-f. Conidiosphores; X. Phialides. c-f were observed 400x magnification.

Figure 3.12 An average colony diameter of *Trichoderma* isolates grown on PDA (Oxoid) at 28 °C from day 1 to day 4

Figure 3.13 An average colony diameter of *Trichoderma* isolates grown on PDA (Oxoid) at 35 °C from day 1 to day 4

Figure 3.14 A representative picture of the agarose gel showing a single band of genomic DNA that were successfully extracted by using a CTAB method. Lanes 1-15 :1gB (1), 1gF(2), 1gE (3), 1gC(4), 1gG(5), SIBM(6), S14(7), S15(8), SIB(9), SIBN(10), SIE(11), SIF(12), 12M(13), 11B(14), and 11C (15) respectively, lane C : Negative control.

Figure 3.15 A representative picture of the agarose gel showing a PCR amplification products of the ITS 1 and ITS 2 regions of all *Trichoderma* isolates with the expected amplicon size (600 bp). Lanes 1-11 :SIBM (1), 14M (2), 2D (3), 5D(4), SICCII(5), SIE(6), 14A(7), SICCII(8), SIC(9), S14(10), SIF(11), respectively, Lane C : Negative control, Lane L : 1kb DNA marker.
Figure 3.16 Phylogenetic relationship of 52 isolates of *Trichoderma* at Lahad Datu, Sabah area inferred by UPGMA bootstrap tree analysis of the ITS 1 and ITS 2 gene sequences. *Rhizotonia solani* act as the outgroup for this analysis.

Figure 3.17 Overall proportion of eight *Trichoderma* species isolated from rhizosphere soil of 15 oil palm trees at Lahad Datu, Sabah

Figure 4.1 Screening on the *Trichoderma* isolates based on their lignocellulolytic activities

Figure 5.1 pH analysis during 4 weeks of composting process

Figure 5.2 Electrical conductivity (μS/cm) during composting process

Figure 5.3 Nitrogen (N) analysis during 15 weeks of field experiment

Figure 5.4 Phosphorus (P) analysis during 15 weeks of field experiment

Figure 5.5 Potassium (K) analysis during 15 weeks of field experiment

Figure 6.1 Colony Forming Unit (CFU) of *Trichoderma* and Non-*Trichoderma* seen on TSM

Figure 6.2 Mean value for height of tree plants during 15 Weeks of field experiment

Figure 6.3 Mean value for number of leaf formation during the 15 weeks of field experiment

Figure 6.4 Stem diameter of chilli plants treated with different types of treatment

Figure 6.5 Mean value for flower formation during 15 weeks of field experiment

Figure 6.6 Mean value for branch formation during 15 weeks of field experiment

Figure 6.7 Percentage of moisture in chilli plants

Figure 6.8 Mean value for length of roots for chilli plants after 15 weeks of field experiment
LIST OF PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photo</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo 3.1</td>
<td>The location of soil sampling</td>
<td>36</td>
</tr>
<tr>
<td>Photo 3.2</td>
<td>Horizontal distance of sampling spots and its depth</td>
<td>36</td>
</tr>
<tr>
<td>Photo 3.3</td>
<td>Example of colonies growth on Trichoderma Selective Media (TSM)</td>
<td>43</td>
</tr>
<tr>
<td>Photo 4.1</td>
<td>Comparison between isolates from Sabah on their ability to degrade cellulose with largest halo zone (isolates 10X; 4.20 cm) and small halo zone (isolates SIB M; 0.50 cm)</td>
<td>92</td>
</tr>
<tr>
<td>Photo 4.2</td>
<td>Comparison between isolates from Sabah on their ability to degrade cellulose with largest halo zone (isolate 1gB; 2.53 cm) and smaller halo zone (isolates 2D; 0.50 cm)</td>
<td>92</td>
</tr>
<tr>
<td>Photo 4.3</td>
<td>Comparison between Trichoderma isolates from Sabah on their ability to degrade starch with large halo zone (14V; 6.87 cm) and smaller halo zone (isolate 5E; 4.83 cm)</td>
<td>93</td>
</tr>
<tr>
<td>Photo 6.1</td>
<td>The major differences between the trees treated with Compost A (left) and control (right)</td>
<td>120</td>
</tr>
<tr>
<td>Photo 6.2</td>
<td>The differences on the stem diameter (a) Chilli plant with no treatment (Control), (b) Chilli plant treated with compost A</td>
<td>123</td>
</tr>
<tr>
<td>Photo 6.3</td>
<td>Root development of chilli plants with different treatments after 15 weeks of field experiment</td>
<td>127</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>±</td>
<td>Plus minus</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µg/mL</td>
<td>Microgram per milliliter</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{260}/A_{280})</td>
<td>A260 and A280 are the optical spectrometer measurement of absorbance at the wavelength of 260nm and 280nm respectively</td>
</tr>
<tr>
<td>AFLP</td>
<td>Amplified fragment length polymorphism</td>
</tr>
<tr>
<td>BCA</td>
<td>Biological control agent</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>C:N</td>
<td>Carbon to Nitrogen ratio</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>(ddH_2O)</td>
<td>Double distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotides Triphosphates</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>GCPSR</td>
<td>Genealogical Concordance Phylogenetic Species Recognition</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>Water</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>IGS</td>
<td>Intergenic Spacer Region</td>
</tr>
<tr>
<td>ISSR</td>
<td>Inter Simple Sequence Repeat</td>
</tr>
<tr>
<td>ISTH</td>
<td>International Subcommission on Trichoderma and Hypocrea</td>
</tr>
<tr>
<td>ITS 1</td>
<td>Internal Transcribed Spacer 1</td>
</tr>
<tr>
<td>ITS 2</td>
<td>Internal Transcribed Spacer 2</td>
</tr>
<tr>
<td>ITS 4</td>
<td>Internal Transcribed Spacer 4</td>
</tr>
<tr>
<td>(K_2HPO_4)</td>
<td>Dipotassium Phosphate</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilo base</td>
</tr>
<tr>
<td>LSU</td>
<td>Large Subunit</td>
</tr>
<tr>
<td>MEGA</td>
<td>Molecular Evolutionary Genetics Analysis</td>
</tr>
<tr>
<td>MgCl(_2)</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MgSO(_4).7H(_2)O</td>
<td>Magnesium sulphate</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium chloride</td>
</tr>
</tbody>
</table>
NCBI - National Center for Biotechnology Information
NH₄NO₃ - Ammonium nitrate
PCR - Polymerase Chain Reaction
PDA - Potato Dextrose Agar
pH - Negative decimal logarithm of the hydrogen ion activity in a solution
RAPD - Random Amplified Polymorphic DNA
RFLP - Restriction Fragment Length Polymorphism
RNA - Ribonucleic acid
rpm - Revolutions per minutes
rRNA - Ribosomal ribonucleic acid
sp. - Species
TBE - Tris borate ethylene diamine tetraacetic acid
TSM - Trichoderma Selective Media
UPGMA - Unweighted Pair Group Method with Arithmetic Mean
www - World Wide Web
CHAPTER 1

INTRODUCTION

1.1 Research Background
In general, fungi are well known for their special ability to degrade lignin in woody material (Beata, 2007). Specifically, the fungi genus *Trichoderma*, which can be found among all types of soil in the world, possess strong criteria as a biological control agent. This species is also able to compete strongly for space and nutrients amongst other organisms, produce toxins against phytopathogenic species (Mohd Zainudin et al., 2008), and utilize antagonist properties against *Ganoderma boninense* (Siddiquee et al., 2009). Study by Dayana Amirah et al. (2012) has proven that *T. virens* is one of the most effective fungi that could degrade organic matter into minerals.

Unfortunately, there have been some difficulties in the identification of *Trichoderma* at species level - so far, only morphological and cultural characters have been identified (Siddiquee et al., 2007). Gams and Bissett (2002) have reported that the *Trichoderma* species have been characterized by their morphological characteristics with the advancement of molecular tools. Similar procedures have been adopted by several researchers (Rifai, 1969; Bissett, 1991a; Samuels, 2002) to characterize and differentiate among various members of the *Trichoderma* species. However, it is still very difficult to differentiate among members of the *Trichoderma* species, especially when it comes to their microscopic characteristics; for example, the phialide and conidia of this species are very similar to its teleomorph, the *Hypocrea* (Rifai and Webster, 1966). Therefore, some researchers (Chaverri and Samuels, 2003; Overton et al., 2006) have agreed that to determine *Trichoderma* at species level, morphological characteristics alone are not enough for identification; given putative names are needed.
Identification in this species, which began in 1995, have been re-assessed following current advancements in molecular tools, the DNA sequencing and morphology-based taxonomy of *Trichoderma* species (Druzhininina and Kubicek, 2005; Samuels, 2005). Several molecular techniques such as analysis on the molecular markers (ITS sequencing analysis, RAPD), physiological (isoenzymes analysis), and phenetic characters have been employed to solve the confusion of *Trichoderma* taxonomy (Kuhls *et al.*, 1996; Samuels *et al.*, 1998; Lieckfeldt *et al.*, 1998; Kindermann *et al.*, 1998). The combination of phylogenetic and phenotypic data is crucial for the identification of *Trichoderma* species (Chaverri and Samuels, 2003; Jaklitsch, 2009; Poldma, 2011; Kim *et al.*, 2012).

In addition to that, fungi growth rates have always assisted in determining species. These are accessed by observing and recording specific features in fungi, such as their ability to sporulate abundantly, the presence of pustules, the formation of concentric rings, the presence of a distinctive coconut odour and the production of various types of secondary metabolites (Blaszczyk *et al.*, 2011).

One unique criteria present in the *Trichoderma* species involves biological control characteristics. According to Roath (2014), biological control was first described by Harry Smith in relation to the biological control of insects, where the suppression of insect populations by native or introduced enemies was observed. Biological control is thus defined generically as a population-levelling process in which an increase in the population of one species lowers the number of another within the same food chain. Biological control agents are non-toxic to humans, do not contaminate water and are very host-specific once they are colonized.

It is believed that *Elaeis guineensis jacq*, better known as the oil palm tree, grew wildly before it was cultivated as an agricultural crop. It was first introduced to Malaysia (then Malaya) by British colonizers around the year 1870. The Tennamaran Estate in Selangor became the first estate where oil palm trees were planted commercially in Malaysia. Through the Malaysian government’s agricultural diversification programme in the early sixties, the oil palm industry grew rapidly to cut down the country’s economic dependence on rubber and tin. The scheme also
REFERENCES

Latha, J. & Mukherjee, P.K. 2002. Molecular characterization of ex-type strains of *Trichoderma* sp. from two Indian type culture collections. *BARC of Newsletter (Founder's Day Special Issue)*. 145-149.

http://www.agnet.org/library/article/eb505a.html#eb505at4

