SOCIOECONOMIC DETERMINANTS OF OIL PALM SMALLHOLDERS' AWARENESS TOWARDS *GANODERMA* DISEASE

SARAS WATHY A/P S NEELAMAGAN

THE DISSERTATION IS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

MATHEMATICS WITH ECONOMICS PROGRAMME
FACULTY OF SCIENCE AND NATURAL RESOURCES
UNIVERSITI MALAYSIA SABAH

2015
JUDUL: SOCIOECONOMIC DETERMINANTS OF OIL PALM SMALLHOLDERS AWARENESS TOWARDS HANDDERMA DISEASE

UZAHAH: B. Sc (HONS.) MATHEMATICS WITH ECONOMICS

SAYA: SARAS WATHY AB S NEELAMAGAN

(SERUHF BESAR)

SESI PENGAJIAN: 2014/2015

Mengaku menyenaraikan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat sebagai berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓)
 - SULIT (Mengandungi maklumat yang berdasar kepentingan Malaysia seperti yang termaklum di AKTA RAHSIA RASMI 1972)
 - TERHAD (Mengandungi maklumat TERAHD yang telah diuntukkan oleh organisasi/badan di mana Penyelidikan dijalankan)
 - TIDAK TERHAD

PERPUSTAKAAN UNIVERSITY MALAYSIA SABAH

TANDATANGAN PENULIS

TANDATANGAN PUSTAKAWAN

Alamat tetap:

BAGAN TIMUR, 13300 KUTA KOWTH, PULAU PINANG

Tarikh: 22/6/15

Catatan:
- *Potong yang tidak berkenaan.*
- *Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali selub dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
- *Tesis dimaksudkan sebagai tesis bagi fajaran Doktor Falsafah dgn Sarjana Secara penyelidikan atau discrit bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).*
DECLARATION

I confirm that this dissertation is of my own effort, except for the material referred to as cited in the reference section.

SARAS WATHY A/P S NEELAMAGAN
(BS12110570)

25 MAY 2015
CERTIFIED BY

SUPERVISOR
(MR. ASSIS BIN KAMU)

Assis Kamu
Pensyarah
Program Matematik Dengan Ekonomi
Fakulti Sains dan Sumber Alam
UNIVERSITI MALAYSIA SABAH
ACKNOWLEDGEMENT

First of all, I would like to use this opportunity to express my sincere gratitude to my supervisor Mr. Assis Kamu for his guidance, support and motivation throughout Final Year Project. I am sincerely grateful to him for sharing his truthful and illuminating views on a number of issues related to the project. I truly appreciate his effort and patience to supervise me with a smile and to gently guide me back towards the correct path whenever I make mistakes.

I would also like to thank my friends and family for being by my side throughout the hard times. They were always supporting me and encouraging me with their best wishes.

Finally, I would first like to thank my mother, Navamani, without her continuous support and encouragement I never would have been able to achieve my goals.
ABSTRACT

This research is mainly about the socioeconomic determinants of oil palm smallholders' awareness towards *Ganoderma* disease. Data was collected from the sampled oil palm smallholders through face to face interview by using structured questionnaire. There were 620 respondents have been interviewed in this study, where 500 smallholders from Sabah and 120 smallholders from Peninsular Malaysia. The data analysis was done by conducting descriptive statistics, reliability test, factor analysis, normality test, Mann Whitney test and Kruskal-Wallis test. The findings of factor analysis show that there were three main factors associated with smallholders’ awareness towards *Ganoderma* disease. The factors are awareness on knowledge of *Ganoderma* disease and detection methods, awareness on symptoms of *Ganoderma* disease and control methods and awareness on potential spread of *Ganoderma* disease. The results of comparison test show that there were significant difference in smallholders’ awareness on knowledge of *Ganoderma* disease and detection methods according to farm location and category of smallholder. The comparison test also show that the oil palm smallholders’ awareness on symptoms of *Ganoderma* disease and control methods were different according to the farm location, category of smallholder, age of respondent, smallholders’ main occupation and experience in oil palm. Farm location and experience in oil palm cultivation were also found to be the responsible factors in differentiating the smallholders’ awareness on potential spread of *Ganoderma* disease. The profile on awareness of oil palm smallholders towards *Ganoderma* disease is very important and useful to the relevant stakeholders and agencies in order to help the smallholders in combating the disease.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Oil Palm Industry and Oil Palm Smallholders 2
1.3 Economic Impact of *Ganoderma* Disease 3
1.4 Scope of Study 4
1.5 Justification of study 4
1.6 Objectives 5

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 6
2.2 *Ganoderma* Disease 7
2.2.1 Epidemiology 7
2.2.2 Symptoms 8
2.2.3 Detection Methods 9
2.2.4 Control Method 11
2.2.5 Economic Impact 12
2.3 Oil Palm Smallholders 12

CHAPTER 3 METHODOLOGY OF RESEARCH
3.1 Introduction 15
3.2 Research Design 15
3.3 Target Group and Sampling 15
3.4 Data Collection Method 15
3.5 Variables 16
3.5.1 Smallholders' Awareness Towards *Ganoderma* Disease 16
3.5.2 Socioeconomic Characteristics 16
3.6 Item Coding 17
3.7 Descriptive Statistics 20
3.8 Pilot Study 20
3.9 Reliability Analysis 20
3.10 Factor Analysis 22
3.11 Normality Test 26
3.12 Independent T-test 26
3.13 One Way ANOVA 27
3.14 Mann-Whitney U Test 29
3.15 Kruskal-Wallis Test 29
3.16 Conclusion 30

CHAPTER 4 DATA ANALYSIS AND RESULTS
4.1 Introduction 31
4.2 Descriptive Analysis 31
4.2.1 Farm Location by State 32
4.2.2 Category of Smallholder 33
4.2.3 Age of Respondents 34
4.2.4 Main Occupation 35
4.2.5 Experience in Oil Palm Cultivation 36

4.3 Reliability Analysis 37

4.4 Factor Analysis 37

4.5 Normality Test 46

4.6 Mann-Whitney U Test 47

4.6.1 Mann-Whitney U Test For Awareness on Knowledge of *Ganoderma* Disease and Detection Methods (Factor 1) 47

4.6.2 Mann-Whitney U Test For Awareness on Symptoms of *Ganoderma* Disease and Control Methods (Factor 2) 49

4.6.3 Mann-Whitney U Test For Awareness on Potential Spread of *Ganoderma* Disease (Factor 3) 50

4.7 Kruskal-Wallis Test 51

4.7.1 Kruskal-Wallis Test For Awareness on Knowledge of *Ganoderma* Disease and Detection Methods (Factor 1) 52

4.7.2 Kruskal-Wallis Test For Awareness on Symptoms of *Ganoderma* Disease and Control Methods (Factor 2) 55

4.7.3 Kruskal-Wallis Test For Awareness on Potential Spread of *Ganoderma* Disease (Factor 3) 61

4.8 Conclusion 65

CHAPTER 5 DISCUSSION AND CONCLUSION

5.1 Introduction 66

5.2 Achievement of Objectives 66
4.2.3 Age of Respondents
4.2.4 Main Occupation
4.2.5 Experience in Oil Palm Cultivation
4.3 Reliability Analysis
4.4 Factor Analysis
4.5 Normality Test
4.6 Mann-Whitney U Test
 4.6.1 Mann-Whitney U Test For Awareness on Knowledge of *Ganoderma* Disease and Detection Methods (Factor 1)
 4.6.2 Mann-Whitney U Test For Awareness on Symptoms of *Ganoderma* Disease and Control Methods (Factor 2)
 4.6.3 Mann-Whitney U Test For Awareness on Potential Spread of *Ganoderma* Disease (Factor 3)
4.7 Kruskal-Wallis Test
 4.7.1 Kruskal-Wallis Test For Awareness on Knowledge of *Ganoderma* Disease and Detection Methods (Factor 1)
 4.7.2 Kruskal-Wallis Test For Awareness on Symptoms of *Ganoderma* Disease and Control Methods (Factor 2)
 4.7.3 Kruskal-Wallis Test For Awareness on Potential Spread of *Ganoderma* Disease (Factor 3)
4.8 Conclusion

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Introduction
5.2 Achievement of Objectives
5.3 Awareness on Knowledge of *Ganoderma* Disease and Detection Methods 66
5.4 Awareness on Symptoms of *Ganoderma* Disease and Control Methods 67
5.5 Awareness on Potential Spread of *Ganoderma* Disease 69
5.6 Limitation and Recommendations 70
5.7 Conclusion 70

REFERENCES 71
APPENDIX A 77
APPENDIX B 78
LIST OF TABLES

No. Description Page

3.1 Socioeconomic characteristics 17
3.2 Questionnaire item’s code 17
3.3 Cronbach’s alpha coefficient 21
3.4 Correlation matrix calculation 23
3.5 KMO Values 24
3.6 Model of one way ANOVA 28
4.1 Distribution of respondents by farm location by state 32
4.2 Reliability test 37
4.3 Correlation matrix 39
4.4 Keiser-Meyer-Olkin (KMO) test and Bartlett test of sphericity 40
4.5 Communalities 40
4.6 Total variance explained 41
4.7 Rotated component matrix 43
4.8 Factors associated with smallholders’ awareness towards Ganoderma disease 44
4.9 Component transformation matrix 46
4.10 Normality test 47
4.11 Mann-Whitney U test for factor 1 according to category of smallholder 48
4.12 Mean ranks for factor 1 according to category of smallholder 48
4.13 Mann-Whitney U test for factor 1 according to respondent’s main occupation

4.14 Mann-Whitney U test for factor 2 according to category of smallholder

4.15 Mean ranks for factor 2 according to category of smallholder

4.16 Mann-Whitney U test for factor 2 according to respondent’s main occupation

4.17 Mean ranks for factor 2 according to respondent’s main occupation

4.18 Mann-Whitney U test for factor 3 according to category of smallholder

4.19 Mann-Whitney U test for factor 3 according to respondent’s main occupation

4.20 Kruskal-Wallis test for factor 1 according to farm location

4.21 Multiple comparison among farm locations for factor 1

4.22 Mean ranks for factor 1 between Sabah and Johor

4.23 Mean ranks for factor 1 between Johor and Pahang

4.24 Kruskal-Wallis test for factor 1 according to respondent’s age categories

4.25 Kruskal-Wallis test for factor 1 according to smallholders’ experience in oil palm cultivation

4.26 Kruskal-Wallis test for factor 2 according to farm location

4.27 Multiple comparison among farm locations for factor 2

4.28 Mean ranks for factor 2 between Sabah and Johor

4.29 Mean ranks for factor 2 between Johor and Pahang
4.30 Kruskal-Wallis test for factor 2 according to respondent’s age
categories

4.31 Multiple comparison among respondent’s age category for factor 1

4.32 Ranks for factor 2 between age category 20-40 years and 61-80
years

4.33 Kruskal-Wallis test for factor 2 according to smallholders’
experience in oil palm cultivation

4.34 Multiple comparison among respondent’s age category for factor 1

4.35 Mean ranks for factor 2 between experience of 1-15 years and 16-
30 years

4.36 Mean ranks for factor 2 between experience of 1-15 years and 31-
45 years in oil palm cultivation

4.37 Mean ranks for factor 2 between experience of 16-30 years and 31-
45 years in oil palm cultivation

4.38 Kruskal-Wallis test for factor 3 according to farm location

4.39 Multiple comparison among farm locations for factor 3

4.40 Mean ranks for factor 3 between Johor and Pahang

4.41 Mean ranks for factor 3 between Sabah and Johor

4.42 Kruskal-Wallis test for factor 3 according to respondent’s age
categories

4.43 Kruskal-Wallis test for factor 3 according to smallholders’
experience in oil palm cultivation

4.44 Multiple comparison among respondent’s age category for factor 1

4.45 Mean ranks for factor 2 between experience of 31-45 years and 46-
60 years in oil palm cultivation
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Distribution of respondents by category of smallholder</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of respondents by age category</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of respondents by main occupation</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of respondents by experience in oil palm cultivation</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Scree plot of factors associated with smallholders’ awareness towards Ganoderma disease</td>
<td>42</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Summation</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>Equal to</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>Summation</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>σ²</td>
<td>Variance</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Eigenvalue</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>√</td>
<td>Square root</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Cronbach’s alpha coefficient</td>
<td></td>
</tr>
<tr>
<td><</td>
<td>Smaller than</td>
<td></td>
</tr>
<tr>
<td>≤</td>
<td>Smaller than or equal to</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Number of component</td>
<td></td>
</tr>
<tr>
<td>x̄</td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Pearson coefficient</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Number of variable</td>
<td></td>
</tr>
<tr>
<td>x²</td>
<td>Chi square distribution</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T-ratio</td>
<td></td>
</tr>
<tr>
<td>H₀</td>
<td>Null hypothesis</td>
<td></td>
</tr>
<tr>
<td>H₁</td>
<td>Alternative hypothesis</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BSR</td>
<td>Basal stem rot</td>
</tr>
<tr>
<td>CPO</td>
<td>Crude palm oil</td>
</tr>
<tr>
<td>FELCRA</td>
<td>Federal Land Consolidation and Rehabilitation Authority</td>
</tr>
<tr>
<td>FELDA</td>
<td>Federal Land Development Authority</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh Fruit Bunches</td>
</tr>
<tr>
<td>GSM</td>
<td>Ganoderma Selective Medium</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
<tr>
<td>LPP</td>
<td>Farmers’ Organization Authority</td>
</tr>
<tr>
<td>MATRADE</td>
<td>Malaysia External Trade Development Corporation</td>
</tr>
<tr>
<td>MPOA</td>
<td>Malaysian Palm Oil Association</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>MPOC</td>
<td>Malaysian Palm Oil Council</td>
</tr>
<tr>
<td>MPOPC</td>
<td>Malaysian Palm Oil Promotional Council</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean squares for errors</td>
</tr>
<tr>
<td>MSR</td>
<td>Mean square for treatments</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental organization</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>RISDA</td>
<td>Rubber Industry Smallholders’ Development Authority</td>
</tr>
<tr>
<td>RSPO</td>
<td>Roundtable on Sustainable Palm Oil</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>SSE</td>
<td>Error sum of squares</td>
</tr>
<tr>
<td>SSR</td>
<td>Treatment sum of squares</td>
</tr>
<tr>
<td>SST</td>
<td>Total sum of squares</td>
</tr>
<tr>
<td>TUNAS</td>
<td>Pegawai Tunjuk Ajar dan Nasihat Sawit</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction
Palm oil is a major commodity used in approximately 30% of foods and cosmetics. Increasingly, palm oil is used as a biofuel and contributes considerably to the economies of many nations particularly Malaysia and Indonesia (Paterson et al., 2009). Oil palm is a “golden crop of Malaysia” since it generates profitable revenues to the nation through the export of palm oil, palm kernel oil, palm kernel cake, oleochemicals, biodiesel, finished products and other palm oil products all over the world (Yusof, 2007). Oil palm (Elaeis guineensis Jacq.) originated from West Africa. Initially, oil palm grows in the wild and later was developed into an agricultural crop. Oil palm commercial planting started at Tennamaram Estate in Selangor and increased rapidly in early 1960’s under government’s agricultural diversification program which was introduced by the government to reduce the country’s dependency on tin and rubber (Malaysian Palm Oil Council, 2013). Oil palm planted area in Malaysia has been expanding over years from 2.69 million hectares in 1995 to 5.23 million hectares in 2013. There is an increase of 94.4% of planted area of oil palm in 18 years. Oil palm has an economic life of about 25 to 30 years. Total revenue from the export of palm oil products in the year 2013 is RM 61,363.35 million (Malaysian Palm Oil Council, 2013).

One major problem in oil palm industry is Ganoderma basal stem rot (BSR) disease, caused by the basidiomycete, white rot, fungal pathogen Ganoderma boninense (Cooper et al., 2011). Ganoderma basal stem rot causes decay of the lower stem and root system leading to severe symptoms such as flattening of the crown and unopened spear leaves (Cooper et al., 2011). Young palms, once infected usually die within 6 to 24 months after the first appearance of symptoms, whereas mature palms survive for 2 to 3 years or more. Ganoderma is called the silent killer of oil palm because the disease symptoms only appear during the late stage of infection. The term “white rot” derives from the fungus degrading specifically the lignin component of wood while
leaving white cellulose exposed (Paterson, 2007). *Ganoderma* infects damaged trees through the airborne spores that enter the readily available wounds of the oil palm which might be caused by shedding of branches or other physical damages. Then, fungus degrades the lignin part of the plant leaving white cellulose exposed (Paterson, 2007).

Ganoderma basal stem rot shortens the productive life of oil palm and cause serious economic loses to the palm oil industry. *Ganoderma* may bring serious impact to the economy over years if no actions are taken to combat the disease. The infected oil palms are unproductive during the affected years. Assuming that oil palm estate do not apply treatment and the disease infection follows the same growth pattern, it was estimated that the total area affected by basal stem rot in the year 2020 would be around 44 3430 hectares which accounts about 65.6 million of palm trees (Roslan & Idris, 2012).

1.2 Oil Palm Industry and Oil Palm Smallholders

Malaysia is the second largest producer of palm oil in the world, after being overtaken by Indonesia in 2006. Since 1985, palm oil has become the second most consumed oil in the world, after soya bean oil. Malaysia’s share of global production decreased from 51% in 1999 to 38% in 2011 (Malaysian Palm Oil Council, 2013). Export of palm oil makes 4.9% (RM 8.95 billion) of the total export of Malaysia in the year 2015 (Malaysia External Trade Development Corporation, 2015). Malaysia plays an important role in fulfilling global need for oil and fat continual. Oil palm plantations in Malaysia are mostly based on estate management system and smallholder scheme. Malaysian oil palm industry provides income to about one million people and employment to more than half a million people. Malaysian palm oil Association (MPOA), Malaysian Palm Oil Board (MPOB), Malaysian Palm Oil Council (MPOC) and the Malaysian Palm Oil Promotional council (MPOPC) is the principal industry organisation in Malaysia.

Smallholders play an important role in the global palm oil supply chain. Smallholders are farmers growing oil palm, or sometimes along with subsistence production of other crops. Smallholders are classified into two categories, independent smallholders and organized smallholders. Independent smallholders are growers who cultivate oil palm without direct assistance from government, organization or any private company. This group of smallholders sell their crops to local mills or traders.
Replanting of oil palm are done in small scale due to lack in financial resources. Technical advice is given to independent smallholders. MPOB’s guidance and counselling officers (TUNAS) assists independent smallholders to participate in cooperatives to improve cooperation and collaboration with nearby producers.

Organized smallholders are growers who cultivate oil palm with support of technical assistance, agriculture input or financing from either government or any other private organization. Organized smallholders are taken care by big organisations which carry out resettlement and rehabilitation schemes in Malaysia such as Federal Land Development Authority (FELDA) and Federal Land Consolidation and Rehabilitation Authority (FELCRA). Their products will be sold to dedicated mills with mutual agreement. All agricultural inputs are provided by the organization and replanting of oil palm is done in big scale. Smallholders face many issues and challenges in replanting and marketing. Land suitability, agriculture input, high development cost of replanting, capability, technical knowledge and living subsistence are the issues faced by smallholders in replanting. Some major issues faced by smallholders in marketing their products are exploitation and manipulation of price, grading and transportation problems.

1.3 Economic Impact of *Ganoderma* Disease

Malaysian oil palm industry is economically important to generate revenue for the nation. Sabah remains as the largest oil palm planted state in Malaysia accounting 28% of the total planted area in the country (Malaysian Palm Oil Board, 2013). Production of crude palm oil (CPO) increased from 94,000 tonnes in 1960 to 19.22 million tonnes in 2013 (Malaysian Palm Oil Board, 2013), or almost 204 folds within 50 years. The total export of oil palm products consisting of palm oil, palm kernel oil, palm kernel cake, oleochemicals, biodiesel and finished products increased by 4.5% from 24.59 million tonnes in 2012 to 25.70 million tonnes in 2013 (Malaysian Palm Oil Board, 2013). Exports of palm oil increased by 3.3% to 18.15 million tonnes in 2013 (Malaysian Palm Oil Board, 2013). Overall, the total revenue from the Malaysian oil palm industry in 2013 is RM 61,363.35 million. Revenue from oil palm cultivation contributes to the better quality of life of the Malaysian citizens. The growth of Malaysian oil palm industry has helped to reduce poverty among landless farmers in Malaysia, through their participation in FELDA schemes. Overall development of oil
palm is excellent due to assets in climate, soil, plant materials and skilled labour and management.

Oil palm has an economic life span of 25 to 30 years. However Ganoderma basal stem rot can kill more than 80 % of stands by the time they are half-way through economic life (Chong, 2010). This disease causes economic loss among oil palm smallholders in various regions around the world. The average incidence of Ganoderma basal stem rot in Malaysia was 3.71 % with an affected area of 59 148 hectares. As one of the largest producers and exporters of palm oil, Malaysia gives a great importance to continued availability and sustainability of the oil palm industry. Actions have to be taken to minimize loss in revenue. Decrease in the number of palms will affect the reduction in fresh fruit bunches (FFB) and causes lower crude palm oil (CPO) production and losses in export income (Roslan & Idris, 2012). In order to prevent long-term losses, various treatment and prevention techniques should be taken by the smallholders.

1.4 Scope of study
The target group in this study is the oil palm smallholders in Sabah and Peninsular Malaysia. A total of 500 smallholders in Sabah and 120 smallholders in Peninsular Malaysia will take part in this study. Cross sectional survey using questionnaire is used to collect data from the smallholders. Data is collected by face to face interview by using structured questionnaire. In the questionnaire, information such as smallholders’ background, farm background, smallholders’ knowledge on Ganoderma disease, attitude of smallholders towards Ganoderma disease, practices in managing Ganoderma disease, issues and problems in managing Ganoderma disease managing will be collected to be analysed. The data obtained from the questionnaire will be used to study the socioeconomic determinants of oil palm smallholders’ awareness towards Ganoderma disease.

1.5 Justification of Study
The purpose of this research is to identify the factors associated with smallholders’ awareness towards Ganoderma disease. The research findings will be useful as a reference to any association related to oil palm or smallholders for further actions to instil awareness towards Ganoderma disease among smallholders. This research
measure association between socioeconomic determinants with the oil palm smallholders’ awareness towards *Ganoderma* disease. Thus the relationship between socioeconomic characteristics and smallholders’ awareness toward *Ganoderma* disease can be seen clearly.

1.6 Objectives

The objective of this study are:

i) to identify the factors associated with smallholders’ awareness towards *Ganoderma* disease; and

ii) measure association between socioeconomic determinants with the oil palm smallholders’ awareness towards *Ganoderma* disease.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Elaeisguineensis and Elaeisoleifera are two major species of oil palm. Elaeisguineensis originated from West Africa and Elaeisoleifera originated from South America (Corley & Tinker, 2003). Elaeisguineensisis are commercially cultivated due to its higher yield. Oil palm is grown in a big scale when introduced as plantation crops into Sumatra and Peninsular Malaysia in the early 20th century. The commercial planting started to develop productively in Malaysia after independence in 1957. Oil palm industry is a very important and profitable industry in Malaysia. James Pletcher (1991) concluded that Malaysian mediation into the production and trade of palm oil increased steadily after 1960. Government’s scope of its regulation and presence in the palm oil industry increased where the prices of palm oil and palm oil products were never officially controlled. He also concluded that the form of mediation which the Malaysian government employed and the achievement of the industry gave a boost to new domestic economic and political forces which helped build policies in the palm oil industry.

Smallholders face many challenges in handling numerous pest and disease problems in the cultivation of oil palm. Two major problem faced by smallholders are fungal pathogen Ganoderma boninense and the rhinoceros beetle, Oryctes rhinoceros. In this study, we will focus on Ganoderma basal stem rot. Ganoderma boninense is a soil-borne fungus that causes basal stem rot. High occurrence of basal stem rot results in economic downfall and extreme loss to the smallholders due to zero harvest from dead palms and decreased number and weight of fruit bunches in infected but living palms. Early detection of Ganoderma infection is important in order to prevent and control the disease from worsening. Thus, smallholders have to take efforts to prevent and control the disease to minimize their loss, increase productivity and promote healthy oil palms.
REFERENCES

Chong, K. P. 2010. The role of Phenolics in the interaction between oil palm and Ganoderma boninense the casual agent of basal stem rot. Nottingham, UK: University of Nottingham, PhD thesis.

The Star. 2014. RSPO smallholders support fund applications total RM3.36mil. *The Star*, 10 February: 14

