COMPARISON OF THE GROWTH OF BROILER CHICKEN FED ON FERMENTED AND DRY CORN GRAIN MEAL

BESSY LUHONG LAING

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF AGRICULTURE SCIENCE WITH HONOURS

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

LIVESTOCK PRODUCTION PROGRAMME
FACULTY OF SUSTAINABLE AGRICULTURE
UNIVERSITI MALAYSIA SABAH
2016
Universiti Malaysia Sabah

Borang Pengesahan Tesis

Judul: Comparison of the growth of broiler chicken fed on fermented and dry corn grain meal

Ijazah: Ijazah Sarjana Muda Sains Pertanian Dengan Kepuasan
(Pengeluaran Ternakan)

Saya: Bessy Luhong Laing Sesi Pengajian: 2012 - 2016
(Huruf Besar)

Mengaku membenarkan tesis * (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)

 SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 NURULAIN BINTI ISMAIL
 Librarian
 Universiti Malaysia Sabah

 (Tandatangan Pustakawan)

Alamat Tetap:
LOT 2716, PHASE 4, JALAN DELIMA 48, 91100 MIRI, SARAWAK

(Tandatangan Penulis)

Tarikh: 11 Januari 2016

Catatan:
* Potong yang tidak berkenaan.
* Jika tesis ini SULIT dan TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan surat menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana Secara Penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that this dissertation is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that no part of this dissertation has been previously or concurrently submitted for a degree at this or any other university.

BESSY LUHONG LAING
BR12110012
11 JANUARI 2016
1. Associate Prof. Suparjo bin Mokhtar
SUPERVISOR
ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my supervisor Associate Prof. Suparjo Noordin bin Mokhtar for giving me strength and continuous support for my final year project (FYP) study and research and not to forget for his patience, motivation, enthusiasm, and valuable knowledge shared. His guidance had made this research to be successful. My sincere thanks also to all the lecturers, field laboratory staff and laboratory staff that had offering me help in doing this research. Also, not to forget to my friends that always shared valuable knowledge with me and lend me a hand throughout this project. Last but not least, I would like to thanks my parents Laing Lian and Lucy Bungan Jau for the support and continuous motivation.
Fermented corn grain is one of the new invention technologies in animal feed especially in Europe. It is known to be a good source of energy and can produce beneficial bacteria in colon that can help in nutrient absorption. An experiment was conducted to evaluate the effect of fermented corn grain on the growth of broiler chicks. Three experimental treatments were used in the study. Treatment 1 was a fermented corn grain mix with soy bean meal (SBM). Treatment 2 was a dry corn grain mix with SBM. Treatment 3 was a commercial grower feed which act as a control treatment in this experiment. Total 45 broiler chickens were randomly assigned to the three experimental treatments in a randomized complete block design (RCBD). Each treatment group was replicated three times with 5 birds per replicate. Results showed that feed intake, weight gain, average daily gain and feed conversion ratio (FCR) were significantly higher ($P<0.05$) in birds fed fermented corn grain than dry corn. The results also indicated that the treatments had no significant ($P>0.05$) effect on the carcass characteristics of the birds. The results of this experiment showed that feeding fermented corn grain gives a positive outcome on the growth of broiler chickens.
Penapaian kernel jagung merupakan salah satu ciptaan teknologi terkini dalam pengeluaran ternakan. Ianya dikenali dengan sumber tenaga yang baik dan dapat menghasilkan bakteria yang baik di dalam usus untuk menyerap nutrisi. Satu kajian telah dijalankan untuk mengenalpasti kesan tapai kernel jagung ke atas pertumbuhan ayam pedaging. Tiga rawatan berbeza telah digunakan dalam kajian ini. Rawatan 1 adalah kernel jagung yang telah ditapai selama 21 hari di campur dengan dedak kacang soya. Manakala rawatan 2 adalah jagung kering juga dicampur dengan dedak kacang soya. Rawatan 3 pula adalah makanan ayam komersial sebagai rawatan kawalan. Sebanyak 45 ekor ayam pedaging ditempatkan secara rawak ke atas ketiga-tiga rawatan tersebut dalam reka bentuk eksperimen RCBD. Setiap kumpulan rawatan diulang sebanyak tiga kali dengan 5 ayam dalam satu ulangan. Keputusan menunjukkan bahawa pengambilan makanan, berat badan, purata berat harian dan nisbah penukaran makanan mempunyai perbezaan yang tinggi (P<0.05) terhadap ayam yang di beri tapai kernel jagung berbanding jagung kering. Keputusan eksperimen juga menunjukkan tiada perbezaan yang ketara (P>0.05) terhadap berat karkas ayam. Eksperimen ini menunjukkan bahawa terdapat kesan positif terhadap pertumbuhan ayam pedaging yang diberi makan tapai kernel jagung.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS, UNITS AND ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FORMULAE</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of study
1.2 Problem statement
1.3 Significance of study
1.4 Objectives
1.5 Hypotheses

CHAPTER 2 LITERATURE REVIEW

2.1 Background of corn
2.2 Corn nutritional facts
2.3 Broiler chickens
2.4 Fermentation process
2.5 Fermented feed technology
2.6 Influence of fermentation length and conditions
2.7 Purpose and benefits fermentation
2.8 Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry
2.9 Effects of fermented feed on poultry performance
2.10 Fermented liquid feed reduces susceptibility of broilers for *Salmonella enteritidis*
2.11 Influence of fermented and acidified feeds on the gastrointestinal tract

CHAPTER 3 METHODOLOGY

3.1 Experimental site

3.2 Experimental duration

3.3 Materials

3.3.1 Corn grain
3.3.2 Commercial feed (starter and grower)
3.3.3 Experimental feeds
3.3.4 Vitamin and minerals
3.3.5 Broiler chickens

3.4 Methods

3.4.1 Decobbing of the corn
3.4.2 Fermentation of the corn grain
3.4.3 Grinding of the fermented corn grain
3.4.4 Test the pH value of the fermented corn grain
3.4.5 Feed formulation
3.4.6 Preparation of vitamins and minerals
3.4.7 Feeding of the chickens

3.5 Data analysis

3.5.1 Body weight of broiler chickens
3.5.2 Carcass weight of broiler chickens
3.5.3 Feed intake of broiler chickens
3.5.4 Average daily gain of broiler chickens
3.5.5 Feed conversion ratio (FCR) of broiler chickens

3.7 Experimental layout
3.8 Experimental design and analysis

CHAPTER 4 RESULT

4.1 Body weight of broiler chickens
4.2 Carcass weight of broiler chickens
4.3 Feed intake of broiler chickens
4.4 Average daily gain of broiler chickens
4.5 Feed conversion ratio (FCR) of broiler chickens
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nutritional value of corn</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Feeding requirements for broilers</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>The process of corn silage fermentation</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Dry matter basis and water content of feed composition</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Amount of feed to be fed to broiler chicken (as it is basis) calculated using the Pearson square method</td>
<td>19</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental site located at FPL chicken house</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>The steps on the preparation of fermented corn kernel</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental layout of birds</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Weekly weight gain of broiler chickens of different treatments</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>The carcass weight of broiler chickens of different treatment</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>The feed intake of broiler chickens of different treatment</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>The average daily gain of broiler chickens of different treatment</td>
<td>27</td>
</tr>
<tr>
<td>4.5</td>
<td>The feed conversion ratio (FCR) of broiler chickens of different treatments</td>
<td>28</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
<td></td>
</tr>
<tr>
<td>Cm</td>
<td>Centimeter</td>
<td></td>
</tr>
<tr>
<td>DCG</td>
<td>Dry Corn Grain</td>
<td></td>
</tr>
<tr>
<td>FCG</td>
<td>Fermented Corn Grain</td>
<td></td>
</tr>
<tr>
<td>FSA</td>
<td>Faculty of Sustainable Agriculture</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
<td></td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
<td></td>
</tr>
<tr>
<td>SBM</td>
<td>Soybean Meal</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Treatment 1</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Treatment 2</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>Treatment 3</td>
<td></td>
</tr>
<tr>
<td>UMS</td>
<td>Universiti Malaysia Sabah</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FORMULAE

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Feed Intake = Weight of feed offered - Weight of feed refused'</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Finish weight - start weight</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>ADG = [\frac{\text{Finish weight - start weight}}{\text{Age (days)}}]</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>FCR = [\frac{\text{Total feed intake}}{\text{Total weight gain}}]</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.0 Background of study

In Malaysia, poultry business is one of the most important economic industries and also is widely known in the national and international market. Malaysia is largely self-sufficient in poultry meat production. Poultry is also the primary protein source for most of the world populations including Malaysia. Consumption is assumed to grow 1.4 million tons in the year of 2014 (USDA foreign agricultural service, 2014).

Poultry feed industry is related to primary agricultural production and forms an important component in the food chain. Poultry feeds are prepared in such a way that all vitamins, energy, minerals, protein, and other nutrients are present in the feed for proper health of the birds, egg production and growth. It is actually known as a complete feeds. Feed costs represent approximately 70% of total production costs (Kleyn, 1992). The inclusion of alternative ingredients in label chicken feeds aims at reducing feed costs, thereby making this kind of business more attractive to small farmers.

In poultry production, particularly in broiler production the main ingredient used in feeds as energy source is corn (Zea mays) which may accounts for 60% of the total feed amount and approximately 40% of feed cost (Zanotto et al., 1996). Grain corn silage was first used in nearly every production of pigs in the area of Brazil and can reduce up to 20% reduction in the cost of feeds (Majowski, 2002). According to Costa et al. (1999) and Jobim et al. (2001), United States has conducted several studies that show the performance and economic benefits and advantages of using grain corn silage in the diet of ruminants.
The productivity of farm animals is greatly influenced by the nutrition. This is due to the fact that feeding cost is very high which accounts for more than 70% of the total cost production (Esonu, 2001). However, farmers tend to feed their farm animals with poor quality feeds to reduce the feeding cost. This caused the economic to be deficit in terms of poultry production in most developing countries (Aletor, 1986). Hence the strategies for regulating the feed quality with low price are crucial to ensure improved utilization and performance of poultry.

Fermentation is a specialized biotechnological process with the potential to recycle some industrial feed or agro-industrial by-products into feed valuable for animals especially in developing countries. This process does not involve the use of chemicals and is easy to handle on farm or industrial scale. The benefit of this process is that it can decrease the anti-nutritional factors (Zhang et al., 2006), improve the protein quality (Oduguwa et al., 2007) and enhance nutrient digestibility (Kim et al., 2007). Ahmed et al., 2014 reported that broiler chickens fed with fermented feed by-products shows an improved growth performance and immunity. Furthermore, fermented feed nutrients can prevent fecal ammonia concentration (Awati et al., 2005).

1.1 Problem statement

The production cost for feeding broiler is expensive, especially commercial feed and dry corn. The U.S. also exports about 60,000 tons of corn gluten feed and 50,000 tons of corn distiller by-products to Malaysia annually (Abdul Wahab, 2014). This in turn increased the poultry price due to the increase in the price of chicken feed. The main problem facing Malaysia livestock and poultry industry is lack of feed. Malaysia is still importing raw materials for animal feed such as corn and soybeans. Feeding of broiler in Malaysia depends on the importation of dry corn from other country such as Australia (Fatanah, 2012).

Feed cost have been identified as the largest single of cost in livestock production making up to 50% to 70% of total cost of production (Hoorman, 2012). About 1.2 billion ringgit a year of livestock feed and corn is imported (World Report, 2011). Malaysia imported 3.4 million tons of corn, 1.34 tons of soybean meal, and 572,000 tons of soybeans in 2013 (Abdul Wahab, 2014). In the line of the above,
fermentation of kernel corn as silage may be feasible and economical in warm and moist climates (Weinberg et al., 2007) such as Malaysia to replace current feed which is dry corn. Therefore, it is important to study the effect of fermented corn kernel silage on the growth of broiler bird.

1.2 Significance of the study

The success of this proposed research will reduce the variable cost of feed for poultry and achieved maximum profits possible from poultry production. The positive result from this research can replace the dry corn with fermented corn grain as feed for broiler chickens since the cost of dry corn is high. This will also greatly help the farmers in Malaysia.

1.3 Objective

The objective of this study is to investigate the effect of feeding fermented corn grain on the growth performance of broiler chickens.

1.4 Hypotheses

Ho: There is no significant effect on the growth and performance of broiler chickens fed with fermented corn grain compared with dry corn grain.

H1: There is significant effect on the growth and performance of broiler chickens fed with fermented corn grain compared with dry corn grain.
CHAPTER 2
LITERATURE REVIEW

2.1 Background of corn

Corn, scientific name *Zea mays*, also known as maize or mielie/mealie, is one of the most successful cereal grasses of all time. Corn is primarily a source of animal feed, as well as food and seed and industrial including ethanol for fuel (EFF) (Sun, 2007). Corn is the principle energy source in poultry diets in most of the countries (Reddy et al., 2001). It contains the highest amount of energy (ME 3350 kcal/kg) among cereal grains and is highly palatable (Reddy et al., 2001). Natives to the Americas, it is believed that the native Americans developed this plant from a wild grass called teosinte, which had small kernels and were not closely packed as the present day corn. So, corn is considered to be an invention by humans, as this plant does not exist naturally in the wild.

Unlike white maize, yellow maize provides carotene and xanthophyll pigments for colouration of egg yolk, poultry fat and skin (Reddy, 2001). Corn grows in warm weather and usually matures in late summer. The stalks can grow between three feet (one meter) and 20 feet (six meters) tall, depending upon the cultivar. At one point, there were thousands of varieties of corn in production, but these numbers have since dwindled to less than one hundred hardy, predictable varieties with large fleshy kernels. Maize is also more susceptible for infestation with mycotoxin-production fungi than grains such as wheat, sorghum and millets (Reddy et al., 2001).

2.2 Corn Nutritional Facts

Generally, a significant increase in the soluble fraction of a food is observed during fermentation. The quantity as well as quality of the food proteins as expressed by biological value, and often the content of water-soluble vitamins is generally increased, while the anti-nutritional factors show a decline during fermentation (Paredes-López &
Harry, 1988). Fermentation results in a lower proportion of dry matter in the food and the concentrations of vitamins, minerals and protein appear to increase when measured on a dry weight basis (Adams, 1990). The following table shows the chemical composition and nutritional value of corn grain:

Table 2.1: Chemical composition and nutritional value of corn grain

<table>
<thead>
<tr>
<th>Proximate Analysis</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>87.2 % as fed</td>
</tr>
<tr>
<td>Crude protein</td>
<td>9.7 % DM</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>2.6 % DM</td>
</tr>
<tr>
<td>NDF</td>
<td>13.2 % DM</td>
</tr>
<tr>
<td>ADF</td>
<td>4.4 % DM</td>
</tr>
<tr>
<td>Lignin</td>
<td>1.4 % DM</td>
</tr>
<tr>
<td>Ether extract</td>
<td>4.2 % DM</td>
</tr>
<tr>
<td>Ash</td>
<td>1.5 % DM</td>
</tr>
<tr>
<td>Starch</td>
<td>71.0 % DM</td>
</tr>
<tr>
<td>Total sugars</td>
<td>3.7 % DM</td>
</tr>
<tr>
<td>Gross energy</td>
<td>18.7 MJ/kg DM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Average value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>0.7 g/kg DM</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>3.4 g/kg DM</td>
</tr>
<tr>
<td>Potassium</td>
<td>4.3 g/kg DM</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.1 g/kg DM</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.4 g/kg DM</td>
</tr>
<tr>
<td>Zinc</td>
<td>34 mg/kg DM</td>
</tr>
<tr>
<td>Copper</td>
<td>5 mg/kg DM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Average value (% protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>7.7</td>
</tr>
<tr>
<td>Arginine</td>
<td>5.1</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>7.1</td>
</tr>
<tr>
<td>Cystine</td>
<td>2.1</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>17.7</td>
</tr>
<tr>
<td>Glycine</td>
<td>4.3</td>
</tr>
<tr>
<td>Amino Acid</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Histidine</td>
<td>2.8</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>3.6</td>
</tr>
<tr>
<td>Leucine</td>
<td>10.6</td>
</tr>
<tr>
<td>Lysine</td>
<td>3.0</td>
</tr>
<tr>
<td>Methionine</td>
<td>2.1</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>5.4</td>
</tr>
<tr>
<td>Proline</td>
<td>6.9</td>
</tr>
<tr>
<td>Serine</td>
<td>4.8</td>
</tr>
<tr>
<td>Threonine</td>
<td>3.6</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0.9</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>2.3</td>
</tr>
<tr>
<td>Valine</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Source: Animal feed resources information system, 2012

2.3 Broiler Chickens

Most of the chicken eaten today comes from broiler chickens – birds bred solely for meat. Poultry meat production, consisting of broiler meat, is expected to grow at a moderate of 2% in 2014, with production forecast at 1.44 million tons (World Poultry, 2014). Broilers grow very rapidly and have been selected for traits that are desirable for meat production. In terms of bird numbers, commercially bred broilers comprise 67%, while layers make up around 25% and breeders make up 8% of the total (World Poultry, 2014).

Peninsular Malaysia has about 3200 broiler farms, which includes, contract and independent farmers, as well as large vertically integrated farms (World Poultry, 2014). The type of birds and the housing methods are totally different from those of hens kept for egg production. In their natural environment, hens spend much of their time foraging for food. This means that they are highly motivated to perform species specific behaviours that are typical for chickens (natural behaviours), such as foraging, pecking, scratching and feather maintenance behaviours like preening and dust-bathing.
Table 2.2: Feeding requirements for broilers/roasters

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Feeds (kg/bird)</th>
<th>Ration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>1.0</td>
<td>21% Barnyard Starter or Medicated</td>
</tr>
<tr>
<td>4-5</td>
<td>1.5</td>
<td>19% Barnyard Starter or Medicated</td>
</tr>
<tr>
<td>6-market</td>
<td>1.3 kg per week</td>
<td>17% Barnyard Grower</td>
</tr>
</tbody>
</table>

Source: Champion Feed Services Ltd. (2010)

2.4 Fermentation Process

Campbell-Platt (1987) has defined fermented foods as those foods which have been subjected to the action of micro-organisms or enzymes so that desirable biochemical changes cause significant modification to the food. French chemist and microbiologist Louis Pasteur in the 19th century used the term fermentation in a narrow sense to describe the changes brought about by yeasts and other microorganisms growing in the absence of air (anaerobically); he also recognized that ethyl alcohol and carbon dioxide are not the only products of fermentation. The product can either be the cell itself which referred to as biomass production, a microorganisms own metabolite and a microorganisms foreign product (Brian Pumphrey & Christian Julien, 1996). However, to the microbiologist, the term “fermentation” describes a form of energy-yielding microbial metabolism in which an organic substrate, usually a carbohydrate, is incompletely oxidised, and an organic carbohydrate acts as the electron acceptor (Adams, 1990). Whichever definition used, foods submitted to the influence of lactic acid producing microorganisms is considered a fermented food.

Fermented foods can be classified in many different ways. Dirar (1993) says that in Southeast Asia the classification often is according to the kind of microorganism involved (Yokotsuka, 1982). Other classifications are based on commodity (Campbell-Platt, 1987) (Odunfa, 1988).
Table 2.3: The Process of Corn Silage Fermentation.

<table>
<thead>
<tr>
<th>Day/stage</th>
<th>Process</th>
</tr>
</thead>
</table>
| 1 (anaerobic) | • Cell respiration produces carbon dioxide (CO2), heat and water
• Temperature: 21°C
• pH: 6.0 |
| 2 (anaerobic) | • Fermentation begins, producing acetic acid
• Heating process begins to slow down
• Temperature: 35°C
• pH: 5.0 |
| 3 (anaerobic) | • Lactic acid production begins, acetic acid production continues
• Temperature: 35°C
• pH: 4.0 |
| 4-7 (anaerobic) | • Lactic acid produced, temperature drops
• Temperature: 27-29°C
• pH: 4.0 |
| 8-21 (anaerobic) | • Lactic acid produced, silage PH drops and stable
• Temperature: 27-29°C
• pH: 4.0 |
| 21 (stable) | • Bacterial fermentation stops, silage preserved until re-exposed to oxygen
• Silage cools to ambient temperature
• pH: 4.0 |

Source: FAO Electronic Conference on Tropical Silage

2.5 Fermented Feed Technology

Food fermentation is one of the methods of food processing and preservation that had been invented since many years ago. Man had been using microbes for food preparation for thousands of years and since then a lot of fermented foods has been produced (Achi, 2005).
In pig nutrition, liquid feed had been used by recycling of liquid products from the human food industry (Scholten et al., 1999; Brooks et al., 2003). This will greatly help the environment by reducing the need for disposal such as drying, disposal on land fill or burning (Scholten et al., 1999).

However, liquid feed can be the medium for the introduction of pathogens unless careful steps are taken during storage and feeding to prevent their proliferation (Seal et al., 2002). Contamination of liquid feed also can easily occur (Brooks et al., 2001). But the liquid-feeding system is beneficial for weaner pigs for its capability of feeding ad libitum which has become the main interest. Therefore, the development in the use of lactic acid bacteria has been used to accelerate fermentation process as well as reducing contamination by pathogens (Beal et al., 2002). It is also promising in other farm animals especially poultry (Heres et al., 2003; Skrede et al., 2003) and aquaculture (Refstie et al., 2005).

Beal et al., (2002) stated that a feed of pH of 3.8 to 4.0 can be achieved in lactic acid bacterial fermentation. The high lactic acid concentration and low pH value act to provide fermented feeds their antimicrobial activity. This allows them to fight against pathogens such as Salmonell spp (Geary et al., 1996; van Winsic et al., 2001; Beal et al., 2002) and Campylobacter spp (Heres et al., 2004).

2.6 Influence of fermentation length and conditions

The quality of fermented product is affected by the length of steeping feed ingredients, the fermentation conditions and also the type of feed substrates. Steeping time affects the activity of endogenous enzymes and the elimination of anti-nutrients within the grain. For example in weaner pigs, steeping of feed for 15 hours affects the growth and feed intake by the release and activation of endogenous enzymes in the grain (Choct et al., 2004). The activation of the enzyme can occur on cell wall structures in the same way to exogenous feed enzymes (Choct et al., 2004). The effect of steeping in liquid feeding can be observed when phytases in the pericarp of some grains could be activated by soaking (Brooks et al., 2004). The availability of phosphorus, magnesium and calcium can be increased by soaking feed for 8 to 16 hours.
Fermentation of the protein rich substance has been observed to produce undesirable end-product that could affect the palatability of the feed such as biogenic amines (Canibe et al., 2007). Some studies had shown that the free amino acids added to diets had been degraded during fermentation (Brooks et al., 2003; Canibe et al., 2007). However, the loss of lysine from fermented liquid feed was due to metabolism of lysine by E.coli (Niven et al., 2006).

The main purpose of fermentation is to increase lactic acid concentration and to lower the pH. Temperature plays an important role in fermentation and low temperatures might produce insufficient fermentation end-products. Low temperature also encouraged the growth of yeast and produces ethanol (Brooks, 2008). Furthermore, cereal grain mix needs 7 days to reduce the pH to 4.0 at 10°C compared with only 5 days for 15 and 20°C. The most ideal temperature for fermentation is at 30°C compared with 35 and 40°C where there is no effect on lactic acid concentration but increased in the concentrations of acetic, butyric and ethanol (Beal et al., 2005).

2.7 Purpose and benefits of food fermentation

The main benefit of fermentation process is the conversion of sugar and carbohydrates into beneficial end product. Steinkraus (1995) claims that the traditional fermentation of foods have several benefits which includes improvement of diet through enhancement of flavour, texture and aroma in food, extend shelf-life of food, increase food quality, improving digestibility and also nutrient availability, detoxification of anti-nutrient factor (ANF) through fermentation process.

Fermentation can produce essential nutrients or detoxified the anti-nutrients factor. Preservation can be done through fermentation since the process involved used up food energy and make the environment unsuitable for undesired microorganisms. For instance, in pickling, the dominant organism involved in the process produced acid which inhibits the growth of other microorganisms.

Fermentation also enhanced the foods by making it more edible by altering the chemical compounds. For example in poisonous plant like cassava that undergoes fermentation process has been converted into edible stuff. Coffee beans also undergo wet fermenting process rather than dry process (Battcock and Aza-Ali, 1998).
REFERENCES

32

Leeson, S. Summer, J.D. Caston, L. (1992). Response of broilers to feed restriction or diet dilution in the finisher period. \textit{Poultry Science} \textbf{71}:2056-2064

World Poultry. (2014). Malaysian Poultry industry meeting domestic demand

