DEVELOPMENT OF AROMATHERAPY CANDLES USING ESSENTIAL OILS FROM LOCAL PLANTS

MOK CHON YEE

DISSERTATION SUBMITTED AS PARTIAL FUFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

PROGRAM OF INDUSTRIAL CHEMISTRY
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

MAY 2008
PENGESAHAN STATUS TESIS

JUDUL: DEVELOPMENT OF AROMATHERAPY CANDLES USING ESSENTIAL OILS FROM LOCAL PLANTS

IJAZAH: SARJANA MUDA SAHIS DENGAN KEPUJIAN KIMIA INDUSTRI

SAYA MOH CHON YEE SESI PENGAJIAN: 2005/2006
(HURUF BESAR)

mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓)

☐ SULIT
☐ TERHAD
☐ TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

Disahkan Oleh
NURULAIN BINTI ISMAIL
(TANDATANGAN PENULIS)

Alamat Tetap: 216, SHANGRILA PARK, JLN CHONG THIEN VUN, 91000, TAWAU, SABAH

Tarikh: 10.05.08

Nam Penyelia

Nama Penyelia

Tarikh: ___ ___

CATATAN: *Potong yang tidak berkenaan.
**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa /organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau diserta bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
DECLARATION

Hereby, I affirm that this dissertation is of my own effort except for those I had quoted its source of references.

May 2008

[Signature]

MOK CHON YEE
HS 2005-3146
VERIFICATION

Name: Mok Chon Yee

Title: Development of Aromatherapy Candles using Essential Oils from Local Plants

Dr. How Siew Eng

Dr. Sazmal Effendi Bin Arshad

Dr. Md. Lutfor Rahman

Dean,

School of Science and Technology

May, 2008
ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. Foremost, I would like to thank my supervisor, Dr. How Siew Eng, who contributed comments and suggestions for changes and improvement for this dissertation. She always provides specific and professional suggestion patiently and conscientiously to us so that we able to complete our final year project on time.

I also like to express my gratitude to Prof. Dr. Marcus Jopony, whose thoughtful advice often served to give me a sense of direction during my studies. I would like to thank for his willingness in providing invaluable information and guidance in complete my final year project SK 3213 and SK 3233.

My colleagues from the Natural Product Laboratory supported me in my research work. I want to thank them for all their help, support, interest and valuable hints. Especially I am obliged to Heng Pey Fern. Ng Shey Siew, Heng She She, and Catherine Yen. I would also want to thank Mr. Ng Seong Wooi for all his assistance on the running of GC-MS.

I cannot finish without saying how grateful I am with my family have given me a loving environment where to develop. Most importantly, I wish to thank my parents, they have always supported and encouraged me to do my best in all matters of life. Thank!
PENGHASILAN LILIN AROMATERAPI MENGGUNAKAN MINYAK PATI DARIPADA TUMBUHAN TEMPATAN

ABSTRAK

Dalam kajian ini, lilin aromaterapi telah dibuat daripada tumbuhan tempatan: Citrus limon, Citrus sinensis, Cymbopogon citratus, dan Cymbopogon nardus. Minyak pati C. limon, C. sinensis, C. citratus, dan C. nardus telah diekstrak keluar dengan menggunakan kaedah penyulingan hidro, peratusan hasil minyak pati adalah 0.41 % (w/w), 1.20 %, 0.36 % (w/w), 0.48 % (w/w) masing-masing. Minyak pati ini telah dianalisis dengan kromatografi gas dengan spektrometri jisim (GC-MS). Sepuluh sebatian seperti Limonene (48.45 %), β-Pinene (14.25 %), cis-Geraniol (4.43 %), α-Terpineol (2.74 %), 1R-α-Pinene (2.62 %), L-4-Terpineol (1.99 %), Nerylacetate (1.56 %), Geranylacetate (1.19 %), Terpinolen (1.13 %) dan β-Bisabolene (0.92 %) telah dikenal pasti dalam minyak pati C. limon manakala sepuluh sebatian seperti Limonene (91.20 %), β-Myrcene (2.73 %), β-Linalool (1.24 %), 1R-α-Pinene (0.73 %), α-Terpineol (0.36 %), 3-Carene (0.39 %), L-β-Pinene (0.30 %), β-Citrenellol (0.28 %), L-4-Terpineol (0.26 %) dan 1-Decanol (0.22 %) dalam minyak pati C. sinensis juga telah dikenal pasti. Sepuluh sebatian seperti α-Citral (33.29 %), β-Citral (28.70 %), β-Maaliene (7.78 %), tau-Muurolol (3.94 %), β-trans-Ocimene (3.25 %), β-Pinene (2.97 %), cis-Geraniol (2.45 %), cis-Verbenol (2.47 %), Juniper camphor (2.37 %) dan α-Pinene (1.06 %) dalam minyak pati C. citratus telah dikenal pasti. Komponen-komponen utama dalam minyak pati C. nardus adalah cis-Geraniol (18.53 %), β-Citronella (14.23 %), (R)-(+)β-Citronellol (11.98 %), α-Cadinol (8.95 %), τ-Eudesmol (7.68 %), Geranylacetate (4.72 %), Citronellolacetate (3.81 %), Elemol (3.54 %), β-Linalool (3.78 %), dan akhirnya tau-Muurolol (2.94 %). Tige puluh tiga biji lilin aromaterapi dihasilkan dengan menggunakan formulasi 40 g paraffin wax campur dengan 1 mL minyak pati. Lilin aromaterapi dibuat boleh menyala selama enam jam dan membebaskan aroma selepas dua jam. Ia adalah tanpa plumbum dan sootless.
ABSTRACT

In this study, aromatherapy candles were made from aroma medicinal plants namely *Citrus limon*, *Citrus sinensis*, *Cymbopogon citratus*, and *Cymbopogon nardus*. The essential oils of *C. limon*, *C. sinensis*, *C. citratus*, and *C. nardus* were extracted using hydrodistillation method, the yield of essential oil was 0.41 % (w/w), 1.20 %, 0.36 % (w/w), 0.48 % (w/w) respectively. These essential oils were analyzed using GC-MS. Ten components such as Limonene (48.45 %), β-Pinene (14.25 %), cis-Geraniol (4.43 %), α-Terpineol (2.74 %), 1R-α-Pinene (2.62 %), L-4-Terpineol (1.99 %), Nerylacetate (1.56 %), Geranylacetate (1.19 %), Terpinolen (1.13 %) and β-Bisabolene (0.92 %) were identified in essential oil of *C. limon* while ten compounds which were limonene (91.20%), β-Myrcene (2.73%), β-Linalool (1.24%), and 1R-α-Pinene (0.73%), α-Terpineol (0.36 %), 3-Carene (0.39 %), L-β-Pinene (0.30 %), β-Citnellol (0.28 %), L-4-Terpineol (0.26 %) and 1-Decanol (0.22 %) in essential oil of *C. sinensis* were identified. Ten compounds such as α-Citral (33.29 %), β-Citral (28.70 %), β-Maaliene (7.78 %), tau-Muurolol (3.94 %), β-trans-Ocimene (3.25 %), β-Pinene (2.97 %), cis-Geraniol (2.45 %), cis-Verbenol (2.47 %), Juniper camphor (2.37 %) and α-Pinene(1.06 %) in essential oil of *C. citratus* were identified. The major components in *C. nardus* essential oil were cis-Geraniol (18.53 %), β-Citronella (14.23 %), (R)-(+-)β-Citronellol (11.98 %), α-Cadinol (8.95 %), τ-Eudesmol (7.68 %), Geranylacetate (4.72 %), Citronellylacetate (3.81 %), Elemol (3.54 %), β-Linalool (3.78 %), and lastly tau-Muurolol (2.94 %). Thirty three aromatherapy candles were made with formulation of 40 g of paraffin wax mixed with 1 mL of essential oils. The aromatherapy candles made could burn for six hours long and release aroma after two hours lighting. It was lead-free and sootless.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF PHOTOS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND UNITS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Study 1

1.2 Research Objectives 3

1.3 Scope of Study 3

CHAPTER 2 LITERATURE REVIEW

2.1 History of Aromatherapy 4

2.2 Aromatherapy 6

2.3 Essential Oils 8

2.3.1 Application of Essential Oils in Aromatherapy 10

2.3.2 Safety Issues with Aromatherapy 11

2.4 Essential Oils from Local Plants 12

2.4.1 Cymbopogon nardus 12

a. Morphology and Distribution of *Cymbopogon nardus* 12

b. Uses of *Cymbopogon nardus* 13

c. Compositions in *Cymbopogon nardus* 14

2.4.2 Cymbopogon citratus 15
a. Morphology and Distribution of Cymbopogon citratus
b. Uses of Cymbopogon citratus
c. Compositions in Cymbopogon citratus

2.4.3 Citrus limon
a. Morphology and Distribution of Citrus limon
b. Uses of Citrus limon
c. Compositions in Citrus limon

2.4.4 Citrus sinensis
a. Morphology and Distribution of Citrus sinensis
b. Uses of Citrus sinensis
c. Compositions in Citrus sinensis

2.5 Isolation and Separation Techniques

2.6 Identification of Odour Components using GC-MS

2.7 Candle
2.7.1 Candle Making
2.7.2 History of Candle Making
2.7.3 Wicks
2.7.4 Waxes

CHAPTER 3 METHODOLOGY

3.1 Chemicals and Apparatus

3.2 Preparation of Sample

3.3 Extraction of Essential Oils from Cymbopogon nardus, Cymbopogon citratus, Citrus limon and Citrus sinensis

3.4 Calculation Percentage of Yield of Essential Oils

3.5 Analysis of Essential Oils with GC-MS

3.6 Handmade Aromatherapy Candle
3.6.1 Candle Making

3.7 Characterization of Candle
3.7.1 Burning Period of Candles
3.7.2 Determination of Lead and Soot in Candle
CHAPTER 4 RESULTS AND DISCUSSION

4.1 The Essential Oils products

4.2 Chemical Composition Obtained from GC-MS Data

 4.2.1 Analysis of *Citrus limon* Essential Oil using GC-MS
 4.2.2 Analysis of *Citrus sinensis* Essential Oil using GC-MS
 4.2.3 Analysis of *Cymbopogon citratus* Essential Oil using GC-MS

4.2.4 Analysis of *Cymbopogon nardus* Essential Oil using GC-MS

 4.2.5 Comparison among *Citrus limon, Citrus sinensis, Cymbopogon citratus*, and *Cymbopogon nardus*

4.3 The Aromatherapy Candle Products

 4.3.1 Characteristics of Aromatherapy Candle

CHAPTER 5 CONCLUSION

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Organic compounds present in essential oils and their therapeutic actions</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Apparatus used in the experiment</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemicals used in the experiment</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Experiment conditions for GC-MS analysis</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>The weight of fresh sample and essential oil obtained; yield percentage and color observation</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Compounds that can be found in Citrus limon essential oil, their percent area in chromatogram and their possibilities</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Volatile components of Citrus sinensis essential oil, their percent area in chromatogram and their possibilities</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Compounds that can be found in Cymbopogon citratus essential oil, their percent area in chromatogram and their possibilities</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>Volatile components of Cymbopogon nardus essential oil, their percent area in chromatogram and their possibilities</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Extraction essential oils from plants</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Compounds found in Cymbopogon nardus</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Compounds found in Cymbopogon citratus</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Compounds found in Citrus limon</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Compounds found in Citrus sinensis</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram of a typical GC/MS</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Chromatogram for Citrus limon essential oil</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>GC-MS total-ion chromatogram of sweet orange essential oil</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Chromatogram for Cymbopogon citratus essential oil</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Chromatogram for Cymbopogon nardus essential oil</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF PHOTOS

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cymbopogon nardus</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Cymbopogon citratus</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Citrus limon</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Citrus sinensis</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Hydrodistillation Apparatus</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Separatory Funnel Apparatus</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Gravity Filtration Apparatus</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Rotary Evaporator</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>GC-MS</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Paraffin wax in 100 mL beaker</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>Dye was added to wax and heated using hot plate</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Mould</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Citrus limon oil</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Citrus sinensis oil</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Cymbopogon citratus oil</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Cymbopogon nardus oil</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Candle in different sizes and colours</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Candles scented with Cymbopogon citratus, Citrus limon, Citrus sinensis, Cymbopogon nardus aroma</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitre</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>°F</td>
<td>Degree Fahrenheit</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Milimetre</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>eV</td>
<td>Electrovolt</td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1 Background of Study

Aromatherapy, a therapy that uses aromas and a branch of herbology is one of the fastest growing therapies in the world today. Aromatherapy is a kind of art, an aesthetic healing art which uses essential oils, derived from various parts of aromatic plants and trees (Wildwood, 1992). Frequently, it is reported that aromatherapy lets one feeling uplifted, stimulated, invigorated, or rejuvenated but it depends on the types of oils used. When inhaled, the various aromas penetrate the bloodstream via the lungs causing physiologic changes which in turn affect the limbic system that controls our emotions and memories (Selby, 1996).

Aromatherapy aims to promote physical and psychological well-being to gain health of body and obtain serenity of mind (Wildwood, 1992). Aroma substances such as essential oils are volatile compounds which are perceived by the odour receptor sites of the olfactory tissue of the nasal cavity. The aromatic substances stimulate the
olfactory bulb and neurons. The desired emotional response such as relaxation is activated from the limbic system of the brain (Longe, 2002).

Nowadays, aromatherapy has become one of the most popular complementary therapies. Aromatherapy comes in sixth place after massage, music therapy, relaxation therapy, therapeutic touch and meditation (Dunning, 2005). According to Dunning (2005), nurses apply aromatherapy into nursing practice, especially in recuperating patients. Apart from that, Wallis et al. (2004) found that out of 129, 15.5% nurses working in four hospitals in Southeast Queensland uses aromatherapies. This implies that aromatherapy can thrive and bloom in this decade.

The most easiest and instant way to infuse a room with fragrance and create a light atmosphere is lighting aromatherapy candles. It adds fragrance and instant ambience into the environment. Obviously aromatherapy candle has become a symbol of stylish lifestyle in this decade. The standard of living has improved, people are willing to pay for extra pampering (Wheeler, 2000). The popularity of aromatherapy candles can be observed through the sales in gift shops, various types of it are sold. It has been one of the highly demanded gifts in recent years. Mostly because it has the capabilities to perform therapeutic function (Jerkins, 2001).

The scent of aromatherapy candles can be made by combining different essential oils with different type of waxes. Wax is the main ingredient used in candle making, the most common waxes used is paraffin wax. Paraffin wax is a type of petroleum wax, it is white, tasteless and odourless. At room temperature, it is solid and it has a range of melting temperatures from 40-71°C (104-160°F) (Jerkins, 2001).
The objective of this project was to produce aromatherapy candles using the essential oils extracted from local plants (*Citrus limon*, *Citrus sinensis*, *Cymbopogon nardus*, and *Cymbopogon citratus*).

1.2 Research Objectives

The objectives of this study were:

A. To extract essential oils from *Citrus limon*, *Citrus sinensis*, *Cymbopogon nardus*, and *Cymbopogon citratus* using hydrodistillation.

B. To analyze the essential oils using gas chromatography-mass spectrometry.

C. To make aromatherapy candles containing the essential oils.

D. To determine the burning period of the aromatherapy candle.

1.3 Scope of Study

In this study, the essential oils in aromatherapy candles were obtained using a hydrodistillation method under temperature of 60-70 °C for eight hours. The essential oils were extracted from some local plants naming *C. limon*, *C. sinensis*, *C. nardus*, and *C. citratus*. All of these local plants were bought at “pasar tamu”, Kota Kinabalu. The essential oils were analyzed using gas chromatography-mass spectrometry. Several aroma and shapes of aromatherapy candles were made.
2.1 History of Aromatherapy

Aromatherapy has been around for 6000 years or more. Our early ancestors discovered that certain aromatic plants when burnt on the fire, gave rise to altered states of consciousness (Wildwood, 1991). It was found that some aromas made people feel drowsy, others made them feel uplifted or even euphoric. The most precious of all gave rise to mystical or physics experiences. The Greeks, Romans, and ancient Egyptians all used aromatherapy oils, they are generally regarded as the true founders of aromatherapy (Wildwood, 1991). The Egyptian physician Imhotep recommended fragrant oils for bathing, massage, and for embalming their dead nearly 6000 years ago. Imhotep is the Egyptian god of medicine and healing. In Egypt, aromatics were literally a way of life. Sweet incense was burnt in the temples, city squares and during state ceremonies. Indeed, the well-preserved mummies of animals, pharaohs and queens on display in many museums bear witness to the skills of the ancient Egyptian embalmers and to the remarkable preservative powers of plant essence (Wildwood, 1991).
Hippocrates, the father of modern medicine, used aromatherapy baths and scented massage. In fact, massage with aromatic oils was deemed so efficacious that Plato is said to have reproached Herodicus for protracting the miserable existence of the aged. He used aromatic fumigations to rid Athens of the plague (Wildwood, 1991). Instead, fumigation with aromatics substances to prevent the spread of infectious diseases is still used in some countries recently such as the French hospitals burnt juniper thyme and rosemary in the wards as a disinfectant (Wildwood, 1991).

The modern era of aromatherapy was dawned in 1930 when the French chemist René Maurice Gattefossé coined the term aromatherapy for the therapeutic use of essential oils. He was fascinated by the benefits of lavender oil in healing his burned hand without leaving any scars. He started investigating the effect of other essential oils for healing and for their psychotherapeutic benefits (Wildwood, 1991).

During the Second World War, the French army surgeon Dr. Jean Valnet used essential oils as antiseptics (Valnet, 1990). Later, the Austrian born biochemist Madame Marguerite Maury elevated aromatherapy as a holistic therapy. She started prescribing essential oils as remedy for her patients. She is also credited with the modern use of essential oils in massage (Wildwood, 1991). Aromatherapy works the best when it works on the mind and body simultaneously.
2.2 Aromatherapy

Aromatherapy means "treatment using scents". It is a holistic treatment of caring for the body with pleasant smelling botanical oils such as rose, lemon, lavender and peppermint. The essential oils are added to bath or massaged into the skin, inhaled directly or diffused to scent an entire room. Aromatherapy is used for the relief of pain, care for the skin, alleviate tension and fatigue and invigorate the entire body. Essential oils can affect the mood, alleviate fatigue, reduce anxiety and promote relaxation. When inhaled, essential oils work on the brain and nervous system through stimulation of the olfactory nerves (Cooksley, 1996).

However, aromatherapy is more thoroughly defined as the *skilled* and *controlled* use of essential oils for physical and emotional health and well-being (Cooksley, 1996). Aromatherapy has strong psychological benefits. The volatility of an oil, or the speed at which it evaporates in open air is thought to be linked to the specific psychological effects of an oil. As a rule of thumb, oils that evaporate quickly considered emotionally uplifting, while slowly evaporating oils are thought to have a calming effect (Longe, 2002).

Essential oils are aromatic essences extracted from plants, flowers, trees, fruits, bark, grasses and seeds with distinctive therapeutic, psychological, and physiological properties, which improve and prevent illness (Selby, 1996). There are about 150 essential oils (Selby, 1996). Most of these oils have antiseptic properties; some are antiviral, anti-inflammatory, pain-relieving, antidepressant and expectorant. Other
properties of the essential oils which are taken advantage in aromatherapy are their stimulation, relaxation, digestion improvement, and diuretic properties.

Aromatherapy is the name given to therapeutic approaches having odors and the olfactory system as main actors. It is one of the fastest growing fields in alternative medicine. It is one of the most increasingly used methods in nursing (Thomas, 2002). It is widely used at home, clinics and hospitals for a variety of applications such as pain relief for women in labor pain, relieving pain caused by the side effects of the chemotherapy undergone by the cancer patients, and rehabilitation of cardiac patients. The use of essential oils can have significant effects on both clinical and experimental pain. For example, cancer pain and the associated anxiety are alleviated by exposure to lavender aroma (Louis and Kowalski, 2002). Marchand’s group (Marchand and Arsenault, 2002) has shown that odors can affect pain perception in a gender-related manner. Apart from that, it has significantly improved the sleep patterns of the patients and at the same time, reduced the amount of night sedation required (Cannard, 1996).

Aromatherapy is differentiated from other fields of practice by recourse to its specific materiality. The skillful use of pure essential oils in conjunction with suitable carrier oils for therapeutic purposes distinguishes aromatherapy from other massage-based therapies (which use oil to lubricate physical manipulation) and beauty therapy (which uses cosmetic-grade oils rather than pure essential oils) (Doel and Segrott, 2004).

Burning candles and incense containing essential oils is one of the most convenient and inexpensive ways to experience aromatherapy benefits nowadays.
Aromatherapy candles are made with the essential oils of an alternative form of medicine that have healing and soothing effects which has become very popular in this century.

2.3 Essential Oils

A volatile ethereal fraction obtained from a plant part by a physical separation method is called an essential oil. The physical method involves either distillation (including water, steam, water and steam, or dry), expression (pressing), infusion, and extraction either by alcohol or benzene and hexane (Cooksley, 1996). Essential oils represent the odourous part of the plant material, and therefore these oils have traditionally been associated with the fragrance and flavor industry (Kirk-Othmer, 1996). Methods used to obtain essential oils from plants are shown in figure 2.1.

![Diagram of Extraction Methods](image-url)

Figure 2.1 Extraction essential oils from plants (Cooksley, 1996).
Essential oils contain a mixture of many organic compounds which include alcohols, aldehydes, esters, ketones, terpenes, oxides, coumarines, lactones, acids, aromatic aldehydes, and phenols.

Table 2.1 shows the therapeutic properties attributed to each organic compound present in essential oils. The relative amount of each compound contained in each oil denotes its therapeutic value (Franchomme and Pénol, 1990). Oils high in ketones are known for their wound-healing properties, such as Helichrysum italicum (everlasting flower) whereas oils high in alcohols are renowned for their antimicrobial and anti-infectious properties like Melaleuca alternifolia terpinen-4-ol that present in tea tree.

Table 2.1 Organic compounds present in essential oils and their therapeutic actions.

<table>
<thead>
<tr>
<th>Organic compounds</th>
<th>Therapeutic actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
<td>Anti-infectious, immunostimulants</td>
</tr>
<tr>
<td>Aromatic aldehydes</td>
<td>Anti-infectious, immunostimulants</td>
</tr>
<tr>
<td>C10 alcohol</td>
<td>Anti-infectious, immunostimulants</td>
</tr>
<tr>
<td>C15 and C20 alcohols</td>
<td>Estrogen-like activity</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>Anti-infectious, calming, litholitic</td>
</tr>
<tr>
<td>Coumarins</td>
<td>Balancing, calming</td>
</tr>
<tr>
<td>Esters</td>
<td>Antispasmodic, calming</td>
</tr>
<tr>
<td>Lactones</td>
<td>Balancing, calming</td>
</tr>
<tr>
<td>Ketones</td>
<td>Cicatrizing (wound healing), mucolitic, litholitic, calming</td>
</tr>
<tr>
<td></td>
<td>Expectorant, antispasmodic</td>
</tr>
<tr>
<td>Oxides</td>
<td>Anti-infectious, immunostimulants</td>
</tr>
<tr>
<td>Phenols</td>
<td>Anti-infectious, antispasmodic</td>
</tr>
<tr>
<td>Phenyl methyl ethers</td>
<td>Anti-infectious, cortisone-like activity</td>
</tr>
<tr>
<td>C10 terpenes</td>
<td>Antihistamines, anti-allergic</td>
</tr>
<tr>
<td>C15 terpenes</td>
<td>Antihistamines, anti-allergic</td>
</tr>
</tbody>
</table>
Most of the essential oils have a very light texture and evaporate quickly. Essential oils are less likely to evaporate in the much colder and denser condition. Essential oils aren't oily at all, but rather a water-like liquid (Cooksley, 1996). Essential oils are found in all the various parts of plants including the bark, roots, leaves, flowers, seed, wood, resin, and balsam. Some plants produce rather large quantities of oil, some have very low content. It's important to note that essential oils should virtually never be applied directly to the skin until mixed in carrier oil. Carrier oils are pure gentle oils, such as sweet almond oil and apricot kernel oil that "carry" the essence to the skin.

2.3.1 Application of Essential Oils in Aromatherapy

Today, essential oils are extracted from the plants used for aromatherapy, making them very concentrated. The two basic ways aromatherapy is accomplished is by applying the oils to the skin and by inhalation. For inhalation, the incoming aromatic molecules enter the body via the nose with every breath inhaled. The effect of smell is so strong and so immediate because the olfactory nerve is in direct contact with the limbic system (Selby, 1996). The nose is structured in such a way as to capture and hold aromatic molecules and to keep the olfactory hairs (cilia) moist. The olfactory nerve cells terminate in the cilia. The olfactory hairs pick up the odour molecules and bind them to receptors. Messages are sent along neurons to the olfactory bulb and directly to the limbic brain. This ancient area of the brain is where moods, sexual urges and emotions are seated (Cooksley, 1996).
REFERENCES

Homburger, F. 1961. Toxic and possible carcinogenic effects in 4-allyl-1,2-methylenedioxy- benzene (safrole) in rats on deficient diets. *Medi Exper* 4:1–11

Louis, M., and Kowalski, S.D. 2002. Use of aromatherapy with hospice patients to decrease pain, anxiety, and depression and to promote an increased sense of well-being, Am. J. Hospice Palliat. Care **19**: 381–386

