WATER QUALITY OF SUNGAI TUARAN, SABAH

CHUA LI YING

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THIS DISSERTATION IS SUBMITTED TO FULFILL THE PARTIAL REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

ENVIRONMENTAL SCIENCE PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

MAY 2008
Borang Pengesahan Status Tesis

Judul: WATER QUALITY OF SUNGAI TUARAN, SABAH

Ijazah: BACHELOR OF SCIENCE (HONS.)

Saya Chua Li Ying (HURUF BESAR) sesi pengajian: 2005/06

Mengakui membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)
 - SULIT
 - TERHAD
 - TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan Oleh

NURULAIN BINTI ISMAIL
LIBRARIAN
UNIVERSITI MALAYSIA SABAH

(TANDATANGAN PUSTAKAWAN)

Alamat Tetap: 37, Haji Pekin, Timur 5
Tamu, Brunei Darussalam
S1630, Iban, PK.

Tarikh: 21/5/08

Nama Penyelia

TANDATANGAN PENULIS

(CATATAN: *Potong yang tidak berkenaan.
**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa /organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).)
DECLARATION

I hereby declare that this dissertation contains my original research work except for the sources of findings reviewed herein, which have been duly acknowledged.

20 MAY 2008

CHUA LI YING

HS2005-2413
VERIFIED BY

Signatures

1. SUPERVISOR
 (PROF. DR. MOHD. HARUN ABDULLAH)

2. EXAMINER 1
 (DR. KAWI BIDIN)

3. EXAMINER 2
 (DR. VUN LEONG WAN)

4. DEAN OF SCHOOL OF SCIENCE AND TECHNOLOGY
 (SUPT/KS, PROF. MADYA DR. SHARIFF A. K. OMANG, ADK)
ACKNOWLEDGEMENTS

First and foremost, I would like to express my utmost gratitude to my supervisor, Prof. Dr. Mohd. Harun Abdullah. It was an honour to work under his tutelage. I thank him for the opportunity, his constructive advice, guidance, and time needed for the completion of this study.

I would also like to express appreciation to my academic advisor, Dr. Bonaventure Vun Leong Wan for his support and advice. Furthermore, I would like to acknowledge the staff of the Environmental Science laboratories for providing the essential equipments and facilities to conduct my sampling and analyses.

I also owe a deep gratitude to Ahmad Zaharin B. Aris, senior and postgraduate scholar, for his guidance and advice. In addition to that, I wish to express my sincere appreciation to Lin Chin Yik, Benjamin Ong, and Ooi Chun Wei for aiding me in my sampling trips and helping me in the laboratory.

To my parents, thank you for your love, support, and encouragement, not only for this study alone, but also for everything else.

Last but not least, my heartfelt thanks to all my course mates and to everyone else who had played a part in my accomplishment of this piece of work. Thank you.
ABSTRACT

The purpose of this study is to determine the water quality of Sungai Tuaran, Sabah and its tributaries based on the parameters pH, temperature, electrical conductivity (EC), suspended solids (SS), total dissolved solids (TDS), concentration of nitrate (NO₃⁻), and concentration of sulphate (SO₄²⁻) via both in-situ and laboratory analyses. The results obtained are compared with Interim National Water Quality Standards (INWQS) and Malaysia Drinking Water Standards where relevant. The average pH value is 7.65 ± 3.91, while the EC averages 60.10 ± 2.83 μS cm⁻¹. Mean of TDS fall between the range of 0.00 mg L⁻¹ to 166.7 ± 30.6 mg L⁻¹ and mean of SS is from 26.7 ± 11.5 mg L⁻¹ to 1666.7 ± 41.6 mg L⁻¹. Nitrate concentration averages between 1.47 ± 0.06 mg L⁻¹ and 4.00 ± 0.20 mg L⁻¹. The mean concentration for sulphate is from 2.0 ± 0.0 mg L⁻¹ to 14.0 ± 0.0 mg L⁻¹. Based on INWQS, the overall water quality is acceptable; however the SS values indicated pollution in certain parts of the river. For drinking water quality, the concentration of TDS, NO₃⁻, and SO₄²⁻ are all below the Malaysia Drinking Water Standards benchmark levels. Related parameters are also statistically correlated to determine the significance of one variable towards another. Correlation of EC-TDS, EC-NO₃⁻ concentration, and EC-SO₄²⁻ concentration show positive and strong significance. Through observation and inferring to the obtained results, anthropogenic activities do play a major role in affecting river water quality.
ABSTRAK

Kajian ini dijalankan untuk menentukan kualiti Sungai Tuaran, Sabah serta cawangan-cawangannya berdasarkan kepada parameter-parameter pH, suhu, kekondusksian elektrik, jumlah pepejal terampai, jumlah pepejal terlarut, kepekatan kandungan nitrat \((\text{NO}_3^-)\), dan kepekatan kandungan sulfat \((\text{SO}_4^{2-})\) melalui kaedah in-situ serta analisis makmal. Keputusan yang diperoleh telah dibandingkan dengan Piawai Kualiti Air Kebangsaan Interim dan Piawai Air Minuman Malaysia di mana ada kaitan. Nilai purata pH ialah 7.65 ± 3.91, manakala purata kekondusksian elektrik ialah 60.10 ± 2.83 μS cm⁻¹. Nilai min jumlah pepejal terlarut berada dalam julat 0.00 mg L⁻¹ hingga 1666.7 ± 30.6 mg L⁻¹ dan jual min jumlah pepejal terampai ialah dari 26.7 ± 11.5 mg L⁻¹ hingga 1666.7 ± 41.6 mg L⁻¹. Kepekatan nitrat berpurata antara 1.47 ± 0.06 mg L⁻¹ dan 4.00 ± 0.20 mg L⁻¹. Min kepekatan sulfat berada dalam julat 2.0 ± 0.0 mg L⁻¹ hingga 14.0 ± 0.0 mg L⁻¹. Secara keseluruhan, kualiti air adalah memuaskan berdasarkan , tetapi nilai jumlah pepejal terampai telah menunjukkan bahawa adanya pencemaran di sebilangan kawasan sungai. Bagi kualiti air minuman, kepekatan jumlah pepejal terlarut, \(\text{NO}_3^-\), dan \(\text{SO}_4^{2-}\) kurang daripada tahap minimum piawai. Parameter yang berkaitan juga telah dijalankan korelasi statistik untuk menentukan signifikan suatu pembolehubah terhadap suatu pembolehubah yang lain. Korelasi kekondusksian elektrik-jumlah pepejal terlarut, kekondusksian elektrik-kepekatan \(\text{NO}_3^-\), dan kekondusksian elektrik-kepekatan \(\text{SO}_4^{2-}\) menunjukkan hubungan yang positif. Melalui pemerhatian dan hubungkaitan keputusan yang diperolehi, aktiviti-aktiviti manusia sememangnya memainkan peranan penting dalam mendatangkan kesan kepada kualiti air sungai.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>Xi</td>
</tr>
<tr>
<td>LIST OF PHOTOS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of Study</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 RIVER WATER QUALITY</td>
<td>4</td>
</tr>
<tr>
<td>2.2 GLOBAL WARMING AND CLIMATE CHANGE</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1 Climate Change and Water Quality</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2 Glacier Melts and Water Quality</td>
<td>7</td>
</tr>
</tbody>
</table>
2.2.3 Sea Level Rise and Water Quality
 a. Effects of Sea Level Rise - Physical
 b. Effects of Sea Level Rise – Sea water Intrusion in Rivers

2.3 ANTHROPOGENIC ACTIVITIES AND WATER QUALITY
 2.3.1 Excessive Nutrients and Sediment Loading

2.4 WATER QUALITY DEGRADATION AND WATER RESOURCES

CHAPTER 3 METHODOLOGY

3.1 BACKGROUND OF STUDY AREA

3.2 SAMPLING STATIONS

3.3 APPARATUS AND CHEMICALS

3.4 SAMPLING

3.5 ANALYSIS OF SAMPLES
 3.5.1 Preparation of apparatus
 3.5.2 Preparation of samples
 3.5.3 Determination of Nitrate
 3.5.4 Determination of Sulphate
 3.5.5 Determination of Total Suspended Solids and Total Dissolved Solids
 a. Total Suspended Solids (TSS)
 b. Total Dissolved Solids (TDS)

3.6 STATISTICAL ANALYSIS

3.7 FIELDWORK

CHAPTER 4 RESULTS AND DISCUSSION

4.1 IN-SITU PARAMETERS
4.1.1 pH 40
4.1.2 Temperature 42
4.1.3 Electric Conductivity (EC) 43

4.2 LABORATORY ANALYSED PARAMETERS 45
4.2.1 Suspended Solids (SS) 46
4.2.2 Total Dissolved Solids (TDS) 48
4.2.3 Concentration of Nitrate (NO₃⁻) 50
4.2.4 Concentration of Sulphate (SO₄²⁻) 52

4.3 CORRELATION OF PARAMETERS 53
4.3.1 Conductivity (EC) and Total Dissolved Solids (TDS) 54
4.3.2 Conductivity (EC) and Nitrate Concentration 55
4.3.3 Conductivity (EC) and Sulphate Concentration 56
4.3.4 Discussion 57

CHAPTER 5 CONCLUSION AND SUGGESTIONS 59
5.1 CONCLUSION 59
5.2 SUGGESTIONS 61
REFERENCES 62
APPENDIX 73
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Description of Sampling Stations</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>List of chemicals</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>List of devices and apparatus</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>List of devices used for in-situ analyses</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>List of glassware required</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean and Standard Deviation of In-Situ Parameters (n = 9).</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean and Standard Deviation of Laboratory Analysed Parameters (n = 9).</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation and regression values for selected parameters.</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Major Rivers of Sabah</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>River basins of Sabah</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Locations of sampling sites and their coordinates</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Locations of downstream sampling sites (ST 7, ST 8, and ST 9) and their coordinates</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Locations of midstream sampling sites (ST 1, ST 2, and ST 6) and their coordinates</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Locations of upstream sampling sites (ST 3, ST 4, and ST 5) and their coordinates</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Tuaran town and Sungai Tuaran</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean pH values of water samples</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean temperature of water samples</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean electric conductivity of water samples</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean suspended solids in water samples</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean total dissolved solids in water samples</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean concentration of nitrate in water samples</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>Mean concentration of sulphate in water samples</td>
<td>52</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation of EC with concentration of TDS.</td>
<td>54</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlation of EC with concentration of nitrate.</td>
<td>55</td>
</tr>
<tr>
<td>4.10</td>
<td>Correlation of EC with concentration of sulphate.</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF PHOTOS

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sampling station ST1</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Sampling station ST2</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Sampling station ST3</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Sampling station ST4</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Sampling station ST5</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Sampling station ST6</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>Sampling station ST7</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>Sampling station ST8</td>
<td>30</td>
</tr>
<tr>
<td>3.9</td>
<td>Sampling station ST9</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

km kilometer
mm milimeter
km² kilometer square
m³ meter cube
MLd⁻¹ mega liter per day
mg l⁻¹ miligram per liter
µm micrometer
°C degree Celsius
µScm⁻¹ micro Siemens per centimeter
ml mililiter
µl microliter
< less than
> greater than
g gram
n number of samples
r correlation coefficient
r² regression value
INWQS Interim National Water Quality Standards
LIST OF APPENDIX

APPENDIX A: RAW DATA OF STUDY

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
</tr>
<tr>
<td>1. pH</td>
</tr>
<tr>
<td>2. Temperature (°C)</td>
</tr>
<tr>
<td>3. Electric Conductivity (μS cm$^{-1}$)</td>
</tr>
<tr>
<td>4. Total Suspended Solids (mg L$^{-1}$)</td>
</tr>
<tr>
<td>5. Total Dissolved Solids (mg L$^{-1}$)</td>
</tr>
<tr>
<td>6. Nitrate, NO$_3^-$ Concentration (mg L$^{-1}$)</td>
</tr>
<tr>
<td>7. Sulphate, SO$_4^{2-}$ Concentration (mg L$^{-1}$)</td>
</tr>
<tr>
<td>8. Determination of SS</td>
</tr>
<tr>
<td>9. Determination of TDS</td>
</tr>
</tbody>
</table>

APPENDIX B: SPSS STATISTICAL ANALYSIS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
</tr>
<tr>
<td>1. Descriptive Statistics</td>
</tr>
<tr>
<td>a) pH</td>
</tr>
<tr>
<td>b) Temperature (°C)</td>
</tr>
<tr>
<td>c) Electric Conductivity (μS cm$^{-1}$)</td>
</tr>
<tr>
<td>d) Total Suspended Solids (mg L$^{-1}$)</td>
</tr>
<tr>
<td>e) Total Dissolved Solids (mg L$^{-1}$)</td>
</tr>
<tr>
<td>f) Nitrate, NO$_3^-$ Concentration (mg L$^{-1}$)</td>
</tr>
<tr>
<td>g) Sulphate, SO$_4^{2-}$ Concentration (mg L$^{-1}$)</td>
</tr>
</tbody>
</table>
2. Correlation

 a) Correlation between EC and TDS
 b) Correlation between EC and Nitrate
 c) Correlation between EC and Sulfate

APPENDIX C: REFERRED STANDARDS

1. DOE Water Quality Index Classes
2. Interim National Water Quality Standards For Malaysia
3. Malaysia: National Guidelines For Drinking Water Quality
CHAPTER 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

Rivers come in a myriad shapes and sizes but there is one thing in common, they all start from one high point known as the headwater and flow down to lower points. As the water flows down, small streams meet and merge forming larger rivers, and at the same time gather more water from springs, rain, or snow melt. Eventually these rivers will either empty out into an inland body of water, like a lake, and is known as a closed watershed; or, in open watersheds, flow out into the oceans (Jackson et al., 2001).

Rivers make up only 0.2 percent of all the fresh water on Earth, but apart from being a water supply source, rivers also play a variety of important roles in the environment. Land mass is both carved and created by rivers by erosion and depositing of sediments. With time, the flow of rivers can change the landscape of an area (Natureworks, 2003). Rivers are also important in transporting water, organisms and
nutrients from one area to another; creating habitats and help drain rainwater (Kingsolver, 2000).

In Malaysia, river water quality monitoring programmes have been carried out since 1978 to obtain baseline data and provide information for pollution sources identifications. Based on six major parameters: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammoniacal Nitrogen (NH$_3$-N), Suspended Solids (SS), and pH, the Water Quality Index (WQI) is calculated and rivers are classified in accordance to the National Water Quality Standards for Malaysia (NWQS). In 2005, 26 rivers have been placed under the Pollution Prevention and River Water Quality Improvement Programme carried out by the Department of Environment (DOE Environmental Quality Report, 2005).

Generally, rivers in Malaysia are mainly polluted by excessively high sewage load and discharges from agricultural activities, latex based industries, and crude palm oil factories. High SS pollution is from earthworks activities such as land clearing and sand dredging. However, Malaysia still depends on its rivers for water supply, both drinking and daily usage, and thus the quality of the rivers' water are of utmost importance. For instance, it should be maintained to be in compliance to safe drinking water levels (DOE Annual Report, 2006).

In addition to anthropogenic pollution of rivers, salt water intrusion into the fresh water systems will cause the decline of river water quality. Intrusions may happen due to
tidal changes (Uncles et. al, 1995) and possibly increase of sea-levels (Glick, 2004). The latter is an internationally debated issue as it is part of the global warming and climate change phenomenon. Its effects are still unconfirmed as it is a complex study which requires thousands of years of data and a lot of modelling and estimations (van der Veen, 2001).

1.2 OBJECTIVES OF STUDY

In view of the recent issues of global warming and climate change, the aim of this study is to initiate an inventory of data regarding river water quality. Sungai Tuaran is highly utilised for multiple domestic, commercial, agricultural and industrial uses, hence the determination of its quality is important. This research is also to obtain relevant data of water quality parameters to be used for further studies of the same area or other similar studies.

The objectives of this study are:

1. To obtain *in-situ* parameters – pH, temperature, and electrical conductivity (EC).
2. To measure the nitrate and sulfate content of the river.
3. To measure the suspended solids (SS) and total dissolved solids (TDS) of the river.
CHAPTER 2

LITERATURE REVIEW

2.1 RIVER WATER QUALITY

Novotny and Chesters (1981) defined that water quality indicates the composition of water as affected by natural processes and by human activities, expressed in terms of measurable quantities and related to intended water use.

Deterioration of river water quality may be caused by point and non-point source pollution, especially from anthropogenic activities (Carpenter et al., 1998). Point source pollution, from both domestic and industrial effluents, can be easily localised. However, non-point pollution, such as runoff after a period of rain, is less obvious (Fytianos et al., 2002). River water quality may also vary depending to the sampling location (upstream or lower reaches of the river), the geological morphology, as well as the vegetation and activities along the river (Brezonic et al., 1999).
River water quality degradation is strongly linked to anthropogenic activities (Sarkar et al., 2006) and also due to environmental occurrences borne from global warming, such as climate change (Izrael et al., 1990). Incidentally, most of the increase in global temperature since the mid-20th century is highly contributed by human activities, for instance, the observed increase in anthropogenic greenhouse gas concentrations (IPCC, 2007).

2.2 GLOBAL WARMING AND CLIMATE CHANGE

Global warming is one of the most widely discussed phenomena to occur in this century. Due to increases in greenhouse gas emissions, changes in climate temperature may influence ecosystems, geographical processes, and also human activities (Kont et al., 2003). Ice is melting, rivers are running dry, and coasts are eroding. Although some may argue that throughout the centuries, climate has been notoriously fickle; statistics show that global temperatures are shooting up faster than any other time in the past thousand years. Experts believe that the rapid warming is not caused by natural forces such as volcanic eruptions, but more likely due to human activities. Forest clearing, and burning of oil, coal, and gas have increased carbon dioxide and other heat-trapping emissions into the atmosphere, faster than the ability of plants and oceans to soak them up.
2.2.1 Climate Change and Water Quality

The increase of overall global temperature raises the temperature of water bodies. Increasing water temperatures change hydrodynamics, expand the thermal stratification period, and deepen the thermocline. These shifts then increase nutrient release from sediments and lead to a change in nutrient circulation. Water temperature is a key parameter in most biological systems as it directly influences water chemistry, biochemical reactions and growth/death of biota. Higher water temperatures will cause changes in fish habitats as well as the composition of phytoplankton and zooplankton species depending on tolerance levels. However, it is not clear whether these changes will have overall positive or negative effect on aquatic ecological systems (Komatsu et al., 2007).

Rivers are the primary transport mechanism for suspended sediment, pollution and nutrients to enter the catchment areas. The significance of a given river with respect to sediment, nutrient or pollution loading depends upon both the discharge of the river and the concentrations of the various materials contained in the river water. In areas where river flows decrease, pollution concentrations will rise because there will be less water to dilute the pollutants.

In a warmer climate, the earth can be expected to experience more variable weather with a likelihood of more floods, drought, and more intense hurricanes or typhoons. These phenomena bring about effects to the hydrological systems (Izrael et al.,
1990). Increased frequency of severe rainstorms could increase the amount of chemicals that run off from farms, lawns, and streets into the rivers, lakes, and bays. The tendency for rainfall to be more concentrated in large storms as temperatures rise would tend to increase river flooding, without increasing the amount of water available (EPA, 2006).

As global warming could cause changes in the timing and amount of precipitation in various countries, water quality may be affected greatly. In regions of low precipitation, salt concentrations in water may increase greatly. High salt concentration in water and a reduction of water supply may impair drinking water quality and food production. Conversely, increased rainfall will cause frequent flooding and spread water-borne diseases which directly or indirectly threaten the health of people in developing countries. Permafrost degradation may cause leaching from disposed wastes, resulting in contamination of the groundwater. If global warming worsens the water quality or increases inundation, epidemics such as diarrhoea, cholera and dysentery could spread (Izrael et al., 1990).

2.2.2 Glacier Melts and Water Quality

The evidence of warming is significant. According to Glick (2004), since 1912, the snows of Kilimanjaro have melted more than 80%. The Artic sea ice has decreased by 9% in a decade and an estimated 15% of thinning has occurred in the past 30 years. Ice shelves in Greenland and Antarctica have disintegrated and collapsed, decreasing the number of
REFERENCES

Abdull~ M.H., Chua, L-Y., Aris, A.Z. and Park, J-H. 2007. Water Chemistry in Downstream Region of Tuaran River: A Preliminary Assessment on Seawater Intrusion Due to Sea Level Rise. The First International Workshop on Climate Change Impacts on Surface Water Quality in East Asian Watersheds, 7-9 October 2007, Chuncheon, Korea, pg. 100-104.

