DARA : Data summarisation with feature construction

Rayner Alfred, (2008) DARA : Data summarisation with feature construction. In: 2nd Asia International Conference on Modelling and Simulation (AMS), 13-15 May 2008, Kuala Lumpur.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/AMS.2008.131

Abstract

This paper addresses the question whether or not the descriptive accuracy of the DARA (Dynamic Aggregation of Relational Attributes) algorithm benefits from the feature construction process. This involves solving the problem of constructing a set of relevant features used to generate patterns representing records in the TF-IDF weighted frequency matrix in order to cluster these records. In this paper, feature construction will be applied to enhance the results of the data summarisation approach in learning data stored in multiple tables with high cardinality of one-to-many relations. It is expected that the predictive accuracy of a classfication problem can be improved by improving the descriptive accuracy of the data summarisation approach, provided that the summarised data is fed into the target table as one of the features considered in the classification task. © 2008 IEEE.

Item Type:Conference Paper (UNSPECIFIED)
Uncontrolled Keywords:Agglomeration, Alpha particle spectrometers, Asset management, Chlorine compounds, Particle spectrometers Cardinality, Dynamic aggregation, Feature construction, Frequency matrix, International conferences, Learning data, Modelling and simulation, Paper addresses, Predictive accuracy Neonatal monitoring
Subjects:?? QA273-280 ??
Divisions:SCHOOL > School of Engineering and Information Technology
ID Code:2651
Deposited By:IR Admin
Deposited On:19 May 2011 16:01
Last Modified:30 Dec 2014 14:42

Repository Staff Only: item control page


Browse Repository
Collection
   Articles
   Book
   Speeches
   Thesis
   UMS News
Search
Quick Search

   Latest Repository

Link to other Malaysia University Institutional Repository

Malaysia University Institutional Repository