BORANG PENGESAHAN STATUS TESIS@

JUDUL: TRADITIONAL PRACTICES, CONTEMPORARY PERSPECTIVES AND POLICY REVIEW IN SHRIMP FARMING, IN SABAH, MALAYSIA

IJAZAH: DOKTOR FALSAFAH

Saya, NORASMA DACHO mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis ini adalah hak milik Universiti Malaysia Sabah
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi tinggi
4. TIDAK TERHAD

Disahkan oleh

(Penulis: NORASMA DACHO)
Alamat:
Rumah No. 6. Lorong 12,
Taman Sri Kepayan,
Jalan Penampang,
88200 Kota Kinabalu,
Sabah, MALAYSIA.

(Penyelia: Prof. Dr. Saleem Mustafa)

Tarikh: 12 Februari 2008

CATATAN:@ Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM)
TRADITIONAL PRACTICES, CONTEMPORARY PERSPECTIVES AND POLICY REVIEW IN SHRIMP FARMING IN SABAH, MALAYSIA

NORASMA DACHO

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BORNEO MARINE RESEARCH INSTITUTE
UNIVERSITY MALAYSIA SABAH
2007
SUPERVISOR’S DECLARATION

TITLE: TRADITIONAL PRACTICES, CONTEMPORARY PERSPECTIVES AND POLICY REVIEW IN SHRIMP FARMING IN SABAH, MALAYSIA

DEGREE: DOCTOR OF PHILOSOPHY

VIVA DATE: 27 DECEMBER 2007

DECLARED BY

1. SUPERVISOR
 (NAME OF SUPERVISOR)

 PROF. DR. SALEEM MUSTAFA

 SIGNATURE

 Saleem Mustafa
DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

NORASMA DACHQ
PS 04-004-015
17 JANUARY 2008
ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Dr. Saleem Mustafa for his unwavering guidance and support throughout this study and for critically and constructively reviewing this thesis, his infectious enthusiasm and hard work has kept me focused in my quest this past three years.

I thank the Public Service Department of Malaysia for awarding scholarship through grant JPA H 0605168. Thanks also to the Public Service Department of Sabah and Department of Fisheries Sabah for granting the study leave.

I am grateful to my colleagues in the Department of Fisheries Sabah for their assistance in furnishing data, reports, and information for this study.

Thanks to all the Borneo Marine Research Institute lecturers, staff, and postgraduate students for their encouragement, hospitality and friendship.

I am indebted to my family for their unconditional support, love and prayers.

Alhamdulillah, praise to Allah.
ABSTRACT

TRADITIONAL PRACTICES, CONTEMPORARY PERSPECTIVES AND POLICY REVIEW IN SHRIMP FARMING IN SABAH

Disease and effluent management continue to be the most challenging task for shrimp farmers in Sabah causing enormous economic losses, driving some farmers to abandon the farming entirely. Effluent and disease issues will need to be examined in order to develop better approaches to suggest the most effective ways of dealing with problems in shrimp farming. Information about successful economic choices and how and where does shrimp farming placed in the overall aquaculture policy is also essential. Understanding such complex issues requires a holistic process which integrates scientific and technical variables with social science method. The aim of this study was to assess practices with regard to disease and effluent management in conventional shrimp farming including elements of successful microeconomic parameters to investigate the economic strengths and policies to support its sustainability. This study was designed to collect primary and secondary data through 1) case study observation in ten shrimp farms on the west coast of Sabah, 2) mail survey questionnaire, 3) a case study based on a micro economic model to synthesize microeconomic strengths, and 4) policy analysis to assess some macroeconomic factors and development strategies for shrimp farming. Data collected in mail survey were managed and analyzed using the Statistical Package for Social Sciences (SPSS Version 11.5) software. Primary and secondary data collected were analyzed qualitatively based on logical approach; variables observed were grouped into themes to achieve the objectives. The microeconomic parameters included in this case study were cost of development, feed, fertilizers, chemical, post-larvae, farming period, feed conversion ratio, yield, and labor cost. A critical construction of policy analysis is presented regarding institutional support specifically the role of the Department of Fisheries Sabah for development and initiatives towards sustainable shrimp farming. This study provided the first empirical data that will pave the way for proposing the most effective means of dealing with shrimp health scares in Sabah. Results show that despite practicing some disease management criteria, shrimp farming continues to lag behind in disease exclusion and even taking reactive steps when infectious diseases strike their farm. Findings in this thesis supports identifying underlying issues affecting shrimp farming in Sabah which are not prepared for the battle against disease threats and lacks prudent measures in environmental management. Production variables synthesized in this case study had demonstrated a strong link between efficient shrimp farm management and microeconomic choices that could result in financial success. The policies established so far are based on a broader view of aquaculture development with very little attention awarded to how exactly sustainability and responsible shrimp farming is to be tackled effectively. It is concluded that any policy formulation and expansion plan for shrimp farming should involve farmers directly and must be based on a consultative, participatory and farmer-first approach.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 TRADITIONAL PRACTICES IN SHRIMP FARMING 1
1.2 SHRIMP FARMING IN SABAH 3
1.3 THE DISEASE ISSUES 4
1.4 THE ECONOMIC IMPORTANCE 4
1.5 NATURAL RESOURCES IN SHRIMP FARMING 6
1.6 PROBLEM STATEMENT 7
1.7 OBJECTIVES 8

CHAPTER 2: LITERATURE REVIEW

2.1 DEVELOPMENT OF SHRIMP FARMING 9
2.2 FARMING SYSTEM 9
2.3 ISSUES IN SHRIMP FARMING 11
2.4 SOCIO-ECONOMIC ISSUES 11
2.5 ENVIRONMENTAL ISSUES 12
2.6 USE OF CHEMICALS 14
2.7 POND EFFLUENTS 15
2.8 MANAGEMENT OF EFFLUENT 16
2.9 DISEASE MANAGEMENT 20
2.10 APPROACHES TO REDUCE DISEASE 21
2.11 BIOSECURITY MEASURES 24
2.12 CODE OF CONDUCT 26
2.13 BEST MANAGEMENT PRACTICES 28
2.14 POLICY FOR SHRIMP FARMING 29
2.15 STRATEGIES FOR SUSTAINABILITY 30
2.16 REGIONAL INITIATIVES 33
2.17 ORGANIC SHRIMP 34
2.18 FARMER FIRST APPROACH 37

vi
CHAPTER 3: RESEARCH METHODOLOGY

3.1 OVERVIEW 39
3.2 RATIONALE FOR QUALITATIVE AND QUANTITATIVE METHODS 39
3.3 TECHNICAL SITE OBSERVATION AND INTERVIEW 41
 3.3.1 Description of Technical Site Observation and Interviews 41
 3.3.2 Profile of Participants 43
 3.3.3 Steps in Technical Site Observation and Interviews 43
 3.3.4 Advantageous and Disadvantageous Of Study Method 46
 3.3.5 Analyzing Qualitative Data 47
3.4 MAIL SURVEY 47
 3.4.1 Description of Mail Survey 48
 3.4.2 Profile of Respondents 48
 3.4.3 Steps in Mail Survey 49
 3.4.4 Advantageous and Disadvantageous Of Mail Survey 50
 3.4.5 Analyzing Quantitative Data 51
3.5 MICROECONOMIC OF SHRIMP FARMING; A CASE STUDY 51
3.6 POLICY ANALYSIS FOR SHRIMP FARMING 55

CHAPTER 4: TRADITIONAL PRACTICES OF SHRIMP FARMING A CASE STUDY ON THE WEST COAST OF SABAH

4.1 RESULTS AND ANALYSIS OF TECHNICAL CASE STUDY OBSERVATION AND INTERVIEWS 58
 4.1.1 Farming System 58
 4.1.2 Site Selection 61
 4.1.3 Land Use 62
 4.1.4 Farm record 62
 4.1.5 Inlet and Outlet Gate 64
 4.1.6 Use of Chemicals 66
 4.1.7 Community Relations 68
 4.1.8 Environmental Criteria 69
 4.1.9 Possible Disease Transmission 71
 4.1.10 Steps to Reduce Disease 72
 4.1.11 Disease Management 74
 4.1.12 Effluent Management 75
 4.1.13 Formal training 76
 4.1.14 Technical and Extension Services 77
4.2 DISCUSSION OF CASE STUDY 77
 4.2.1 Disease Management in Traditional Practices 77
 4.2.2 Effluent Management in Traditional Practices 80
6.11 A CASE STUDY OF MICROECONOMICS IN SHRIMP FARMING

6.11.1 Analysis of Case Study
6.11.2 History and Financing
6.11.3 Farm Site
6.11.4 Farm Administration
6.11.5 Economic Strengths
6.11.6 Production
6.11.7 Farming System
6.11.8 Shrimp Type
6.11.9 Environmental Management
6.11.10 Harvesting
6.11.11 Incentives for Farm Workers
6.11.12 Challenges and Future Programs

6.12 MICROECONOMICS

CHAPTER 7: POLICY ANALYSIS

7.1 OVERVIEW
7.2 CONTRIBUTION TO GDP
7.3 EXPORTS OF SHRIMP
7.4 INSTITUTIONAL SET UP
7.5 RELEVANT LAWS AND REGULATION
7.6 AQUACULTURE POLICY
7.7 POLICY FOR SUSTAINABLE SHRIMP FARMING
 7.7.1 Programs in 8TH Malaysia Plan
 7.7.2 Programs in 9TH Malaysia Plan
7.8 DISCUSSION OF POLICY FOR SUSTAINABLE SHRIMP FARMING
 7.8.1 Policy Formulation
 7.8.2 Program Development for Sustainable Shrimp Farming

CHAPTER 8: SUMMARY

8.1 FINDINGS
 8.1.1 Shrimp Farming Characteristics
 8.1.2 Profile of Farm Managers
 8.1.3 Qualitative and Quantitative Dimensions Of Traditional Practices
 8.1.4 Relationship Between Variables
 8.1.5 Microeconomic Dimension
 8.1.6 Policy for Shrimp Farming
8.2 THESIS OUTLINE

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS

9.1 TRADITIONAL PRACTICES OF SHRIMP FARMING
9.2 ECONOMIC DECISIONS IN TRADITIONAL
PRACTICES

9.3 POLICY INITIATIVES FOR SHRIMP FARMING 216

9.4 PHASING THE FUTURE 210

9.4.1 Networking 212

9.4.2 Extension 212

9.4.3 Biosecurity Model Shrimp Farm 213

9.4.4 Farmer-First Approach 213

9.4.5 Standard Operation Procedure 214

9.4.6 Capacity Building and Policy Development 215

9.5 POLICY FRAMEWORK FOR SHRIMP FARMING 216

9.5.1 Introduction 216

9.5.2 Background 216

9.5.3 Challenges and Solutions 217

9.5.4 Purpose 217

9.5.5 Implementation 221

9.6 FUTURE RESEARCH 223

REFERENCES 224

APPENDIX 1 LIST OF QUESTIONS FOR SITE OBSERVATION 243

APPENDIX 2 MAIL SURVEY QUESTIONNAIRE 245
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Sabah: Balance of Trade for Fisheries (RM million)/ mt</td>
<td>5</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Production of P. monodon 2000 - 2004</td>
<td>5</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Characteristics of Shrimp Farm</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Different Farming Systems in Asia</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Characteristics of the Shrimp Ponds at the Gulf of California Eco-region</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Actual and Potential Environmental Impacts</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Mitigation Measures for Shrimp Farm Effluent</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Alternative Approach to Reduce Disease Problems</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Biosecurity Measures in Shrimp Farming</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Sustainable Practices of Responsible Shrimp Farming</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Management Practices for Farm Certification</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Standards and Guidelines for Organic Shrimp</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Management Practice for Organic and Conventional Shrimp Pond</td>
<td>37</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Questions for Technical Site Observation</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Procedures for Mail Survey</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Lists of Variables in Case Study</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Production Parameters</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Items for Cost of Production</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Items for Cost of Development</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Materials and Methods</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Farm Size, Disease Experience and Effluent Treatment</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Effluent Management</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Disease Prevention</td>
<td>82</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Summary of Questions in Mail Survey</td>
<td>86</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Years in Operation</td>
<td>89</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Farm Location and Response Rate</td>
<td>89</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Farm Size</td>
<td>90</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Summary of Survival Rates</td>
<td>90</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Statistical Analysis for Survival Rates</td>
<td>90</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Education Level</td>
<td>91</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Other Work besides Shrimp Farming</td>
<td>91</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Training in Site Selection</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>Training in Pond Management</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Training in Disease Prevention</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.12</td>
<td>Training in Feed Management</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.13</td>
<td>Land Use</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.14</td>
<td>Community Relation</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.15</td>
<td>Farm Design and Construction</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.16</td>
<td>Possible Disease Transmission</td>
<td>97</td>
</tr>
<tr>
<td>Table 5.17</td>
<td>Disease Prevention</td>
<td>99</td>
</tr>
<tr>
<td>Table 5.18</td>
<td>Use of Antibiotics</td>
<td>100</td>
</tr>
<tr>
<td>Table 5.19</td>
<td>Use of Chlorine</td>
<td>100</td>
</tr>
<tr>
<td>Table 5.20</td>
<td>Use of Probiotics</td>
<td>100</td>
</tr>
<tr>
<td>Table 5.21</td>
<td>Environmental Criteria</td>
<td>101</td>
</tr>
<tr>
<td>Table 5.22</td>
<td>Feed Management</td>
<td>101</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Map of Sabah showing location of technical site observation</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Long arm paddle wheels used in a shrimp farm in Beaufort</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Short paddle wheels used in a shrimp farm in Tuaran</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>View of shrimp pond in Tuaran</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>View of shrimp farm in Kota Belud</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>CP shrimp feed used by farms in Tuaran</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>CP grower feed</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Picture of juvenile P. monodon taken at a shrimp farm in Kota Belud</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Picture of juvenile P. vannamei taken at a shrimp farm in Kota Belud</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Farms located in mangrove area- Beaufort</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Accessed to water- shrimp farm in Tuaran</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Record of pond size – shrimp farm in Kota Belud</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Feeding chart - shrimp farm in Kudat</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Feed storage - shrimp farm in Tuaran</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Interview at the site office - shrimp farm in Tuaran</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Intake pump on concrete – shrimp farm in Kota Belud</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>On the jetty intake pump – shrimp farm in Tuaran</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Water is pump into reservoir pond in Tuaran</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>Concrete intake canal to transport water to grow out pond in a shrimp farm in Tuaran</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.19</td>
<td>Screened inlet water used in a shrimp farm in Kudat</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.20</td>
<td>Cage mesh for screening used in a shrimp farm in Tuaran</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.21</td>
<td>Structure of outflow gate at a shrimp farm in Kudat</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.22</td>
<td>Opening gate for outflow at a shrimp farm in Kudat</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.23</td>
<td>Release of waste water at a shrimp farm in Tuaran</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.24</td>
<td>Long canal for outflow at a shrimp farm in Tuaran</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.25</td>
<td>Farm worker preparing fertilizer at a shrimp farm in Kota Belud</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.26</td>
<td>Organic Fertilizer – at a shrimp farm in Kota Belud</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.27</td>
<td>Lime – taken at a shrimp farm in Tuaran</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.28</td>
<td>Tea seed cake – taken at a shrimp farm in Kudat</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.29</td>
<td>Probiotic – used by shrimp farms in Tuaran</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.30</td>
<td>Photosynthesis Bacterium – taken at a shrimp farm in Kudat</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.31</td>
<td>Amino Acid and Minerals - taken at a shrimp farms in Kota Belud</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.32</td>
<td>Vitamin – at a shrimp farm in Beaufort</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.33</td>
<td>Quarters for Workers – pet dogs were observed in all farms</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.34</td>
<td>Pet dogs for security</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.35</td>
<td>Feeding tray – were observed in all farms</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.36</td>
<td>Monitoring feeding efficiency; shrimp</td>
<td>70</td>
</tr>
</tbody>
</table>
Farm in Kota Belud

Figure 4.37 Shrimp in feeding tray 70
Figure 4.38 Monitoring shrimp growth 70
Figure 4.39 Secchi – a shrimp farm in Kota Belud 71
Figure 4.40 Secchi for measuring turbidity was observed in all farms 71
Figure 4.41 Spreading feed – at a shrimp farm in Kuala Penyu 72
Figure 4.42 Feed transport raft – used at a shrimp in Kota Belud 72
Figure 4.43 Sludge area – at a shrimp farm in Tuaran 73
Figure 4.44 Flushing pond bottom at a shrimp farm in Kuala Penyu 73
Figure 4.45 Drying pond bottom – shrimp farm in Tuaran 73
Figure 4.46 Dried and cracked pond bottom – a shrimp farm in Beaufort 73

Figure 4.47 Black thick soil formed as sludge 75
Figure 4.48 Outflow water canal – at a shrimp farm in Tuaran 75
Figure 5.1 Years in Operation 88
Figure 5.2 Farm Location 88
Figure 5.3 Experienced in Shrimp Farming 91
Figure 5.4 Stocking Rate 94
Figure 5.5 Disease Type 96
Figure 5.6 Informing Neighbor When Disease Happens 97
Figure 5.7 Sludge Management 98
Figure 5.8 Fate of Diseased and Dead Shrimp 98
Figure 6.1 Shrimp Farming, Sabah; Production Trends, 1987-1992 122
Figure 6.2 Farming Areas 1995-2004 123
Figure 6.3 Production and Value of Shrimp, Sabah 1995-2004 124
Figure 6.4 Supply Chain Process in Shrimp Aquaculture 128
Figure 6.5 Building and Testing a Model 134
Figure 6.6 Economic Model for Successful Shrimp farm 139
Figure 6.7 Site Office 145
Figure 6.8 Briefing by Farm Technician 145
Figure 6.9 Aerial View 145
Figure 6.10 Sedimentation Pond and Sludge Area 145
Figure 6.11 View of Farm 146
Figure 6.12 Shrimp Pond 146
Figure 6.13 Organization Chart 147
Figure 6.14 Discussion in Site Office 148
Figure 6.15 Collecting Shrimp after Harvesting 148
Figure 6.16 Cleaning Pond Bottom with Hitachi Tractor 154
Figure 6.17 Scrapping Pond Sludge 154
Figure 6.18 Seed Selection 154
Figure 6.19 Fertilizer 154
Figure 6.20 Cast net 154
Figure 6.21 Equipment for Water Quality 154
Figure 6.22 Starter Feeder for P. monodon 155
Figure 6.23 P. vannamei Feed 155
Figure 6.24 Checking Feeding Tray 155
Figure 6.25 Wooden Raft use for Feeding 155
Figure 6.26 Aerated Pond 156
Figure 6.27 Technician Explaining Feed Management 156
Figure 6.28 Settling of Waste Water 156
Figure 6.29 Sludge Accumulated in the Center 156
Figure 6.30 Using Net to Harvest Shrimp 159
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CP</td>
<td>Charoen Pokphand</td>
</tr>
<tr>
<td>DOFS</td>
<td>Department of Fisheries Sabah</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FCR</td>
<td>feed conversion ratio</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analytical Critical Control Point</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards of Organization</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>millimeter</td>
</tr>
<tr>
<td>mt</td>
<td>metric tonne</td>
</tr>
<tr>
<td>NACA</td>
<td>Network of Aquaculture Center in Asia Pacific (NACA)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PL</td>
<td>post larvae</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>SIRIM</td>
<td>Standards and Industrial Research Institute of Malaysia</td>
</tr>
<tr>
<td>SPLAM</td>
<td>Sijil Perladangan Ladang Akuakutur Malaysia</td>
</tr>
<tr>
<td>SPF</td>
<td>specific pathogen free</td>
</tr>
<tr>
<td>SPR</td>
<td>specific pathogen resistant</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>SS</td>
<td>settleable solids</td>
</tr>
<tr>
<td>TDM</td>
<td>Total Design Method</td>
</tr>
<tr>
<td>TSS</td>
<td>total suspended solids</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nation Environmental Program</td>
</tr>
<tr>
<td>VAS</td>
<td>Vertical Artificial Substrate</td>
</tr>
<tr>
<td>WB</td>
<td>World Bank</td>
</tr>
<tr>
<td>WSSV</td>
<td>White Spot Syndrome Virus</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Traditional Practices in Shrimp Farming

Disease problems and environmental issues in shrimp farming have caused worries about the sustainability of traditional farming practices (Otoshi et al., 2005). Persistent disease and environmental threats originating from traditional practices have also caused concern in Sabah. Conventional practices are rooted strongly in the operational system, lacking in modernization and the best health care standards. If this continues, it will contribute to negative environmental impacts and greater challenges in disease management. Incorporating contemporary perspectives in traditional practices with modern techniques in effluent and disease management is the way forward and key to sustainable shrimp farming.

Similar to other aquaculture activities, qualitative and quantitative description of the characteristics of shrimp farming in Sabah is inadequate. Very little information is available regarding the general trend in dealing with environmental and disease issues and general farm management practices. There is no empirical study to address effluent and health related issues. This is the first comprehensive empirical study that could provide baseline data based on ground realities. It is important to offer evidence-based approach for consideration of policy makers to offer guidelines to ensure that the shrimp farming develops on informed decisions.

Profiles of farm characteristics and managers are essential indicators that should be taken into account to ensure that all development programs and extension services fit the industry needs and could be appropriately delivered. A thorough assessment of the farming practices will provide a basis for recommendations for the most viable way of producing shrimp consistent with the sustainability criteria.

Over the years, shrimp farming in Sabah has witnessed the evolution of farm production in applying various techniques. However, maintaining stringent environmental-friendly production and high standards of disease management in the farm is a major challenge to every farmer. Because shrimp farming involved the
application of technological systems and the exploitation of natural resources, it is also important to address the human dimension of it.

The vulnerability of environmental and biological resources in shrimp aquaculture and its association with the total operation depend largely on farmers' decision of choice weather to operate in a commendable manner or fall into reap-and-run attitude. Farmers have to be alert and be well prepared to deal with environment and disease management issues. Disease threats come from multiple factors whereby the pathogens are horizontally or vertically transmitted as a result of poor site selection, absence of high health stock, lack of quarantine regulation, inadequate technical skills, and poor pond management. Obviously, microeconomic choices made by farm managers will have big influence on the effluent and disease management, the volume of production, and financial success of the shrimp farms.

Economic choices made by stakeholders play the biggest role in sustainable shrimp farming. The decision to continue with shrimp production lies on the financial perspective, whether it is profitable and worthwhile to carry on. It begins with the site selection, choosing the right species, adopting the farming system, overall farm management, up to the stage of marketing the products.

Good economic decisions are necessary for farmers to stay in business and to carry on with their production. Microeconomic decisions at the farm level are important to ensure that the shrimp farms maintain the parameters of success to counter any internal and external disease threats and environmental challenges. Therefore, a study of microeconomic choices will be helpful in outlining the parameters of success for viable shrimp farming. It will present information for shrimp farmers to refer to and assist them in making microeconomic decisions to stay in business.

For the last ten years, shrimp farmers in Sabah have been battling with disease problems. In the absence of biosecurity and high level of environmental management strategy, traditional shrimp farming will continue to be considered a high-risk business. Therefore, for the shrimp aquaculture to be ecologically and economically sustainable, the production phase has to be synergized with recent technology and has to depend on the equilibrium between human capability and
resource availability. Better approach is needed to establish the best feasible ways of dealing with disease threats and keeping the farm away from any health risks.

Environmental impacts and challenges of disease and marginal quality of post-larvae are some of the limiting factors for shrimp industry to expand further. Some farmers claim to be adopting modern approaches while others continue operating in a production system that works for short-term economic benefits. The production of shrimp is vulnerable to outside forces, be it on the macro or micro levels, some are beyond farmers ability to deal with, especially so when the farm is operated on a conventional system.

Record of stakeholders’ participation in policy formulation and the status of the implementation of Responsible Aquaculture and Better Management Practices for the shrimp farms in Malaysia is not available. The burden of progression to move towards environment-friendly production and technically feasible farming systems that adopt a high level of disease management rests on all stakeholders. In order for the shrimp farms to succeed in combating diseases and maintaining environment-friendly systems, cooperation between all stakeholders should be in place to ensure the sustainability and economic viability of this sector. Consequently, examining existing policy for responsible sustainable shrimp farming could be useful in offering appropriate and intervention approach to ensure the shrimp industry continue to be a viable option.

1.2 Shrimp Farming in Sabah
A study conducted by Department of Fisheries and Network of Aquaculture Centers in the Asia Pacific (NACA) in 1996 indicated that in 1994 there were 140 shrimp farms in Sabah (Department of Fisheries Sabah and NACA, 1996). After more than a decade, the number dropped to 72 shrimp farms (in 2005). Most commonly shrimp farms are operated at a semi-intensive and small-scale level, concentrated mainly on the east coast of Sabah. The production system typically changes 5% water for the first month, 10% in the second month and 20%-50% during the third and fourth months (Department of Fisheries Sabah and NACA, 1996).

The production of tiger shrimp, *Penaeus monodon*, in Sabah has been encouraging in the past ten years. Shrimp is considered a very important contributor
to the aquaculture production. Development programs for shrimp farming are targeted at increasing production, foreign exchange earnings, and uplifting the socioeconomic standard of farmers. They have contributed to the expansion of shrimp farming in Sabah. Shrimp aquaculture has played an important role in meeting the demand of fresh shrimp for the local seafood industry in Sabah. It has also created economic opportunities for other related supporting activities such as the hatcheries, feed producers, packaging, processing, retailers, exporters, and aquaculture consultants.

1.3 The Disease Issues
Since 1995, losses due to White Spot Syndrome Virus (WSSV) in the Malaysian shrimp industry are estimated to be US$25 million annually (Yang et al., 2001). This infection was first noticed in 1998, believed to be due to the illegal entry of post-larvae from a neighboring country (Lai, 2002). Since then it has continued to pose a serious threat to shrimp industry in Sabah. Disease threats have caused some farmers on the east coast to close their farm after experiencing major economic loses. Generally, farmers are trying to prevent the entry of pathogens and threat of disease by acquiring specific pathogen-free post-larvae supplied by local hatcheries, tested by Polymerase Chain Reaction (PCR) method for WSSV. Recent approaches to the technical aspect of shrimp farming have included site selection, proper pond management, disease prevention, water management and effluent treatment. However, there is no report to indicate that these preventative procedures are practiced by shrimp farmers in Sabah. Despite the threats and outbreaks of diseases, untreated pond effluents and poor pond management still constitute the typical practices in the traditional systems.

1.4 The Economic Importance
With the increase in world population and purchasing power of industrialized nations, the demand for shrimp in the international market continues to grow. Customer spending capabilities in some of the Asian “Tiger economies” such as Singapore, Hong Kong and Malaysia have played bigger role in providing market, influencing higher demand for shrimp. In the context of Sabah seafood exports, farmed shrimp will continue to lead the exports of crustaceans in support of the declining catch of the marine shrimp.
Trade and production statistics are testimony to the importance of shrimp industry for Sabah (Table 1.1 and Table 1.2). In terms of value, Sabah earned about RM401 million in 2003 from exports of seafood, and shrimp shared almost 50% (RM188 million) of the total value, while record of wholesale value of shrimp aquaculture for that year was RM86.6 million, about 20% of the total value of shrimp exports (Department of Fisheries Sabah, 2005a).

Department of Fisheries Sabah record shows that the production of farmed shrimp in Sabah has increased from 2064 metric tones in 2000 to 5441 metric tones in 2001, while in 2002 and 2003 it dropped to 2889 metric tones, and 2865 metric tones, respectively. Despite the decline in production, Sabah continued to be among the top four producer states in Malaysia.

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export</td>
<td>RM383 (36,002 mt)</td>
<td>RM392 (40,535 mt)</td>
<td>RM446 (58,502 mt)</td>
<td>RM401 (56,684 mt)</td>
<td>RM439 (64,062 mt)</td>
</tr>
<tr>
<td>Import</td>
<td>RM46 (8746 mt)</td>
<td>RM50 (8919 mt)</td>
<td>RM57 (11,806 mt)</td>
<td>RM61 (12,504 mt)</td>
<td>RM103 (13,798 mt)</td>
</tr>
<tr>
<td>Balance of trade</td>
<td>RM337</td>
<td>RM342</td>
<td>RM389</td>
<td>RM340</td>
<td>RM336</td>
</tr>
</tbody>
</table>

Source: Annual Fisheries Statistics 2004, Department of Fisheries, Sabah

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of ponds</td>
<td>1,492</td>
<td>1,819</td>
<td>1,752</td>
<td>2,073</td>
<td>1,894</td>
</tr>
<tr>
<td>Production (metric tones)</td>
<td>2,064</td>
<td>5,441</td>
<td>2,889</td>
<td>2,865</td>
<td>2,241</td>
</tr>
<tr>
<td>Wholesale Value (RM million)</td>
<td>RM60</td>
<td>RM163.2</td>
<td>RM92.4</td>
<td>RM86.6</td>
<td>RM73.7</td>
</tr>
</tbody>
</table>

Source: Annual Fisheries Statistics 2004, Department of Fisheries Sabah

Shrimp farming is still very much favored as one of the sectors that will continue to contribute to aquaculture production. In spite of several reported cases of large-scale economic losses, new comers to shrimp farming continue to increase. Sabah has the competitive advantage to significantly increase the shrimp production. It has readily available human resources, suitable areas, basic technology and locally available shrimp broodstock to support the hatcheries. Sabah is strategically located for export route to Japan, Hong Kong, Brunei and other Asia-Pacific countries.
Appropriate proactive measures will be needed to ensure that these advantages are maintained and managed professionally. It is widely recognized that the economic viability of shrimp farming can only continue if environment-friendly technology is used that the vitally important ecological links are not threatened or degraded.

1.5 Natural Resources use in Shrimp Farming

Shrimp farms are normally built on environmentally sensitive coastal areas in a sandy or clay soil behind mangrove forests using several engineering techniques to build ponds. Environment-friendly shrimp farming requires the farmer to understand the ecosystem processes and optimum level at which the natural resources could be exploited.

Upon selection of the type of species and the type of farming system to operate, farmers will prepare ponds with good water quality before stocking. Maintaining water quality throughout the farming period is utterly important for high economic returns at the end of the farming period. This requires basic and good knowledge of physical parameters of water quality standards, prevention of diseases, management of feed, and treatment of waste.

Because of its favorable economic returns, the tiger shrimp has always been the first choice in Sabah. This species is indigenous to this region; it fetches high market value and its hatchery and farming techniques have been available for many years. Farmed shrimp are fed with high protein feed pellets. Only a small amount of feed digested and retained by the animal while the remaining amount of dissolved and particulate matter are left as pond waste, and when released outside it could have negative effects on the receiving water.

The production process of shrimp farming is not without environmental implications and there is a need to use methods that are based on careful management, striking a balance in the ‘consumption’ of biological and environmental resources to achieve the best economic outcome. Most shrimp farmers in Sabah discharge waste from ponds during and after each crop cycle (Department of Fisheries Sabah and NACA, 1996). Such practices have enormous negative impacts on the environment. Therefore, appropriate evaluation and understanding of the existing farm practices is a key to development of a workable and suitable policy.
REFERENCES

Beveridge, M. C. M., Philips, M. J. and Macintosh, D.J. 1997. Aquaculture and the environment; the supply of and demand for environmental goods and

Department of Fisheries Sabah. 2006b. *Cadangan Rancangan Malaysia ke-9 bagi projek baru (Pembangunan Persekutuan)*. Jabatan Perikanan Sabah, Kementerian Pertanian dan Industri Makanan, Sabah.

235

