Universiti Malaysia Sabah

Borang Pengesahan Status Tesis

Judul: Comparison of Frying Effect of Rice Bran Oil and Palm Olein

Ijazah: Degree of Bachelor of Food Science With Honours in Food Technology and Bioprocess

Sesi Pengajian: 2006/2010

Saya, Chew Hueih Ming

(HURUF BESAR)

Mengakui membenarkan tesis (LPSI/Sarjanal Doktor Falsafah) ini di simpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. ** Sila tandakan (/)

 [] SULIT
 [] TERHAD
 [] TIDAK TERHAD

(Tandatangan Penulis)

Alamat Tetap: 28, Laluan Bercham
Selatan 5, Taman Cahaya Tasek,
31400 Ipoh, Perak.

Tarikh: 24/5/2010

(Tandatangan Pustakawan)

Nama Penyelia

Tarikh: 24/5/2010

* Tatang: * Potong yang tidak berkenaan.
* Jika tesis ini SULIT atau TERHAD, sila lampiran surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Proyek Sarjana Muda (LPSM).
COMPARISON OF FRYING EFFECT OF RICE BRAN OIL AND PALM OLEIN

CHEW HUEIH MING

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF BACHELOR OF FOOD SCIENCE WITH HONOURS IN FOOD TECHNOLOGY AND BIOPROCESS

SCHOOL OF FOOD SCIENCE AND NUTRITION
UNIVERSITI MALAYSIA SABAH
2010
DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

16 APRIL 2010

CHEW HUEIH MING
HN2006-3300
CERTIFICATION

<table>
<thead>
<tr>
<th>NAME</th>
<th>CHEW HUEIH MING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIC NO.</td>
<td>HN2006-3300</td>
</tr>
<tr>
<td>TITLE</td>
<td>COMPARISON OF FRYING EFFECT OF RICE BRAN OIL AND PALM OLEIN</td>
</tr>
<tr>
<td>DEGREE</td>
<td>FOOD SCIENCE WITH HONOURS IN FOOD TECHNOLOGY AND BIOPROCESS</td>
</tr>
<tr>
<td>VIVA DATE</td>
<td>12 MAY 2010</td>
</tr>
</tbody>
</table>

DECLARED BY

1. **SUPERVISOR**
 (MDM. CHLOE FAN HUI YIN)

2. **EXAMINER 1**
 (DR. MUHAMMAD IQBAL HASHMI)

3. **EXAMINER 2**
 (PROF. MADYA DR. SHARIFUDIN MD SHAARANI)

4. **DEAN**
 (PROF. MADYA DR. MOHD ISMAIL BIN ABDULLAH)
ACKNOWLEDGEMENT

First and foremost, I would like to thank GOD for the wisdom and strength that was given to me throughout the progress of this thesis. I wish to express my deepest gratitude and appreciation to my supervisor, Madam Chloe Fan Hui Yin for her suggestion, professional advice and positive comments. Her continuous encouragement had raised my spirit and served as an impetus for me to carry on this research to the end.

I would also like to take this opportunity to thank my another co-supervisor, Ms Ho Ai Ling who has been patient enough to advise, guide and supervise me throughout my research for the past few months.

I would like to thank my ex-supervisor, Ms Lew Chin Yeen during my industrial practical at Yee Lee Edible Oils Sdn. Bhd. for her support in providing me with the useful information to complete the writing of my thesis.

Last but not least, I would like to thank all my family members that have given me the spiritual and financial supports and advices during my thesis. Deepest appreciation to all my course mates, house mates and friends who had sincerely given their best support and help throughout this research. The personal interest and wisdom shared will always be appreciated.

CHEW HUEIH MING
16 APRIL 2010
Kajian ini dijalankan untuk membandingkan kesan penggorengan minyak dedak dengan minyak kelapa sawit. Kedua-dua jenis minyak digunakan sebagai medium penggorengan untuk menggoreng kentang goreng. Penggorengan ini dijalankan secara berterusan sebanyak enam jam sehari selama lima hari pada suhu 185 ± 5°C. Sampel minyak dikumpulkan pada hari penggorengan yang kelima dan digunakan untuk analisis kimia seperti asid lemak bebas, nilai peroksida, warna, nilai p-anisidin, nilai iodin dan titik asap. Kedua-dua minyak menunjukkan peningkatan dalam asid lemak bebas, nilai peroksida, warna dan nilai p-anisidin manakala terdapat pengurangan dalam nilai iodin dan titik asap sepanjang masa penggorengan. Minyak dedak mengalami peningkatan asid lemak bebas yang lebih kecil berbanding dengan minyak kelapa sawit di mana asid lemak bebas minyak dedak meningkat dari 0.142 ± 0.007% ke 0.66% dan 0.079% ke 0.93 ± 0.01% untuk minyak kelapa sawit. Minyak dedak menunjukkan peningkatan yang konsisten dalam penentuan nilai peroksida iaitu dari 3.9 ± 0.007 meq per kg ke 13.35 ± 0.21 meq per kg manakala minyak kelapa sawit mempunyai nilai awal pada 3.4 meq per kg dan meningkat ke 34.55 ± 1.48 meq per kg pada hari penggorengan yang kelima. Warna minyak dedak menunjukkan peningkatan yang lebih banyak dalam kemerahan dan kekuningan tetapi kurang kehitaman berbanding dengan minyak kelapa sawit. Nilai p-anisidin meningkat sepanjang masa penggorengan bagi kedua-dua minyak di mana peningkatan dari 12.19 ± 0.20 ke 32.65 ± 1.06 untuk minyak dedak. Minyak kelapa sawit mempunyai peningkatan yang lebih banyak berbanding dengan minyak dedak iaitu dari 10.45 ± 0.15 ke 60.75 ± 0.19. Kedua-dua minyak menunjukkan pengurangan dalam nilai iodin di mana nilai iodin minyak dedak menurun dari 94.5 ± 0.75 ke 66.5 ± 1.27 manakala nilai iodin minyak kelapa sawit menurun dari 50.9 ± 2.10 ke 44.6 ± 0.14. Dalam penentuan titik asap pula, titik asap menurun dari 235 ± 1°C ke 187.5 ± 0.7 dan dari 220 ± 1°C ke 177.5 ± 0.7°C untuk minyak dedak dan minyak kelapa sawit masing-masing. Kualiti kentang goreng selepas penggorengan juga ditentukan dengan penilaian sensori. Kentang goreng yang digoreng dengan minyak dedak masih diterima oleh ahli panel walaupun digoreng selama lima hari manakala kentang goreng yang digoreng dengan minyak kelapa sawit pada hari ketiga mempunyai min yang paling tinggi bagi semua ciri-ciri sensori. Kesimpulannya, minyak dedak mempunyai kestabilan yang lebih baik berbanding dengan minyak kelapa sawit dalam penggorengan.
ABSTRACT

COMPARISON OF FRYING EFFECT OF RICE BRAN OIL AND PALM OLEIN

This research was conducted to determine the frying effect of rice bran oil by comparing with palm olein. The oils were used as a frying media to fry French fries continuously for six hours a day up to a maximum of five days at a temperature of 185 ± 5°C. Oil samples were collected on the fifth frying day and analyzed for free fatty acid, peroxide value, colour, p-anisidine value, iodine value and smoke point. At the end of the frying period, free fatty acid, peroxide value, colour and p-anisidine value increased whereas the iodine value and smoke point decreased. The rate of free fatty acid (FFA) formation of rice bran oil was slightly lower than the palm olein during five days frying. FFA of rice bran oil increased from 0.142 ± 0.007% to 0.66% compared to palm olein which was from 0.079% to 0.93 ± 0.01%. Peroxide value of rice bran oil showed consistent increased from 3.9 ± 0.007 meq per kg to 13.35 ± 0.21 meq per kg while palm olein marked the initial value at 3.4 meq per kg and then increased to 34.55 ± 1.48 meq per kg on the fifth day. The colour of rice bran oil showed increased in redness and yellowness but less dark than the palm olein after the frying period. The level of p-anisidine value (p-Av) for rice bran oil increased from 12.19 ± 0.20 to 32.65 ± 1.06 from the initial to the end of frying day. Palm olein had higher rate of changes in p-AV compared to rice bran oil which was from 10.45 ± 0.15 to 60.75 ± 0.19. The rate of changes of iodine value decreased over frying time for both oils. Iodine value (IV) of rice bran oil decreased from 94.5 ± 0.75 to 66.5 ± 1.27 while IV of palm olein decreased from 50.9 ± 2.10 to 44.6 ± 0.14. Smoke point of rice bran oil and palm olein progressively dropped from 235 ± 1°C to 187.5 ± 0.7 and from 220 ± 1°C to 177.5 ± 0.7°C. The quality of the French fries was also determined during the frying period. From the sensory data that obtained, French fries with rice bran oil in the fifth frying day still being accept by the panel compared with French fries with palm olein which had highest mean score in the third frying day in all the sensory aspect. It can be concluded that rice bran oil had better stability than the palm olein during the frying process.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF DIAGRAMS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Objectives 3

CHAPTER 2: LITERATURE REVIEW

2.1 Rice Bran 4
 2.1.1 Characteristics of Rice Bran 4
2.2 Rice Bran Oil 4
 2.2.1 Characteristics of Rice Bran Oil 4
 2.2.2 Availability of Rice Bran Oil 5
 2.2.3 Composition of Rice Bran Oil 5
 2.2.4 Physicochemical Properties of Rice Bran Oil 6
 2.2.5 Benefits of Rice Bran Oil 6
 2.2.6 Rice Bran Oil as Frying Oil 7
2.3 Preparation of Rice Bran Oil 7
 2.3.1 Stabilization of Rice Bran 7
 2.3.2 Rice Bran Oil Extraction 8
2.4 Processing of Rice Bran Oil 8
 2.4.1 Degumming and Dewaxing 9
 2.4.2 Refining 9
 2.4.3 Bleaching 10
 2.4.4 Deodorization 10
2.5 Palm Olein 10
 2.5.1 Characteristics of Palm Olein 10
 2.5.2 Composition of Palm Olein 11
 2.5.3 Physicochemical Properties of Palm Olein 11
2.5.4 Use of Palm Olein in Frying
2.6 Palm Olein Processing
 2.6.1 Refining
 2.6.2 Bleaching
 2.6.3 Deodorization
2.7 Frying
 2.7.1 Importance of Frying
 2.7.2 Requirement for Frying Oil
2.8 Changes of Fats and Oils During Frying
 2.8.1 Colour
 2.8.2 Hydrolysis
 2.8.3 Oxidation
 2.8.4 Polymerization
2.9 Physical and Chemical Characteristics of Frying Oil
 2.9.1 Free Fatty Acid
 2.9.2 Peroxide Value
 2.9.3 Colour
 2.9.4 p-anisidine value
 2.9.5 Iodine Value
 2.9.6 Fatty Acid Composition
 2.9.7 Smoke Point
2.10 Sensory Evaluation of Fried Products
 2.10.1 Colour of Fried Products
 2.10.2 Texture of Fried Products
 2.10.3 Odour and Flavour of Fried Products

CHAPTER 3: METHODOLOGY

3.1 Oil Sample Preparation
 3.1.1 Rice Bran Oil
 3.1.2 Palm Olein
3.2 Frying Test
 3.2.1 French Fries Preparation
 3.2.2 Frying of French Fries
3.3 Sampling For Oil Analysis
3.4 Physical and Chemical Analysis of Frying Oil
 3.4.1 Free Fatty Acid
 3.4.2 Peroxide Value
 3.4.3 Colour
 3.4.4 p-anisidine value
 3.4.5 Iodine Value
 3.4.6 Smoke Point
3.5 Sensory Evaluation of Fried Products
3.6 Statistical Analysis
CHAPTER 4: RESULTS AND DISCUSSION

4.1 Initial Quality of Fresh Oil 30
4.2 Free Fatty Acid 31
4.3 Peroxide Value 34
4.4 Colour 37
4.5 \textit{p}-anisidine value 40
4.6 Iodine Value 43
4.7 Smoke Point 45
 4.7.1 Relationship between Smoke Point and Free Fatty Acid of Frying Oil 46
4.8 Sensory Evaluation 48
 4.8.1 Colour of Fried Foods 49
 4.8.2 Texture of Fried Foods 51
 4.8.3 Odour and Flavour of Fried Foods 52

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1 Conclusion 55
5.2 Recommendation 57

REFERENCES 58

APPENDICES 72
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Estimated potential of rice bran oil in major growing countries (in million metric tones)</td>
<td>5</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Fatty acid composition of rice bran oil</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Physicochemical characteristics of rice bran oil</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Fatty acid composition of palm olein</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Physicochemical characteristics of palm olein</td>
<td>11</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Frying test of French fries for five days</td>
<td>24</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Sample weights with different iodine value</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Initial quality of fresh rice bran oil and palm olein</td>
<td>30</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Changes of free fatty acid contents in rice bran oil and palm olein during five days frying</td>
<td>31</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Changes in peroxide value for rice bran oil and palm olein during five days frying</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Hunter Lab values of rice bran oil and palm olein</td>
<td>37</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Changes in (p)-anisidine value for rice bran oil and palm olein during five days frying</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Changes in iodine value for rice bran oil and palm olein during frying</td>
<td>43</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Comparison of smoke points of rice bran oil and palm olein during five days frying</td>
<td>45</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Relationship between changes of smoke point with free fatty acid in rice bran oil and palm olein during frying</td>
<td>47</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Comparison of mean scores for French fries with rice bran oil and palm olein</td>
<td>49</td>
</tr>
<tr>
<td>Diagram 2.1</td>
<td>Process flow chart for conventional oil refining of rice bran oil</td>
<td>9</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Diagram 2.2</td>
<td>Processing of refined, bleached and deodorized palm olein</td>
<td>13</td>
</tr>
</tbody>
</table>

Equation 3.3 - Determination of peroxide value

Equation 3.4 - Determination of peroxide value

Equation 3.5 - Determination of iodine value
LIST OF EQUATIONS

Equation 3.1	Determination of free fatty acid (oleic acid)	25
Equation 3.2	Determination of free fatty acid (palmitic acid)	25
Equation 3.3	Determination of peroxide value	26
Equation 3.4	Determination of p-anisidine value	27
Equation 3.5	Determination of iodine value	28
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>APOC</td>
<td>America Palm Oil Council</td>
</tr>
<tr>
<td>A.V</td>
<td>Anisidine Value</td>
</tr>
<tr>
<td>B</td>
<td>Blank</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty Acid Methyl Esters</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FFA</td>
<td>Free Fatty Acid</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>Ib</td>
<td>pound</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>KI</td>
<td>Potassium Iodine</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeters of mercury</td>
</tr>
<tr>
<td>MMT</td>
<td>Million metric tons</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>Na₂S₂O₃</td>
<td>Sodium Thiosulphate</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>PORAM</td>
<td>Palm Oil Refiners Association of Malaysia</td>
</tr>
<tr>
<td>PORIM</td>
<td>Palm Oil Research Institute of Malaysia</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>PV</td>
<td>Peroxide Value</td>
</tr>
<tr>
<td>S</td>
<td>Sample</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>TAG</td>
<td>Triacylglycerides</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>µL</td>
<td>micro liter</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>W</td>
<td>Weight</td>
</tr>
<tr>
<td>Wijs</td>
<td>Iodine Monochloride</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>p</td>
<td>Level of significance</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>=</td>
<td>Equal</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>±</td>
<td>Plus minus</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
</tr>
<tr>
<td>/</td>
<td>or</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>~</td>
<td>tilde</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Photo of Rice Bran Oil and Palm Olein</td>
<td>72</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Changes of colour of rice bran oil compared with palm olein during five days frying.</td>
<td>73</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Changes of French fries with rice bran oil compared with palm olein during 120th batches frying.</td>
<td>74</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Score sheet for Hedonic test</td>
<td>76</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Statistical output for physical and chemical analysis</td>
<td>77</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Statistical output for sensory evaluation</td>
<td>82</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Deep fat frying is a process which involves immersing a food item in a large quantity of heated oil or fat, which is normally replenished and reused several times before disposed (Aladedunye and Przybylski, 2009). This is one of the methods for food preparation which it can produce desirable flavour and texture. The frying time normally takes 5-10 min and greatly depending on the dimensions of the food being fried and the frying temperature. The frying process normally conducted at temperatures of 175-195°C (Aladedunye and Przybylski, 2009). The food fried at low temperatures results in lighter color, less flavor development and increased oil absorption while foods that fried at high-temperature frying leads to thinner crusts and less oil absorption.

Rice bran oil is gaining production as an additional source of vegetable oil in rice producing countries (Erickson, 1990). Rice bran oil (RBO) is one of the most nutritious and healthful edible oils due to the presence of an abundance of natural bioactive phytoceuticals such as oryzanol, tocopherols, tocotrienols (tocols) and play important roles in preventing some diseases (Rajam et al., 2005). Rice bran oil is more popular to be used as frying oil due to its high smoke point and stability (Gunstone, 2006). Erickson (1990) stated that rice bran oil is an excellent edible oil consumed directly in China, Japan, India and other countries. Rice bran oil has unique frying characteristics which required less oil in frying compared to other oils (Jain, 1987). Refined rice bran oil plays important role as excellent salad and frying oil with high oxidative stability resulting from its high level of tocopherols and tocotrienols (~860ppm) (Gunstone, 2004).

Palm olein is often known as a heavy duty frying oils which normally used in fast food outlets due to its oxidative stability and presence of tocols and
carotenoids composition (Nallusamy, 2006). Unsaturated and saturated fatty acid content of palm olein which consists of 47% saturates, 40% oleic and 11% polyunsaturates contribute good flavor stability (Al-Kahtani, 1991; Rayner et al., 1998). Bracco et al. (1981) reported that palm olein performed satisfactorily and produced fried foods with acceptable cooking qualities compared to soybean, groundnut, sunflower and rapeseed oils and tallow as frying media. Palm olein showed better frying performance than the sunflower oil, soybean oil and corn oil in the determination of effect of frying time on the quality of cooking oil (Ling, 2007). Another study by Hoo (2009) reported that palm olein shown better oxidative stability than the sunflower oil for different frying temperature. The techno-economic advantages of palm olein over other oils and fats make it used as frying oil in food industry (Razali, 2005).

The quality of the frying oil is of great importance with regard to quality of the fried food since the oil used for frying becomes part of the food being fried (Kochhar, 2001). The oil can contribute to the some unique organoleptic and sensory characteristics including flavour, texture and appearance (Aladedunye and Przybylski, 2009). During frying, the oil is subjected to physical and chemical reactions which will affect the oxidative degradation of the oil used in the presence of air and moisture. The chemical reactions including oxidation (presence of air), hydrolysis (caused by the presence of water) and polymerization of unsaturated fatty acid that change the composition of the frying medium (Mariod et al., 2006).

The rate of decomposition of the oil depends on several factors such as temperature and length of frying, type of food fried, composition of the oil, continuous or intermittent frying and fresh oil replenishment. The decomposition of undesirable products also formed due to the interactions between the food ingredients and the oil which will affect the food products’ taste, flavour, colour and shelf life. However, repeating using the frying oils can affect the food quality and promote the formation of compounds that can affect human health (Sanibal and Filho, 2004) and cause the fried foods to have rather limited shelf life due to the development of rancidity in the frying oil taken up by the products (Man and Jaswir, 2000).
After the frying process, the consumers are concerned about the oil quality from the aspects of the colour, smoke point and the degree of rancidity. Some parameters can be used to assess the oil quality such as free fatty acid (FFA), peroxide value (PV), colour of the frying oil, smoke point and fatty acid composition. However, the determination of the oil quality not just depends on the quantitative method as mentioned as above but also depends on quality assessment of the fried products from the sensory aspects (Abdulkarim et al., 2007).

1.1 Objectives

a. To determine and compare the oxidative stability of rice bran oil with palm olein after frying process.

b. To determine the oxidative stability among 0, 1, 2, 3, 4 and 5 frying days of rice bran oil compare with palm olein.

c. To determine the quality of French fries after frying from the aspects of sensory evaluation.
CHAPTER 2

LITERATURE REVIEW

2.1 Rice Bran
2.1.1 Characteristics of Rice Bran

Rice bran is the cuticle between the paddy husk and the rice grain. Rice bran is obtained as a by product of brown rice processing (Amarasinghe et al., 2009) during milling to produce white rice. Rice bran is rich in nutrients with 11-15% proteins, 34-62% carbohydrates, 7-11% crude fibers, 7-10% ashes and 15-20% lipids (Juliano and Hicks, 1996). It is also a good source of minerals such as silica, iron, calcium and zinc (Luh, 1980). Rice bran can be used as a feedstuff for cattle, poultry and swine, and as a source of rice bran oil (Chandler, 1979). McCaskill and Zhang (1999) reported that rice bran has been used as a feedstock and has the potential to be used as a food ingredient and oil source. Rice bran tends to become rancid fairly quickly but it can be stabilized by dry or moist heat treatment (Matz, 1991).

2.2 Rice Bran Oil
2.2.1 Characteristics of Rice Bran Oil

The availability of rice bran oil is low compare to other oils and fats due to inefficient methods of processing of paddy and rice bran in most of the producing countries. Rice bran oil contains higher free fatty acids (FFA) due to lipase action that occurs in rice bran (Erickson, 1990). The high FFA content of rice bran oil was due to the presence of active lipase that destabilized the oil within a short time after milling (Goffman, 2003). About 35 to 70% FFA may be obtained in a month (Pandey, 2008) and the high activity of lipase which caused the hydrolytic rancidity can be avoided either by oil extraction after milling process or stabilization of bran (Ju and Vali, 2005). Rice bran oil is comparable to other vegetable oils for cooking,
salads and shortening if properly processed. Lower quality of rice bran oil is used in soap making and for a few other industrial purposes (Chandler, 1979).

2.2.2 Availability of Rice Bran Oil
Rice bran oil appears to be a potentially sizeable source of edible oil due to the oil content ranges from 12-25% of the rice bran. China is the largest producer of paddy and consequently of rice bran oil. India is the second largest producer follow by Indonesia. The production of rice bran oil has been increasing and may eventually be a comparatively major by-product in every rice producing country. Table 2.1 shows the potential of rice bran oil in major growing countries (in million metric tones).

Table 2.1: Estimated Potential of Rice Bran Oil in Major Growing Countries (in million metric tones)

<table>
<thead>
<tr>
<th>Country</th>
<th>Rice Bran</th>
<th>Rice Bran Oil Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>9.440</td>
<td>1.426</td>
</tr>
<tr>
<td>India</td>
<td>5.440</td>
<td>0.826</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2.095</td>
<td>0.314</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1.293</td>
<td>0.194</td>
</tr>
<tr>
<td>Thailand</td>
<td>1.019</td>
<td>0.153</td>
</tr>
<tr>
<td>Burma</td>
<td>0.800</td>
<td>0.120</td>
</tr>
<tr>
<td>Vietnam</td>
<td>0.863</td>
<td>0.130</td>
</tr>
<tr>
<td>Japan</td>
<td>0.776</td>
<td>0.116</td>
</tr>
<tr>
<td>Phillipines</td>
<td>0.499</td>
<td>0.075</td>
</tr>
<tr>
<td>World</td>
<td>2.536</td>
<td>3.804</td>
</tr>
</tbody>
</table>

1 Calculated as 15% yield of oil

2.2.3 Composition of Rice Bran Oil
The major acids that found in rice bran oil are palmitic (12-28%, typically 20%) oleic (35-50%, typically 42%) and linoleic acid (29-45%, typically 32%) (Gunstone, 2004). Rice bran oil has similar fatty acid composition to peanut oil (Anon, 2005) and the saturation level is slightly higher than conventional soybean oil (Nicolosi and Liang, 1991). According to Tahira (2007), lower level of linolenic acid content makes rice bran oil more resistant to oxidation than soybean oil. Sayre (1988) reported that rice bran oil contains 95% saponifiable lipids and 4.2% unsaponifiable
lipids such as tocopherols, tocotrienols, γ-oryzanol, sterols and carotenoids. According to Rajam et al. (2005), crude rice bran oil contains 2-3% wax, 1-2% phosphatides and 5-25% free fatty acid (FFA) content. Table 2.2 shows the fatty acid composition of rice bran oil.

Table 2.2: Fatty Acid Composition of Rice Bran Oil

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Chain Length: No of double bonds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristic</td>
<td>14:0</td>
<td>0.1-1.0</td>
</tr>
<tr>
<td>Palmitic</td>
<td>16:0</td>
<td>12.0-18.0</td>
</tr>
<tr>
<td>Palmitoleic</td>
<td>16:1</td>
<td>0.2-0.6</td>
</tr>
<tr>
<td>Stearic</td>
<td>18:0</td>
<td>1.0-3.0</td>
</tr>
<tr>
<td>Oleic</td>
<td>18:1</td>
<td>40.0-50.0</td>
</tr>
<tr>
<td>Linoleic</td>
<td>18:2</td>
<td>20.0-42.0</td>
</tr>
<tr>
<td>Linolenic</td>
<td>18:3</td>
<td>0.0-1.0</td>
</tr>
<tr>
<td>Arachidic</td>
<td>20:0</td>
<td>0.0-1.0</td>
</tr>
</tbody>
</table>

Source: Rice Science and Technology (1994)

2.2.4 Physicochemical Properties of Rice Bran Oil

The physicochemical characteristics of rice bran oil for refractive index, peroxide value, iodine value and free fatty acid value are shown in Table 2.3.

Table 2.3: Physicochemical Characteristics of Rice Bran Oil

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive Index</td>
<td>1.4792</td>
</tr>
<tr>
<td>Peroxide Value</td>
<td>0.92 meq/kg</td>
</tr>
<tr>
<td>Iodine Value</td>
<td>105cg/l/g</td>
</tr>
<tr>
<td>Free Fatty Acid</td>
<td>0.07% oleic acid</td>
</tr>
</tbody>
</table>

Source: Anon, 2005a.

2.2.5 Benefits of Rice Bran Oil

Rice bran oil is benefits and promoted for cooking purpose due to its high level of unsaponifiable matters and the presence of the natural antioxidants in the oil such as gamma – oryzanol, tocopherol and tocotrienols. According to Bramley et al. (2000), compounds such as tocotrienols can prevent lipid peroxidation and important in delaying the pathogenesis of degenerative disease such as
cardiovascular disease, cancer, inflammatory diseases, neurological disorders, cataracts, age-related macular degeneration and immunomodulation. Thus, rice bran oil can be termed as nutritional oil and it is important to explore this unique edible oil to its fullest potential for the health benefits (Rajam et al., 2005).

2.2.6 Rice Bran Oil as Frying Oil

Rice bran oil is excellent for frying foods giving low peroxide, foam, free fatty acid and polymer formation (Lynn et al., 1968; Kao et al., 1991). Rice bran oil is more stable under frying conditions compare to other vegetable oils due to more even balance between linoleic and oleic acid, the low level of linolenic acid and presence of powerful antioxidants (Sayre, 1988; Sayre and Saunders, 1990). There are some problems which caused by dark colour, haziness, higher amounts of unsaponifiables and foaming during frying that can affect the edible oil quality (Tahira et al., 2007).

Based on a study by Chotimarkorn and Silalai (2008), addition of rice bran oil to soybean oil can decrease the oil deterioration from hydrolytic rancidity and oxidative rancidity in fried product during frying and storage. Addition of sesame oil and rice bran oil during deep frying can contribute to the anti-rancidity effects which can improve the frying stability on canola oil (Farhoosh and Kenari, 2009). A study by Kochhar (2002) shown that rice bran oil exhibits excellent frying stability and contributes a pleasant flavour to the fried food. The oxidative stability of rice bran oil was found to be equivalent to peanut oil when tested in simulated deep frying conditions (Orthoefer, 1996). Kochhar (2000) reported that the blend of specially refined rice bran oil and 'dedicated' sesame oil may be used to fortify less stable soft oils such as rapeseed oil, sunflower oil and soybean oil. This small addition (4-6%) of the oil blend will improve not only frying oil stability but also enhance the shelf life and flavour quality of the fried foods.

2.3 Preparation of Rice Bran Oil
2.3.1 Stabilization of Rice Bran

Stabilization of rice bran improved the shelf life, nutrient availability and microbiological safety of the bran (Bidlack, 2000). Rice bran contains enzymes, microorganisms and insects are the major causes of deterioration of rice bran.
REFERENCES

Maskan, M. 2003. Change in colour and rheological behaviour of sunflower seed oil during frying and after adsorbent treatment of used oil. *European Food Research and Technology.* **218:**20–25.

Matthaus, B. 2006. Utilization of high-oleic rapeseed oil for deep fat frying of French fries compared to other commonly used edible oils. *European Journal of Lipid Technology.* **108:**200–211.

Sayre, R. N. 1988. Rice bran as a source of edible oil and higher value chemicals. Western Regional Research Center, ARS, USDA.

