UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: EXPRESSION AND PURIFICATION OF A PROTEIN KINASE, PKmL OF Mycobacterium bovis BCG Pasteur 178P2.

Ijazah: SARJANA MUDA (SAINS)

SESJI PENGAJIAN: 2002-2005

Saya LIN LI SHIN

(HURUF BESAR)

mengaku membenarkan tesis (LPS/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sabaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandemakan ( )

[ ] SULIT (Mengandungi maklumat yang berharga keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
[ ] TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
[ ] TIDAK TERHAD

Disahkan oleh

(TANDATANGAN PENULIS)

Alamat Tetap: No: 52, Jalan Pagara 22/8,
Seksyen 8, Bandar Mahkota Cheras,
43200 Batu 9 S Cherac,
Selangor D.E.

Tarikh: 28/3/2005

(TANDATANGAN PUSTAKAWAN)

Nama Penyelidik

Tarikh:

CATATAN:
* Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
EXPRESSION AND PURIFICATION OF A PROTEIN KINASE, PknL OF Mycobacterium bovis BCG Pasteur 1173P2

LIN LI SHIN

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR BACHELOR OF SCIENCE WITH HONOURS

BIOTECHNOLOGY
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

2005
DECLARATION

I certify that this thesis does not incorporate any material previously submitted for any bachelor degree in any university, without acknowledgement; and that it does not contain any material previously published where due reference is not made in the text.

21 FEBRUARY 2005

 LIN LI SHIN
HS2002-3060
ENDORSED BY

1. SUPERVISOR
   (DR. LEE PING CHIN)

2. EXAMINER 1
   (DR. ROZIAH HJ. KAMBOL)

3. EXAMINER 2
   (MS. TEOH PEIK LIN)

4. EXAMINER 3
   (DR. WONG NYET KUI)

5. DEAN
   (PROF. MADYA DR. AMRAN AHMED)
ACKNOWLEDGEMENT

First, I would like to thank my supervisor, Dr. Lee Ping Chin for her guidance and support throughout the course of this project. Thank you for giving me an opportunity to work under your supervision and exposing me to molecular biology work.

Thanks to Ms. Glenda and Ms. Ainol Azifa for their willingness in teaching and helping me in this project. To my thesis mate, Mr. Lee Hoong Fatt, Ms. Lau Sing Leng, Mr. Chuah Choon Siang and Mr. Ng Wei Keong, thank you all for your supports and help.

To my group of friends and course mates, Lee Tsun, Fei Chin, Sim, Nancy, Le Keau, Gan, Wai Yong and Ruth Teh, thank you all for sharing the ups and downs of university life with me. I wish you all a life full of happiness.

To Pooi Lye, thank you for teaching and encouraging me since the first day we met. I feel blessed to have you as a senior and as a friend. Thank you.

A special thanks and gratitude to Mr. Tan Kian Seng, for always being there to support and encourage me throughout these 7 years. Thank you for your care, love and sharing life joys, happiness and future with me.

My deepest thank you is for my parents, brother and sister who have always been there to support me both emotionally and financially.

LIN LI SHIN
ABSTRACT

Signal transduction pathways in both eukaryotes and prokaryotes involve specific protein kinases coupled to protein phosphatase. Genome sequence of *Mycobacterium tuberculosis* H37Rv revealed the existence of eleven eukaryotic Ser/Thr protein kinases (STPK). In this project, *pknL*, which is one of STPK of *Mycobacterium bovis* BCG Pasteur 1173P2 was inserted into expression vector, pET-16b which was then transformed into expression host, *E.coli* BL21 (DE3) pLysS. IPTG was used to induce *pknL* gene expression followed by recombinant protein purification with Ni-NTA Spin Kit. The molecular weight of purified recombinant PknL was determined using SDS-PAGE. Recombinant PknL has molecular weight of 45 kDa. Most of recombinant protein was purified in first elution while remaining proteins purified in second elution. Full amino acids sequence of *pknL* obtained from database was subjected to bioinformatics analysis. Analysis of the amino acid sequence of PknL with Dense Alignment Surface (DAS) and PHD predictions indicated the presence of transmembrane domain at amino acid 369 – 389 within the helical C-terminal of PknL. Protein kinase domain was found at amino acid 27 – 286 at the N-terminal and conserved kinase domain was showed to be 99% similar to corresponding kinases in *Mycobacterium tuberculosis* H37Rv and *Mycobacterium bovis* AF2122/97. Further analysis revealed that the secondary structure of PknL comprised mainly of helices and loops with a helices transmembrane structure and loopy structure at Ser/Thr protein kinase active site. These finding showed that PknL is a membrane spanning protein in *Mycobacterium bovis* BCG Pasteur 1173P2.
ABSTRAK

## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ENDORSEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

### CHAPTER 1  INTRODUCTION

1.1 Introduction 1
1.2 Research Objectives 3

### CHAPTER 2  LITERATURE REVIEW

2.1 Mycobacterium tuberculosis: Etiologic Agent of Tuberculosis 5
2.2 Latency of Mycobacterium tuberculosis 7
2.3 Protein Kinase Classification 9
   2.3.1 Hanks Catalytic Domain and Invariant Motif 11
2.4 Bacteria Signaling via the Two-Component System 15
2.5 The Eukaryotic-Like Serine/Threonine Protein Kinases in Bacteria 17
2.6 Serine/Threonine Protein Kinase in Mycobacterium tuberculosis 20
2.7 Recent Finding of Eukaryotic-Serine/Threonine Protein Kinase in Mycobacterium tuberculosis 21
   2.7.1 PknE 22
   2.7.2 PknF and PknG 22
   2.7.3 PknH 23
2.7.4 PknA
2.7.5 PknB
2.7.6 PknD

2.8 *Mycobacterium tuberculosis* Serine/Threonine Protein Kinase - PknL

2.9 *Mycobacterium bovis* 'Bacille de Calmette et Guerin' (BCG) Pasteur

2.10 *Mycobacterium bovis* BCG Pasteur 1173P2 Serine/Threonine Protein Kinase - PknL

**CHAPTER 3 METHODOLOGY**

3.1 Background of the Project
3.2 Methodology Chart Protocols
3.3 Standard Procedure
   3.3.1 Agarose gel electrophoresis
   3.3.2 Alkaline-SDS lyses miniprep
3.4 Restriction Enzymes Treatment
3.5 Recovery of DNA fragment with QIAquick Gel Extraction Kit
3.6 DNA Ligation
3.7 Transformation of *Escherichia coli* BL21 (DE3) pLysS Cells
3.8 Propagation of *Escherichia coli* BL21 (DE3) pLysS and IPTG Induction
3.9 Purification of PknL using Ni-NTA Spin Kit
3.10 SDS-PAGE
   3.10.1 SDS-PAGE preparation
   3.10.2 SDS-PAGE
   3.10.3 Staining SDS-Polyacrylamide Gel
3.11 Bio-Rad Protein Assay
3.12 Bioinformatic Analyses
CHAPTER 4 RESULTS

4.1 Digestion of pUC19 with pknL gene insert and pET-16b
4.2 Cloning of pknL into pET-16b
4.3 Transformation of pET-16b into E.coli BL21 (DE3) pLysS
4.4 Conformation of the transformed E.coli BL21 (DE3) pLysS colony having the constructed plasmid
4.5 Induction of pknL expression
4.6 Purification of PknL
4.7 Determination of PknL concentration
4.8 Bioinformatic analysis of PknL
   4.8.1 Transmembrane domain
   4.8.2 Protein kinase domain
   4.8.3 Multiple sequence alignment
   4.8.4 Secondary structure of PknL

CHAPTER 5 DISCUSSION

5.1 Cloning of pknL into gene expression vector pET-16b
5.2 Expression of pknL
5.3 Purification and concentration of PknL
5.4 Bioinformatic analysis of PknL structure
   5.4.1 Transmembrane domain
   5.4.2 Protein kinase domain
   5.4.3 Multiple sequence alignment
   5.4.4 Secondary structure of PknL

CHAPTER 6 CONCLUSION

REFERENCES
APPENDIX
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Concentration and volume of solutions for pUC19 with inserted pknL gene DNA fragment digestion</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Concentration and volume of materials for pET-16b plasmid digestion</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Concentration and volume of materials for DNA ligation</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Determination of pellet weight and BugBuster Protein Extraction Reagent used</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Absorbance value for diluted BSA protein</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Amount of protein in first and second elution samples</td>
<td>54</td>
</tr>
</tbody>
</table>
### LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical 300 amino acid protein serine/threonine kinase catalytic domains.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>A typical two-component phosphotransfer system consists of a dimeric</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>transmembrane sensor histidine kinase and a cytoplasmic response regulator.</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Phosphorylation on serine, threonine and tyrosine by protein kinase</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>and dephosphorylation by protein phosphatase.</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Structural analysis of <em>Mycobacterium tuberculosis</em> STPKs.</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Visualization of PCR product of pknL, pUC19, pknL and pET-16b on</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>0.7 % agarose gel</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>White colonies from transformation</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Restricted pET-16b-pknL plasmids extracted from white colonies</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>SDS-PAGE analysis of PknL expression in <em>E.coli</em></td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>BSA standard curve for absorbance at 595nm versus protein amount</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Result of DAS analysis of the full amino acids sequence of PknL of</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td><em>Mycobacterium bovis</em> BCG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A) Potential transmembrane segments of the amino acids sequence</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(B) DAS curve of the analysis</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>The amino acids sequence of kinase domain and Ser/Thr protein kinase</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>active site in PknL of <em>Mycobacterium bovis</em> BCG</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Multiple sequence alignment of PknL of <em>M. bovis</em> BCG Pasteur with</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>protein kinases from mycobacterium strains</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>NORS region of PknL</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Cloning/expression region</td>
<td>68</td>
</tr>
<tr>
<td>5.2</td>
<td>Binding of IPTG to repressor and production of RNA polymerase</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Binding of T7 RNA polymerase resulted in production of recombinant protein</td>
<td>72</td>
</tr>
</tbody>
</table>
5.4 Chemical structures of imidazole and histidine

5.5 Interaction between His-tags of recombinant PknL with Ni-NTA matrix
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>mm</td>
<td>Milimeter</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>[ ]</td>
<td>Concentration</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo base</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>RNase A</td>
<td>Ribonuclease A</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris acetate EDTA buffer</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris borate EDTA buffer</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nickel-nitrilotriacetic acid</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosine diphosphate</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>STPK</td>
<td>Serine/threonine protein kinase</td>
</tr>
<tr>
<td>STPP</td>
<td>Serine/threonine protein phosphatase</td>
</tr>
</tbody>
</table>
HPK

Histidine protein kinase
CHAPTER 1

INTRODUCTION

1.1 Introduction

Tuberculosis is the leading cause of mortality worldwide with 3 million death reported annually with 1.7 billion people (one-third of the world population) are estimated to harbor latent *Mycobacterium tuberculosis* infection (Parrish *et al*., 1998; Manabe and Bishai, 2000). Even with the available of well developed diagnostic test, antibiotics and BCG vaccine, possible eradication of tuberculosis from human kind remains as elusive as ever. The rising number of deaths is mainly caused by the emergence of drug resistant strains and concurrent Human Immunodeficiency Virus (HIV) epidemic.

The causative agent of human tuberculosis is *Mycobacterium tuberculosis*, an obligate aerobic bacterium which requires oxygen to survive. However, *Mycobacterium tuberculosis* can adapt to microaerophilic environment in granuloma where they continue to survive by entering into a prolonged dormant state. One of the proposed mechanisms
that mycobacteria employ during its survival in macrophage and persistence in host involves the protein phosphorylation mechanism.

Signal transduction in eukaryotes and prokaryotes involves protein phosphorylation where extracellular signals are translated into cellular responses catalyze by specific protein kinases coupled to protein phosphatase. In prokaryote, phosphorylation involves mainly the two-component system while Hanks-type protein kinases are prominent in eukaryotes and thought to be exclusive only to eukaryotes. However, studies based on a combination of the polymerase chain reaction (PCR), X-ray crystallography and genomic sequencing had shown that Serine/Threonine protein kinases (STPKs) are present in bacteria. STPKs in bacteria have been shown to be involved in three different processes namely regulation of development, stress responses and pathogenicity (Av-Gay and Everett, 2000).

In recent year, genome sequence of *Mycobacterium tuberculosis* H37Rv revealed the existence of eleven putative eukaryotic Ser/Thr protein kinases (STPK). Since then, numerous studies have been carried out to investigate the biochemical characteristic and functional roles of *Mycobacterium tuberculosis* STPKs, especially in the pathogen-host relationship. This project focuses on one of these STPKs that is the PknL. PknL is chosen because it has neither been characterized nor localized yet in *Mycobacterium tuberculosis*, *Mycobacterium bovis* and *Mycobacterium bovis* BCG. However, because of the highly pathogenic nature of the *Mycobacterium tuberculosis*, *Mycobacterium bovis* BCG Pasteur 1173P2 is used instead as it is the attenuated strain and genome
sequence analysis showed a very high homology, more than 99.9% identity at DNA level with *Mycobacterium tuberculosis*.

In this project, the main focus is to clone and transform the plasmid with *pknL* insert into expression host for protein expression follow by protein purification. This work may assist in the subsequent study of the characteristic and functional roles of STPKs in *Mycobacterium tuberculosis*.

1.2 Research Objectives

The objectives of this research are as following:

1) To clone the *pknL* gene from pUC19 (cloning vector) into pET16 (expression vector).

2) To transform the expression vector carrying *pknL* into *E.coli* BL21 (DE3) pLysS (expression host).

3) To induce protein expression of PknL in *E.coli* BL21 (DE3) pLysS (expression host).

4) To purify the PknL protein expressed.
5) To verify molecular weight of PknL.

6) To perform bioinformatics analysis in order to facilitate purification of PknL.
2.1 *Mycobacterium tuberculosis*: Etiologic Agent of Tuberculosis

*Mycobacterium tuberculosis* is a slender, straight, or slightly curved rod with rounded ends. The organisms vary in width from 0.3 to 0.6 μm and in length from 1 to 4 μm. The bacilli are obligate aerobe, acid-fast, nonsporogenous, slow growing and caused Tuberculosis (TB) in humans. The name “tuberculosis” is derived from the formation by the body of characteristic cellular structures called tubercles, in which the bacilli are trapped and walled off (Glickman and Jacobs, 2001).

Tuberculosis infection is acquired primarily by the inhalation of dried droplets containing tubercle bacilli that have been expelled into the air by coughing, sneezing or talking. These droplet nuclei remain suspended in the air for prolonged periods and particles with a diameter of 1 to 5μm are sufficiently to reach the alveoli and initiate infection. At this primary infection stage, healthy individual with strong immune system
will be able to kill the bacilli in the lung from developing into further threat. But this may not be the case for certain individual as once in the lung, the bacilli are phagocytes by alveolar macrophages and reside in a specialized phagosome, which traffics along the endosomal-lysosomal pathway. Instead of destroying tubercle bacillus, the macrophages provide a supportive environment for the replication of *M. tuberculosis* (Schluger and Rom, 1998). The bacterium survives and multiplies within the macrophage using a variety of mechanisms including inhibition of phagosome-lysosome fusion, inhibition of the acidification of phagosomes, resistances to killing by reactive oxygen intermediates and reactive nitrogen intermediates, recruitment and retention of tryptophan/aspartate-containing coat protein (TACO) (Basu, 2004; Dubnau and Smith, 2003; McDonough et al., 1993).

At 4 to 6 weeks after the initial contact, cell-mediated immunity and hypersensitivity to tuberculin will develop and the classic lesions, tubercles will develop at the site of bacterial multiplication. Activated macrophage by immunocompetent lymphocytes will surround the infected area and with their increase activity against bacteria ingested, bacteria multiplication became slow or stops (Glickman and Jacobs, 2001). The tubercule is a granuloma consists of some multinucleated giant cells formed by fusion of several macrophages, surrounded by activated macrophages and lymphocytes. Often, there is caseous necrosis with semisolid and cheesy characteristic in the center of the granuloma. This caseation necrosis is the characteristic hallmark of tuberculosis. The lesion caused by caseation necrosis may later calcify and referred as the Ghon complex (Bentrup and Russell, 2001).
In the majority of the patients (about 90%), the primary lesion heals completely, leaving no clinical evidence of prior infection other than hypersensitivity to tuberculin at which this stage is known as the latent tuberculosis. Reactivation of infection may occur when the host becomes immunocompromised due to aging or immunodeficiency diseases such as acquired immune deficiency syndrome (AIDS). In some patients, however, the primary infection progress directly and spread to other organ of the body leading to chronic pulmonary tuberculosis. At this late-stage disease, serious cough occurs and bacteria are transmitted to others through aerosol transmission.

2.2 Latency of *Mycobacterium tuberculosis*

In latent tuberculosis, *M. tuberculosis* continues to survive by enters into a pro-longed dormant state inside the tubercle lesions. The physiological state in which *M. tuberculosis* survives in lesions is unknown. In the literature, this stage of the disease has been referred to as latency or dormancy. Dormancy has also been used to describe the physiological state in which the bacteria exist. In bacteria physiology, the term dormancy is defined as a reversible state of low metabolic activity, in which cells can persist for extended periods without division (Smeulders *et al.*, 1998).

The entry of a bacterial population into stationary phase can be affected by several ways, including accumulation of toxic by-products and environment stresses such as low temperatures, acidity and high osmorality. Other factor such as nutrient limitation has also been linked to the survival of persisting mycobacterium. However, the exact limiting
nutrient that keeps *M. tuberculosis* in stationary phase during the latent phase of the disease remains to be elucidated (Nyka, 1974).

Wayne has proposed that within calcified lung lesions, oxygen is the growth-limiting factor and has developed an oxygen-limited model for mycobacterial persistence (Wayne, 1994). Together with co-worker, Wayne showed that although mycobacteria are obligate aerobes, cultures can still survive stationary or microaerophilic phase by up-regulating enzymes (isocitrate lyase and malate synthase) involved in the glyoxylate shunt. Consequently, the glyoxylate bypass allows *M. tuberculosis* to synthesize carbohydrates from fatty acids, as well as supplying intermediates to support the Krebs cycle. Low oxygen tension had also been shown to result in cell wall thickening during the stationary phase of mycobacteria (Yuan et al., 1996). Therefore, it has been suggested that reduced oxygen tension might trigger latency and lead to the controlled shutdown of active gene.

A number of genes that are expressed or required during the mycobacterial persistence have been identified. The products of these genes are divided into three basic categories: respiratory proteins, stress-response and general metabolic proteins and proteins involved in fatty acids metabolism (Bentrup and Russell, 2001; Kinger and Tyagi, 1993). The regulation of gene expression during mycobacterial persistence remains to be unknown.
REFERENCES


ClustalW - www.ebi.ac.uk/clustalw/


DAS - www.sbc.su.se/~miklos/DAS/


PHD predictions - www.embl-heidelberg.de/predictprotein/

PROF predictions - www.embl-heidelberg.de/predictprotein/


ScanProsite - www.expasy.org/prosite/


