Universiti Malaysia Sabah

Borang Pengesahan Status Tesis

DUL: Effects of Different Salinity on Survival and Growth

IZH: Bachelor of Science Degree with Honours of Aquaculture Programme

RAYMOND TING KANG FOO

SESII PENGAJIAN: 03/06

(HURUF BESAR)

Agaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/) yang dimaksud.

☐ SULIT
☐ TERHAD
☐ TIDAK TERHAD

(Mengandungi maklumat yang berdaur keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan Oleh:

[Signature]

(TANDATANGAN PUSTAKAWAN)

Dr. Yukinori Mukai
Nama Penyelia

Tarikh:

21/4/06

(TANDATANGAN PENULIS)

Mat Tetap: 4A, LORONG 5, N MUISBABA, 96000
U, SARAWAK

Tarikh:

21/4/06

TATAN: *Potong yang tidak berkenaan.
**Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelesaian atau disertai bagi pengajian secara kerja kursus dan Laporan Proyek Sarjana Muda (LPSM).
EFFECTS OF DIFFERENT SALINITY ON SURVIVAL AND GROWTH OF JUVENILE MARBLE GOBY, *Oxyeleotris marmoratus*

RAYMOND TING KANG FOO

THIS DISSERTATION IS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR BACHELOR OF SCIENCE WITH HONOURS

AQUACULTURE PROGRAM
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

MARCH 2006
DECLARATION

I declare that this dissertation is the results of my own independent work, except where otherwise stated.

March 2006

RAYMOND TING KANG FOO
HS2003-3524
AUTHENTICATION

AUTHENTICATED BY MEMBERS OF DISSERTATION COMMITTEE

1. SUPERVISOR
 (Dr. Yukinori Mukai)

2. EXAMINER 1
 (Dr. Sitti Raehanah)

3. EXAMINER 2
 (Mr. Kennedy Aaron Aguol)

4. DEAN
 (Prof. Madya Dr. Shariff A.K Omang)
ACKNOWLEDGEMENT

This dissertation has accumulated many debts of gratitude throughout its completion. Thus I would like to extend my heartiest appreciation to a great number of people who have contributed in my conquest of completing this dissertation. This dissertation would not be successful without their full commitment. Firstly, I would like to express my sincere gratitude to Director of Borneo Marine Research Institute, BMRI of Universiti Malaysia Sabah, Prof. Dr. Saleem Mustafa for his support in this study. Sincere appreciation is also extended to Prof. Dr. Shigeharu Senoo and Dr. Yukinori Mukai who have been provided a great help in constructive criticism on my study, valuable suggestions, continuous encouragement and supervising throughout the completion of dissertation. I would also like to thank Dr. Sitti Raehanah and Mr. Kennedy Aaron Agoul and for their valuable advices, teaching and guidance. Last but not least, I would like to thank research assistants Ms. Sow Sok Hui, Ms. Nguang Siew Ing and Mr. Ha Hou Chew for their technical assistance; and all the staffs of the hatchery of BMRI, who had rendered assistance, support and cooperation in various ways.
Growth and survival of juvenile marble goby (*O. marmoratus*) were determined at salinities of 0, 10, 20 and 30 ppt. Two similar experiments were conducted. 25 juvenile *O. marmoratus*, 100 days after hatching (d AH) with mean initial body weight, BW of 0.269±0.018 g and total length, TL of 29.98±0.77 mm (experiment 1); 120 d AH with mean initial BW of 0.334±0.036 g and TL of 32.17±1.07 mm (experiment 2) were exposed these four salinities treatments with triplicates for 20 days in 7-litres plastic aquarium. Juvenile *O. marmoratus* were able to survive in 0 and 10 ppt treatments with 100% survival rate, where no mortality was found throughout the experiments period. Survival rate in 20 ppt was 94.0±1.7% with no significant difference (P>0.05) compared to those in 0 and 10 ppt. However, survival rate in 30 ppt (77.3±5.2%) was significantly lower (P<0.05) to the other treatments. Fish reared at 0 ppt had a specific growth rate of 2.56±0.17%/day in BW and 0.72±0.07%/day in TL, a rate significantly higher (P<0.05) only to those fish reared at 30 ppt (1.13±0.14 5%/day in BW and 0.33±0.03%/day in TL). The study recommends that 0 ppt is the most suitable salinity to culture juvenile *O. marmoratus* for better survival and growth.
ABSTRAK

Pertumbuhan dan kemandirian juvenile marble goby (*O. marmoratus*) ditentukan pada saliniti 0, 10, 20 dan 30 ppt. Dua kajian yang sama dijalankan. 25 juvenil *O. marmoratus*, 100 hari lepas penetasan dengan min berat badan awal 0.269±0.018 g dan min jumlah panjangnya 29.98±0.77 mm (kajian 1); 120 hari lepas penetasan dengan min berat badan 0.334±0.036 g dan min jumlah panjangnya 32.17±1.07 mm (kajian 2) dikultur dalam empat saliniti tersebut dengan tiga replikat di dalam 7-liter akuarium selama 20 hari. Juvenil *O. marmoratus* didapati dapat hidup dalam 0 and 10 ppt dengan 100% kadar hidup di mana tidak ada kematian dijumpai sepanjang tempoh pengulturan kajian. Kadar hidup juvenile *O. marmoratus* dalam 20 ppt adalah 94.0±1.7% iaitu tidak ada perbezaan bererti (P>0.05) berbanding dengan 0 dan 10 ppt. Manakala, kadar hidupnya dalam 30 ppt (77.3±5.2%) adalah berbeza dengan ertiannya (P<0.05) terhadap saliniti lain. Juvenil *O.marmoratus* yang dikultur dalam 0 ppt mempunyai kadar pertumbuhan spesifik 2.56±0.17 %/hari dalam berat badan dan 0.72±0.07 %/hari dalam jumlah panjang, dengan kadarnya lebih tinggi secara bererti (P<0.05) terhadap hanya kepada yang dikultur dalam 30 ppt (1.13±0.14 5 %/hari, berat badan; dan 0.33±0.03 %/hari, jumlah panjang). Dengan itu, kajian ini mencadangkan bahawa saliniti 0 ppt adalah saliniti yang paling sesuai dalam pengulturan juvenil *O. marmoratus* untuk memperoleh kadar kemandirian dan pertumbuhan yang produktif.
LIST OF CONTENTS

DECLARATION	ii
AUTHENTICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xii

CHAPTER 1 INTRODUCTION

1.1 Aquaculture in Malaysia | 1
1.2 Marble Goby, *Oxyeleotris marmoratus* | 4
1.3 Significance of the study | 5
1.4 Objectives of the study | 6

CHAPTER 2 LITERATURE REVIEW

2.1 Taxonomy and morphology | 7
2.2 Natural habitat and culture condition | 8
2.3 Salinity effect | 10
2.3.1 Effects on hatching rate and larval development | 11
2.3.2 Effects on survival and growth | 12

CHAPTER 3 MATERIALS AND METHODS

3.1 Experimental fish | 15
3.2 Experimental system | 17
3.3 Growth and survival | 20
3.4 Statistical analysis | 21

CHAPTER 4 RESULT

4.1 Survival rate at salinities of 0, 10, 20 and 30 ppt | 23
4.2 Growth rate at salinities of 0, 10, 20 and 30 ppt | 25
4.2.1 Growth rate in body weight, BW
4.2.2 Growth rate in Total Length, TL

CHAPTER 5 DISCUSSION
CHAPTER 6 CONCLUSION
REFERENCES
APPENDIX – 1
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Daily feeding schedule and feed types that were given throughout the experiments</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean survival rate of juvenile O. marmoratus after 20 days of rearing in different salinities</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean of BW and TL gain, SGR in BW and TL of juvenile O. marmoratus after 20-day period in different salinities</td>
<td>25</td>
</tr>
</tbody>
</table>

APPENDIX – 1

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Measurement of juvenile O. marmoratus used in experiment I and II</td>
<td>39</td>
</tr>
<tr>
<td>1.2</td>
<td>Survival rate of juvenile O. marmoratus in different salinities for 20 days (combination of experiment I and II)</td>
<td>40</td>
</tr>
<tr>
<td>1.3</td>
<td>Body weight, BW measurement of juvenile O. marmoratus in each salinity treatment at 10 days interval</td>
<td>41</td>
</tr>
<tr>
<td>1.4</td>
<td>Body weight, BW gain and specific growth rate, SGR in BW of juvenile O. marmoratus after 20-day rearing period in different salinities respectively</td>
<td>42</td>
</tr>
<tr>
<td>1.5</td>
<td>Total length, TL measurement of juvenile O. marmoratus in each salinity treatment at 10 days interval</td>
<td>43</td>
</tr>
<tr>
<td>1.6</td>
<td>Total length, TL gain and specific growth rate, SGR in TL of juvenile O. marmoratus after 20-day rearing period in different salinities respectively</td>
<td>44</td>
</tr>
</tbody>
</table>
1.7 Analysis of one-way ANOVA and Post Hoc Test for survival rate 0, 10, 20 and 30 ppt
1.8 Analysis of one-way ANOVA and Post Hoc Test for Body weight, BW gain in 0, 10, 20 and 30 ppt
1.9 Analysis of one-way ANOVA and Post Hoc Test for specific growth rate, SGR of body weight, BW in 0, 10, 20 and 30 ppt
1.10 Analysis of one-way ANOVA and Post Hoc Test for total length, TL gain in 0, 10, 20 and 30 ppt
1.11 Analysis of one-way ANOVA and Post Hoc Test for specific growth rate, SGR of total length, TL in 0, 10, 20 and 30 ppt
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Malaysia aquaculture production from several freshwater fish in 2003</td>
</tr>
<tr>
<td>1.2</td>
<td>Marble goby, Oxyeleotris marmoratus</td>
</tr>
<tr>
<td>3.1</td>
<td>Juvenile O. marmoratus (100 d AH)</td>
</tr>
<tr>
<td>3.2</td>
<td>Growth measurement</td>
</tr>
<tr>
<td></td>
<td>A Measurement of BW by using analytical balance (AND, Japan)</td>
</tr>
<tr>
<td></td>
<td>B Measurement of TL by using caliber</td>
</tr>
<tr>
<td>3.3</td>
<td>Transmore that used to anesthetize the fish</td>
</tr>
<tr>
<td>3.4</td>
<td>Refractometer (ATAGO, Japan)</td>
</tr>
<tr>
<td>3.5</td>
<td>Water quality (DO, pH and temperature) monitoring</td>
</tr>
<tr>
<td></td>
<td>A DO/pH meter (CYBERSCAN, Singapore)</td>
</tr>
<tr>
<td></td>
<td>B Thermometer (ZEAL, England)</td>
</tr>
<tr>
<td>3.6</td>
<td>Flow chart for the summary of experiment set up</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean survival rate of juvenile O. marmoratus in different salinities over a 20-day period</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean BW gain of juvenile O. marmoratus after 20-day rearing period in 0, 10, 20 and 30 ppt</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean SGR for BW and TL of juvenile O. marmoratus after 20-day rearing period in 0, 10, 20 and 30 ppt</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean TL gain of juvenile O. marmoratus after 20-day rearing period in 0, 10, 20 and 30 ppt</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree centigrade</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>BMRI</td>
<td>Borneo Marine Research Institute</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>d AF</td>
<td>days after fertilization</td>
</tr>
<tr>
<td>d AH</td>
<td>days after hatching</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>km²</td>
<td>kilometer square</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mt</td>
<td>metric ton</td>
</tr>
<tr>
<td>ppt</td>
<td>part per thousand</td>
</tr>
<tr>
<td>S.D</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SGR</td>
<td>specific growth rate</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>TL</td>
<td>total length</td>
</tr>
<tr>
<td>UMS</td>
<td>Universiti Malaysia Sabah</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Aquaculture in Malaysia

Malaysia has many potential and advantages in developing the aquaculture sector. Malaysia has a total land area of about 329,758 km2 and 4,400 km of shoreline (Ang, 1990). It’s rich and diverse shoreline and inland areas have not yet been utilized fully in expansion for aquaculture development. Department of Fisheries (2005) highlighted the vast potential of inland areas and coastal areas in Malaysia and estimated that the production from the aquaculture industry could be increased by as much as four folds from its present level (196,874 metric tons) by the year 2010.

Malaysia is a tropical country and has high and consistent temperature averaged around 30 °C allowing fish to spawn year round. The coldest period are usually between December and January with the temperature ranging between 22-32 °C and the hottest period are April and May when temperatures ranges between 24-35 °C (Ang, 1990). Malaysia also has many mountains region, with heavy rainfall all around the year, which gives rise to many rivers; and about four-fifths of Malaysia is covered by forests and
swamps areas are habitats for many species of fish. There are about 6,410 km2 of mangrove areas along the coasts, which provide breeding and nursery grounds for fish, besides ensuring the supply of shelter and food to other marine organisms and protecting the coastline from erosion (Yusoff et al., 1997).

Aquaculture used to be a secondary activity developed mainly on a small scale basis in family-sized holdings and commercial application only began in the mid-1980s. The National Agriculture Policy (1992-2010) was formulated by Malaysian Government in 1984 and had given due recognition to the development of aquaculture as an important source of fish protein for the domestic and export markets (Mohd. Mazlan, 1997). Consequently, the aquaculture would have to be developed on commercial basis with effective aquaculture system being introduced to increase productivity. Various programs had been established through research support, hatcheries and fry production centres, extension and training, promotional campaigns, quality and disease control and tax incentives, to encourage the full-scale commercialization of the aquaculture industry.

In 2003, fisheries sector in Malaysia had contributed about 1.37% to the Gross Domestic Product (GDP) and provided direct employment to 89,433 fishermen and 21,114 fish culturist in the year 2003 (Department of Fisheries, 2005). Besides production from inshore and deep sea fishing, the development of aquaculture has the real potential to increase fish production.
Total production from the aquaculture stood at 196,874 metric tons (mt) valued at RM 1,172.30 million, which was an increase of 2.63% of the over the 2002 output of 191,843 mt and contributed to about 13.27% of the overall fish production in Malaysia. Freshwater aquaculture contributed 26.0% of the total aquaculture production in 2003, increasing by 7.60% from 46,403 mt in 2002 to 49,946.61 mt in 2003 (Department of Fisheries, 2005). From the Figure 1.1, it shows aquaculture production on several targeted freshwater species in Malaysia in 2003. The major productions are Red tilapia, African catfish, River catfish (Patin); which respectively contributed 40.2%, 25.4% and 8.6% of the total freshwater aquaculture production. Among these species, the production of Marble goby was the lowest, which contributed only 683.47 mt or 1.4% from the total freshwater aquaculture production. However, there was an increase in the production of Marble goby if compared to its production in 1997 which was 39 mt (Department of Fisheries, 1999).

![Malaysia Aquaculture Production in Freshwater Fish, 2003](image)

Figure 1.1 Malaysia aquaculture production from several freshwater fish in 2003

Source: Department of Fisheries (2005)
1.2 Marble Goby, *Oxyeleotris marmoratus*

Marble goby, *Oxyeleotris marmoratus* (Figure 1.2) is the largest freshwater Eleotridae which can grow more than 2 kg in body weight (BW) and 50 cm in total length (TL). This species is mainly distributed in the Southeast Asia Region such as Thailand, Cambodia, Vietnam, Singapore, Indonesia, the Philippines, and Fiji (Cheah *et al.*, 1994; Senoo *et al.*, 1994a). This species is also known as “Sand Goby” in English, “Ikan Ketutu” or “Ikan Hantu” in Malay and “Soon Hock” in the Chinese Fujian and Guangdong dialect, and it is also called as “Bamboo Fish” (Senoo *et al.*, 1994a). *O. marmoratus* is the most expensive freshwater table fish in Malaysia (Senoo *et al.*, 1997). The retail price of this species is RM 20-50 kg⁻¹ as compared to other freshwater species such as Tilapia, African catfish, Common carp, Grass carp, and Big head carp which prices are RM 2-12 kg⁻¹ (Department of Fisheries, 2005).

Presently, the natural resource of *O. marmoratus* has been over-exploited in Peninsular Malaysia. Therefore, some fish middlemen in the Kuala Lumpur are importing this species from Indonesia, Thailand, Cambodia, and Malaysian Borneo (Senoo *et al.*, 1994a). Consequently, there is increasing interest in the cultivation of *O. marmoratus* due to its high price and market demand. Over the last several decades, people’s increasing dependence on cultured *O. marmoratus*, as opposed to wild fish, as a source of dietary protein has resulted in an increasing level of scientific effort being directed toward propagation techniques (Donaldson *et al.*, 1983). However, there are several problems in culture of *O. marmoratus* such as slow growth during juvenile stage, peculiar feeding
behavior, lack of formulated feeds and high mortality rate (Ang, 1980; Cheah et al., 1994; Lin et al., 2000).

1.3 Significance of the study

Complete aquacultural systems has already been established on several species such as carps, cat fishes, salmons, trouts, sea bream, and Tilapias; thus, a lot of information is available in the cultural history of these species (Senoo et al., 1994a). However, the same authors are in the opinion that the aquacultural system of the *O. marmoratus* still requires much study despite various efforts and experiences since 1970’s. Many studies had been conducted on the seed production technique, egg development and early larval stage of *O. marmoratus* (Senoo et al., 1992; Senoo et al., 1993a; Senoo et al., 1993b; Senoo et al., 1994a; Senoo et al., 1994b; Senoo et al., 1994c; Senoo et al., 1997). However there is still lack of studies on the further life stage of *O. marmoratus*, especially in the juvenile stage since low survival and poor growth are still remaining major constraints in this stage.

More information is needed for the purpose of cultivation. Environmental conditions, such as salinity, temperature, pH, dissolved oxygen (DO), and others are vital, principally for the growth and survival, of *O. marmoratus* in different life stages. This information could assist in selecting the most suitable sites for cultivation, as well as providing information on hatchery operation on the optimum conditions for rearing this species. There is possibility that their survival and growth performance will be affected
by different water salinity. However, the salinity tolerance of this fish is not clear defined because all available data appear to be from freshwater (Roberts, 1989). Therefore, it is crucial to know the performance of juvenile *O. marmoratus*, especially their survival and growth in different salinity.

1.4 Objectives of the study

This study was intended to elucidate the challenges of low survival and growth in the juvenile *O. marmoratus* that might be influenced by different salinity. The main objectives of this study are as follow:

1. To determine the optimum salinity for higher growth and survival rate of juvenile *O. marmoratus*.
2. To improve culture technique of juvenile *O. marmoratus* by culturing them in suitable water salinity that will promote better survival and growth.

Figure 1.2 Marble goby, *Oxyeleotris marmoratus*
CHAPTER 2

LITERATURE REVIEW

2.1. Taxonomy and morphology

Marble goby belongs to the kingdom of Animalia, with phylum as Chordata and superclass as Pisces; the order is Perciformes and suborder is Gobioida; with the family name as Eleotridae, genus name as Oxyeleotris and species name as Oxyeleotris marmorata (Komarudin, 2000). According to Bleeker (1874), the Eleotridae or sleepers comprise some genera and 150 species of mostly tropical, marine, brackish, and freshwater fishes. Two genera and four species occur in the fresh waters of western Borneo. Oxyeleotris is unusual among eleotrid genera in being almost entirely restricted to fresh water species of the genus occur in Southeast Asia and others in the Austrian region. Three species known from Western Borneo are O. urophthalmus, O. urophthalmoides and O. marmoratus.

Kottelat et al. (1993) had stated that Eleotrididae is a small family similar to Gobiidae; however, it can be differentiated from other Gobiidae by their separate pelvic fin and the six branchiotegal rays. Most of the members of this family can be found in sea,
brackish waters and estuaries; while *O. marmoratus* is found in freshwater. *O. marmoratus* has colour in alcohol dark brown above, pale brown below; body with a series of large, dark blotches; fins with black bands or dusky (Bleeker, 1877). The morphological changes on the eggs and larvae of *O. marmoratus* were observed by Senoo *et al.* (1994c) who stated that the juvenile stage of *O. marmoratus* was after 40 days after fertilization (d AF) where the yellow-ocher pigmentation appeared on body.

Senoo *et al.* (1994a) reported the correlations between the morphological and behavioral changes in *O. marmoratus* larvae. Observation on the behavioral changes of the egg and larvae of *O. marmoratus* from 2-40 d AF had been reported by (Senoo *et al.* 1994c). Gobies usually change their habitat from pelagic to benthic as they change from the larval to the juvenile stages. Senoo *et al.* (1994c) stated that newly hatched larvae 2-3 d AF lay on the tank bottom and gradually exhibited the “swim up, sink down” behavior. On 4-5 d AF, they are positively phototactic and show active S-posture and horizontal swimming. They are negatively phototactic after 25 d AF and schooling at the bottom. The larvae show active swimming on the bottom on 30-35 d AF until they are not active after 40 d AF which considered as juvenile stage thereafter.

2.2. Natural habitat and culture condition

Koumans (1953) had reported that the *O. marmoratus* also occurred in river as well as estuaries. Kottlelat *et al.* (1993) also reported that *O. marmoratus* was found in rivers,
swamps, reservoirs and canals along the Mekong and Chao Phraya Basins, Malay Peninsula, Indochina, Philippines and Indonesia.

O. marmoratus was cultured in ponds and ex-mining pools either in monoculture or in polyculture with tilapias. Cage culture of this species in lakes and rivers had also been successfully done (Cheah *et al.*, 1994). Cage culture of *O. marmoratus* in floating bamboo or wooden cages had been carried out in Thailand since the early 1970s (Suwansart, 1979). Recently, there was a study done on the cove polyculture of *O. marmoratus* with silver carp, bighead carp, common carp and grass carp in Tri An Reservoir of Vietnam. This study revealed the result of improving productivity and economic performance both in *O. marmoratus* and carps. It had proven that this cove polyculture system has a prominent prospect ecologically, technologically and economic performance (Vu *et al.*, 2003).

Senoo *et al.* (1994c) elaborated the larval rearing method for *O. marmoratus* that require tank cleaning and 30 - 50% water exchange daily from 7 d AF. The water must be well aerated and treated with 20 W fluorescent light above the tank daily from 0800 – 1800 h with 100 – 800 lux on the water surface until 30 d AF. This is because the larvae were negatively phototactic after 30 d AF. The water temperature, dissolved oxygen (DO) and pH during the larval rearing ranged from 27.0 – 29.5 oC, 2.1 - 7.8 mg/l, and 7.5 – 7.9, respectively.
The *O. marmoratus* larvae commenced feeding on phytoplankton at 3 d AF when the eyes were pigmented and the yolk sac had been absorbed to almost the same size as the air bladder (Senoo *et al.*, 1994a). Tavarutmaneegul *et al.* (1988) fed chicken egg slurry and rotifers (*Brachionus* sp.) to the larvae from 7-20 days after hatching (d AH). Thereafter, the larvae were transferred to outdoor tank and feed daily with live organisms, such as *Moina* spp., *Brachionus* spp., *Chironomid* (Blood warm) larvae and trash fish from 30-60 d AH.

Amornsakum *et al.* (2003) had also reported on the feeding regime of larvae and juveniles of *O. marmoratus*. The author suggested that larvae at 3-18 d AH consumed only rotifer. 21 - 27 d AH larvae with average total length of 0.44 - 0.65 cm consumed rotifer and *Artemia* nauplii. Whereas, 30 - 45 d AH larvae with average total length 0.69 - 2.15 cm consumed only *Moina*. From 60 d AH, only the *Chironomus* larvae were given and most of the juveniles became used to feeding on it within a few days. At the later stage, the juveniles are fed on minced fish, shellfish and shrimp or artificial pellet.

2.3. Salinity effect

Effects of salinity on survival, growth and reproduction of aquatic animals had been discussed by Watanabe (2000). The author stated that effective salinity ranges for reproduction and growth of aquatic organism may be narrow or broad depending on species and vary with life stage. It also may be modified by other environmental factors, particularly temperature.
2.3.1. Effects on hatching rate and larval development

The salinity was reported affect the hatching rate of *O. marmoratus*. Mok (2004) reported that the hatching rate for the eggs of *O. marmoratus* that were incubated in 10 ppt was the best among the 4 treatments (0, 10, 20 and 30 ppt). It also showed that least mortalities occurred both in eggs and larvae in 10 ppt salinity test. Besides, the result also indicated that 10 ppt of salinity can also shorten the hatching period of the eggs where the hatching peak occurred on the fourth day after spawning. With this, there was higher possibility to produce well-hatched larvae due to its hatching period.

Huang et al. (2000) elaborated that salinity had a significant effect on the hatching rate for black porgy (*Acanthopagrus schlegeli*) eggs. The hatching rate was recorded as 85% at 37 and 34ppt and 60% at 31ppt, but no eggs were hatched at 28ppt. During the yolk sac larval stages, the effects of salinity on body length and oil globul volume were significant while body length decreased significantly with increasing salinity. Fashina-Bomba and Busari (2003) had reported that there was improvement in the hatching rates of *Heterobranchus longifilis* eggs when incubated in salinity range of 1.5-3.1 ppt.

Madrones-Ladja, (2002) had reported that the best salinity levels for embryonic development and larval survival of *Placuna placenta* at metamorphosis ranged from 22-34 ppt and larval growth from 16-34 ppt. The tolerance of *P. placenta* to lower and higher salinities progressively increased as larvae developed from embryo to the plantigrade
REFERENCES

