BORANG PENGESAHAN STATUS TESIS

JUDUL: FUNG! ISOLATION AND SCREENING FOR POTENTIAL INHIBITORS AGAINST THE TWO-COMPONENT SYSTEM AND THE SERINE/THREONINE PROTEIN KINASE IN ACTINOMYCES

Ijazah: SARJANA MUDA SAHIBU DENGAN KEPJUAN (BIOTEKNOLOGI)

SESI PENGAJIAN: MEI 2002 - APRIL 2005

Saya VUN SU CHUN

(HURUF BESAR)

mengaku membenarkan tesis (LPH Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan ()

☐ SULIT
☐ TERHAD
☐ TIDAK TERHAD

(Mengandungi maklumat yang berdangkah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA:RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh

(TANDATANGAN PENULIS)

(TANDATANGAN PUSTAKAWAN)

Alamat Tetap: A184, BLOK B,
PEG FASR I, THN FASAR,
BANDAR SERI BEJO, NUAR, 88450 KOTA
KINABALU, SABAH

Tarikh: 31/03/05

Tarikh: 31/03/05

(Prof. Hoc COY CHOE)
Nama Penyelidik

CATATAN:
* Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikenakan sebagai SULIT dan TERHAD.
@ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
FUNGI ISOLATION AND SCREENING FOR POTENTIAL INHIBITORS AGAINST THE TWO-COMPONENT SYSTEM AND THE SERINE/THREONINE PROTEIN KINASE IN ACTINOMYCETES

VUN SU CHIUN

THIS DISSERTATION IS SUBMITTED TO FULFILL THE PARTIAL REQUIREMENT TO OBTAIN THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

BIOTECHNOLOGY
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

PERPUSTAKAAN UMS March 2005
DECLARATION

I affirm that this paper is of my own effort, except for materials referred to as cited in the reference section.

25 March 2005

[Signature]

VUN SU CHIUN
HS 2002-3137
APPROVAL BY THE EXAMINERS

Signature

1. Supervisor
 (Prof. Dr. Ho Coy Choke)

2. Examiner 1
 (Dr. Zaleha Abdul Aziz)

3. Examiner 2
 (Dr. Jualang Azlan bin Gansau)

4. Dean of School of and Technology
 (Prof. Madya. Dr. Amran bin. Ahmed)
ACKNOWLEDGEMENT

It cannot be denied that this thesis for the project II (SY 3233) needs a lot of confidence, hard work and also commitment continuously. The success of the production of this thesis is the combination results from support as well as cooperation or collaboration that’s been given in various forms by several of party. So that’s why here I want to greet thankful to all the parties that’s been so supportive directly or indirectly. Besides than that, I also want to apologize for the mistakes that’s been done during the research.

First of all, I want to say a thousand thankful to my honored supervisor, Prof. Ho Coy Choke that’s gave me a lots of supports, encouragement, guidelines, leadership and motivated advices along my thesis research. A million thank you as well given to Prof. Dr. Perumal, Dr. Zaleha Abdul Aziz, Dr. Lee Ping Chin and Dr. Jualang Azlan bin Gansau for their initiative advices and catalyzing supports. Besides than that, I also want to say thanks a lot to Cik Rokiah as the Tissue and Cell Culture lab’s assistant and also Cik Radizah as the animal physiology lab’s assistant that gave a lot of cooperation along this research was done.

Furthermore, I want to say a thousand sincerely thank you to the postgraduate students and they are Foo Sek Hin, Ho Wei Loon, Simon Ong Si Mon, Puah Seok Hwa and Hew Chaw Sen and also to all my course mates that’s also doing their project under Prof. Ho’s supervision. They are such as Bernard Tzing Ziang Vui, Chan Khai Wai, Mak Ken Hing, Teh Soo Chin, Jessica Peter, Jennifer Roland, Celishta, Tong Mei Ling, Ngao Wee Chen, Lim Siok Har, Yahya bin Jalal and the others students that have been so supportive, cooperating, helpful and always gave actuation as well as encouragement.

A million thanks and appreciation also wanted to be given to my both parents that are my mother and father that’s always gave me moral supports and also encouragement in the making of this thesis.
ABSTRACT

The aim of this research study was to isolate different strains of fungi and conduct a screening test by the fungi extract (secondary metabolites) against the two-component system and ser/thr protein kinase which can be applied in treating disease such as tuberculosis (TB) disease. A total 12 soil samples were collected from different sites of Danum Valley tropical rainforest, Lahad Datu under identified diterocarps trees. A total of 36 strains of fungi had been isolated by using the Potato Dextrose Agar (PDA) media (Booth, 1971; Johnston & Booth, 1983) with chloramphenicol and sodium chloride at pH 6.7 and pH 4.4. Chloramphenicol is a type of antibiotic which inhibit the growth of the unwanted bacteria. All the fungi cultures showed well and good growth on the PDA media which supplemented with rich required nutrients. The sufficient nutrients provide enough required energy and raw material source for its growth as well as its cell proliferation. The fungal cultures were then purified on the same media without chloramphenicol and also sodium chloride (NaCl). The morphology of the cultures were analyzed, observed and recorded. The morphology that was mentioned was such as the fungi’s aerial mycelia, substrate mycelia and their extracellular pigment colour. Fermentation with aerobic condition was carried out after the fungi were inoculated on the PDA slant agar media and the silica gel stock for stock storage usage. The fungal colonies were inoculated onto the 10ml fermentation media inside the 125ml conical flask. This process was carried out for 120 hours (5 days) at 28°C on the shaker incubator machine that’s rotated at 220 r.p.m. Cell harvesting was carried out after the period with the 10ml of acetone for the cell lysis. The fungi extracts were then poured inside McCartney Bottle. The acetone extracts were then tested against the Two-Component System (PhoP/PhoR) in M. smegmatis H8000 and Ser/Thr Protein Kinase (AfsK/AfsR) in S. griseus H10000. A total of 4 extracts showed as potential inhibitors against the PhoP/PhoR pathway in M. smegmatis (mc1255) strain H8000. The 4 extracts with strain number H9984, H9989, H9990 and H9995 showed inhibition zone surround the paper discs on 100μM MgSO₄·7H₂O plate where the growth of the M. smegmatis was inhibited and not on the 1mM plate where none of the M. smegmatis growth was
inhibited by the extracts for both of the screening test which been conducted. A total of 5 extracts (H9386, H9387, H9407, H9409 and H9986) that showed activity on the 1.5% D(+)Glucose plate where inhibition zone seems to be appeared surround the paper discs which been soaked with the 5 extracts above but not on the 1.5% D-Mannitol plate. These 5 extracts expected to inhibit either only the sporulation or the entire growth of the \textit{S.griseus} strain H10000 where none of the microscopic observation was been carried out to determine for the potential inhibitor among the 5 extracts.
CONTENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PHOTO</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Fungi

1.2 Signal Transduction
 1.2.1 Signal transduction and the two-component regulatory systems
 1.2.2 Sensor kinases and response regulators
 1.2.3 Signal transduction and the Serine/Threonine protein kinases regulatory systems in prokaryotes

1.3 Danum Valley Field Centre

1.4 Objectives

CHAPTER 2 LITERATURE REVIEW

2.1 Fungi Definition

2.2 Characteristics of Fungi
2.3 Secondary Metabolites from Fungi

2.3.1 Introduction
2.3.2 Definition of secondary metabolites
2.3.3 Polyketide metabolites
2.3.4 Aromatic compounds
2.3.5 Amino acid pathway
2.3.6 Combination of pathways
2.3.7 Plant growth regulators
2.3.8 Toxins
2.3.9 Diversity of metabolites from fungi

2.4 Signal Transduction

2.5 Two-Component System

2.6 Serine/Threonine Protein Kinase

2.7 Mycobacterium tuberculosis

2.7.1 General characteristics
2.7.2 Cell wall structure
2.7.3 Tuberculosis (TB) disease
2.7.4 Characteristics of a Mycobacterium
2.7.5 The difference between latent tuberculosis infection and tuberculosis disease

2.8 Mycobacterium smegmatis

2.9 PhoP/PhoR Pathway in Mycobacterium tuberculosis

2.10 Streptomyces

2.11 Streptomyces griseus

2.12 Afsk/AfsR Pathway in Streptomyces griseus

CHAPTER 3 METHODOLOGY

3.1 Research Methodology
3.2 Apparatus and Equipments
3.3 Soil Sampling
 3.3.1 Equipments and apparatus
 3.3.2 Method

3.4 Isolation of Fungi
 3.4.1 PDA isolation media
 3.4.2 Method

3.5 Purification of Fungi
 3.5.1 PDA purification media
 3.5.2 Method

3.6 Fungi Stock Storage
 3.6.1 Slant agar stock
 a. Slant agar media
 b. Method
 3.6.2 Silica gel stock
 a. Silica gel media
 b. Method

3.7 Fermentation of Fungi
 a. Fermentation media
 b. Method

3.8 Screening Test against the Target System
 3.8.1 PhoP/PhoR system in *Mycobacterium smegmatis* H8000
 a. M9 Minimal Medium plus trace elements (*Mycobacterium smegmatis* H8000)
 b. Method
 3.8.2 AfsK/AfsR system in *Streptomyces griseus* IFO13350
 a. YPD (Yeast Peptone Dextrose) media
 b. Method
CHAPTER 4 RESULT

4.1 Research Study Main Objectives 71
4.2 Background of the Research Study’s Location 72
 4.2.1 Soil sampling 72
 4.2.2 Sampling location 74
 4.2.3 Soil pH determination 78
4.3 Fungi Culture, Growth and Diverse Morphology 79
 4.3.1 Fungi isolation using PDA with chloramphenicol and sodium chloride 79
 4.3.2 Fungi purification 81
4.4 Fungi Culture Stock Storage 86
 4.4.1 PDA slant agar stock 86
 4.4.2 Silica gel stock 87
4.5 Fermentation and Extraction of Fungi Culture 88
4.6 Screening Test against Target System 90
 4.6.1 Two-component system (PhoP/PhoR) 94
 4.6.2 Serine threonine protein kinase (AfsK/AfsR) 104

CHAPTER 5 DISCUSSION

5.1 Selection for the Research Study Location Factors 113
5.2 Soil Sampling and pH Determination 114
5.3 Isolation of Fungi Culture and Its Growth 116
5.4 Purification of Fungi Culture and Its Growth 118
5.5 Stock Storage for the Fungi Culture 120
5.6 Fermentation and Fungi’s Secondary Metabolites Extraction 121
5.7 Screening Test for Potential Inhibitors against Target System 123
 5.7.1 Two-component system (PhoP/PhoR) 123
 5.7.2 Serine threonine protein kinase (AfsK/AfsR) 126
CHAPTER 6 CONCLUSION

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>No. of Table</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>65</td>
</tr>
<tr>
<td>3.8</td>
<td>66</td>
</tr>
<tr>
<td>3.9</td>
<td>67</td>
</tr>
<tr>
<td>3.10</td>
<td>67</td>
</tr>
<tr>
<td>3.11</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>90</td>
</tr>
</tbody>
</table>

- **2.1**: Fungal secondary metabolites associated with sporulation processes and development.
- **3.1**: List of apparatus and equipments.
- **3.2**: List of equipments and apparatus for soil sampling.
- **3.3**: PDA isolation media chemicals.
- **3.4**: PDA purification media chemicals.
- **3.5**: Slant agar media chemicals.
- **3.6**: Silica gel media chemicals.
- **3.7**: Fermentation media chemicals.
- **3.8**: List of M9 Minimal Medium chemicals.
- **3.9**: List of the trace elements chemicals.
- **3.10**: List of the chemicals substances that were added after autoclaving process.
- **3.11**: YPD (Yeast Peptone Dextrose) media chemicals.
- **4.1**: List of the soil samples that had been collected underneath the different type of identified tress at 4 different areas at Danum Valley Primary Rainforest.
- **4.2**: List of the pH value for soil samples that been collected.
- **4.3**: List of fungi strains that were isolated by using the PDA isolation media.
- **4.4**: List of the aerial mycelia, substrate mycelia and extracellular pigments colour from the fungi culture strains that’s been purified on the PDA media.
- **4.5**: List of the fungi extracts that were tested for the PhoP/PhoR in *M. smegmatis* (mc1255) strain H8000 and Afsk/AfsR in *S. griseus* (IFO13350) H10000.
4.6 Result for the screening test against the PhoP/PhoR in
M. smegmatis strain H8000

4.7 Result for the screening test against the AfsK/AfsR in
S. griseus strain H10000
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No. of figure</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Penicillium notatum is a species of fungus that was used as the original source of the antibiotic penicillin.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Species within the genus Penicillium produce flavors for blue and white cheeses, such as Gorgonzola.</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Typical two-component signal transduction system (Barrett and Hoch, 1998).</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Danum Valley Conservation Area that locates at 81km west of Lahad Datu</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Location of the Danum Valley Conservation Area</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>The linkage between the sugars is like that of cellulose and peptidoglycan and produces the same sort of structural rigidity.</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Structure of Aflatoxin B1.</td>
<td>18</td>
</tr>
<tr>
<td>1.8</td>
<td>Structure of Patulin.</td>
<td>19</td>
</tr>
<tr>
<td>1.9</td>
<td>Structure of Zearalenone.</td>
<td>20</td>
</tr>
<tr>
<td>1.10</td>
<td>Structure of Sporodesmin.</td>
<td>23</td>
</tr>
<tr>
<td>1.11</td>
<td>Structure of Vomitoxin.</td>
<td>24</td>
</tr>
<tr>
<td>1.12</td>
<td>Basic two-component phosphotransfer scheme (West and Stock, 2001).</td>
<td>29</td>
</tr>
<tr>
<td>1.13</td>
<td>Phosphotransfer scheme of a phosphorelay system (West and Stock, 2001).</td>
<td>30</td>
</tr>
<tr>
<td>1.14</td>
<td>Colonies of Mycobacterium tuberculosis on Lowenstein-Jensen medium.</td>
<td>35</td>
</tr>
<tr>
<td>1.15</td>
<td>Mycobacterium tuberculosis that stained with Acid-fast stain.</td>
<td>36</td>
</tr>
<tr>
<td>1.16</td>
<td>Thin section transmission electron micrograph of Mycobacterium tuberculosis.</td>
<td>40</td>
</tr>
</tbody>
</table>
2.12 Model describing the signals controlling expression of PhoP-PhoQ-regulated determinants and the interaction between the PhoP-PhoQ and PmrA-PmrB two-component systems, as well as some of the genes and phenotypes governed by the PhoP PhoQ system.

2.13 Edge of an agar colony of the actinomycete, *Streptomyces griseus*, viewed at low magnification (x10 objective of a compound microscope). Like all actinomycetes, this species grows as narrow filaments, with aerial branches that end in chains of spores. The spirally shaped aerial spore chains typical of the genus *Streptomyces* are seen in this image.

2.14 Higher magnification of some of the aerial hyphae and spore chains.

2.15 AfsK/AfsR pathway in *Streptomyces griseus*

3.1 A brief summary of research methodology.

3.2 Serial Dilution-Plating Strategy

3.3 Isolation of Single Colonies.

4.1 Map of the Nature Trail and some of the soil samples that been collected.

4.2 Map of the Dr.Clive Marsh Trail and some of the soil samples that been collected.

4.3 Map of the Tembaling Trail and some of the soil samples that been collected.

4.4 Map of the Newbery Plot and some of the soil samples that been collected.
LIST OF PHOTOS

No. of Photo	Pages
4.1 | 73 |
4.1 | 12 soil samples (DV1, DV2, DV3, DV4, DV5, DV6, DV7, DV8, DV9, DV10, DV11 and DV12) that had been collected at Danum Valley Primary Rainforest. |
4.2 | 83 |
4.2 | Aerial mycelia (Top picture), substrates mycelia (Bottom picture) and extracellular pigments for fungi strain H9386 (DV71-1). |
4.3 | 84 |
4.3 | Aerial mycelia (Top picture), substrates mycelia (Bottom picture) and extracellular pigments for fungi strain H9387 (DV71-2). |
4.4 | 85 |
4.4 | Aerial mycelia (Top picture) and substrates mycelia (Bottom picture) for fungi strain H9406 (DV76-1). |
4.5 | 87 |
4.5 | (From left) PDA slant agar stocks for fungi strains H9386, H9387, H9388, H9389, H9390, H9391, H9392, H9393, H9394 and H9395 that were labeled. |
4.6 | 88 |
4.6 | (From left) Silica gel stock with pH 4.4 for fungi strains H9386, H9387, H9388, H9389, H9390, H9391, H9392, H9393, H9394 and H9395 that were labeled. |
4.7 | 89 |
4.7 | Fungi acetone crude extracts in a McCartney bottle. From left strain H9386, H9387, H9388, H9389, H9390, H9391, H9392, H9393, H9394 and H9395. |
4.8 | 100 |
4.8 | Inhibition zone appeared around the paper disc number 2 (H9990) which starting clockwise from paper disc number 1 that marked with blue dot on the 100μM MgSO₄.7H₂O plate. |
4.9 | 101 |
4.9 | Inhibition zone appeared around the paper disc number 2 (H9995), 3 (H9984), 4 (H9977) and 10 (H9978) which starting clockwise from paper disc number 1 that marked with blue dot on the 100μM MgSO₄.7H₂O plate. |
4.10 Inhibition zone appeared around the paper disc number 1 (H9998), 2 (H9989) and 3 (H9980) which starting clockwise from paper disc number 1 that marked with blue dot on the 100μM MgSO₄·7H₂O plate.

4.11 Inhibition zone appeared around the paper disc number 1 (H9989), 2 (H9990), 3 (H9995) and 8 (H9984) which starting clockwise from paper disc number 1 that marked with blue dot on the 100μM MgSO₄·7H₂O plate (Top picture).

4.12 Inhibition zone appeared around the paper disc number 1 (H9386), 4 (H9391) and 8 (H9387) which starting clockwise from paper disc number 1 that marked with blue dot on the 1.5% D(+)Glucose plate.

4.13 Inhibition zone appeared around the paper disc number 6 (H9409) and 8 (H9407) which starting clockwise from paper disc number 1 that marked with blue dot on the 1.5% D(+)Glucose plate.

4.14 Inhibition zone appeared around the paper disc number 7 (H9420) which starting clockwise from paper disc number 1 that marked with blue dot on the 1.5% D(+)Glucose plate.

4.15 Inhibition zone appeared around the paper disc number 5 (H9986) which starting clockwise from paper disc number 1 that marked with blue dot on the 1.5% D(+)Glucose plate.

4.16 Inhibition zone appeared around the paper disc number 1 (H9386), 3 (H9986), 4 (H9409), 6 (H9387) and lastly 7 (H9407) which starting clockwise from paper disc number 1 that marked with blue dot on the 1.5% D(+)Glucose plate (Top picture). None of inhibition zone seems to be appeared on the 1.5% D-Mannitol plate (Bottom picture).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>TCS</td>
<td>Two-Component System</td>
</tr>
<tr>
<td>STPKs</td>
<td>Serine/Threonine Protein Kinase</td>
</tr>
<tr>
<td>e.g.</td>
<td>exempli gratis</td>
</tr>
<tr>
<td>Ser/Thr</td>
<td>Serine/Threonine</td>
</tr>
<tr>
<td>HPK</td>
<td>Histidine Protein Kinase</td>
</tr>
<tr>
<td>P</td>
<td>Phosphoryl group</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>PknA</td>
<td>Protein kinase A</td>
</tr>
<tr>
<td>Sq.</td>
<td>Square</td>
</tr>
<tr>
<td>Km.</td>
<td>Kilometer</td>
</tr>
<tr>
<td>F.</td>
<td>Fusarium</td>
</tr>
<tr>
<td>B</td>
<td>Beta</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>psi</td>
<td>pound per square inch r.p.m.</td>
</tr>
<tr>
<td>HK</td>
<td>Histidine Kinase</td>
</tr>
<tr>
<td>RR</td>
<td>Response Regulator</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>D</td>
<td>Domain</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Nitrogen terminal</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>μm</td>
<td>micrometer</td>
</tr>
<tr>
<td>M.tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>CFA</td>
<td>Freund’s Complete Adjuvant</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>midTB</td>
<td>Multiple-Drug-Resistant TB</td>
</tr>
<tr>
<td>B.C.</td>
<td>Before Christ</td>
</tr>
<tr>
<td>LTBI</td>
<td>Latent Tuberculosis Infection</td>
</tr>
<tr>
<td>G+C</td>
<td>Guanosine plus Cytosine</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>Manganese</td>
</tr>
<tr>
<td>S.typhimurium</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>Barium</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>Ferum</td>
</tr>
<tr>
<td>S.coelicolor A3(2)</td>
<td>Streptomyces coelicolor</td>
</tr>
<tr>
<td>Act</td>
<td>Actinorhodin</td>
</tr>
<tr>
<td>Red</td>
<td>Undecylprodigiosin</td>
</tr>
<tr>
<td>CDA</td>
<td>Calcium-dependent antibiotic</td>
</tr>
<tr>
<td>Mmy</td>
<td>Methylenomycin</td>
</tr>
<tr>
<td>CM</td>
<td>Cell Membrane</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carbon-terminal</td>
</tr>
<tr>
<td>YMP</td>
<td>Yeast Mannitol Peptone</td>
</tr>
<tr>
<td>nM</td>
<td>nano Molar</td>
</tr>
<tr>
<td>IFO</td>
<td>Institute Fermentation of Osaka</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>0C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>YPD</td>
<td>Yeast Peptone Dextrose</td>
</tr>
<tr>
<td>µM</td>
<td>micro Molar</td>
</tr>
<tr>
<td>mM</td>
<td>mili Molar</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Fungi

Fungi are plant-like organisms that lack with chlorophyll organelle. Fungi are one of the five kingdoms of life. Many of the fungi are good as well as useful (e.g. edible mushrooms) while some of them causing problems (e.g. fungi that can injure other plants and people). There are over 100,000 species of fungi. Fungi usually absorbed their food from others; this was because that it doesn’t have any chlorophyll pigment. They as well didn't use the light to make their own food and them also able to live in many of the damp and dark places.

Fungi are a group of organisms and micro-organisms that are classified within their own kingdom that is the fungal kingdom where they are neither plant nor animal. Fungi draw their nutrition from decaying organic matter, living plants and even animals. They do not photosynthesize as they totally lack with the green pigment chlorophyll it is present in many of the green plants. Many of the fungi play an important role in the natural cycle as decomposers it helps to return the nutrients to the soil back, they are not all destructive. Fungi are even used for medical purposes, such as species within the *penicillium* genus which provide antibiotics, e.g. penicillin.
Figure 1.1(a) *Penicillium notatum* is a species of fungus that was used as the original source of the antibiotic penicillin.

Figure 1.1(b) Species within the genus *Penicillium* produce flavors for blue and white cheeses, such as Gorgonzola.

1.2 Signal Transduction

1.2.1 Signal transduction and the two-component regulatory systems.

Two-component systems (TCS) and eukaryotic-like Ser/Thr protein kinases comprise major components of the signal transduction machinery of *Mycobacterium tuberculosis* (Tyagi and Sharma, 2004). One of the best understood systems among
the signal transduction protein is the DevR-DevS two-component system (Tyagi and Sharma, 2004).

Most all of the bacteria regulate cell metabolism in response to its wide variety of environmental fluctuations, these includes;

a) Temperatures changes.
b) Changes in pH.
c) Oxygen availability.
d) Changes in availability nutrients.
e) Changes in number of cells presents.

So, that’s why there’s must be a mechanisms by which the bacteria receive signals from the environment and then transmitted them to specific target to be regulated. However, in many cases the external signals is not transmitted directly to the regulatory protein. Instead, a signal is first detected by a sensor and transmitted in a changed form to the rest of the regulatory machinery. This process is called “Signal Transduction” (Madigan and Martinko, 2003).
1.2.2 Sensor kinases and response regulators.

The two-component system is the regulatory systems which cells sense and respond to the environmental signals. These two-component systems include two different proteins;

a) Sensor protein (located in the cell membrane).

b) Response regulator protein (Madigan and Martinko, 2003).

Sensor protein has a kinase activity and referred to as a sensor kinase. Kinase is an enzyme that phosphorylates compounds. The mechanism of the two-component signal transduction system is showed as figure below:-

![Diagram of two-component signal transduction system](image)

Figure 1.2.2 Typical two-component signal transduction system (Barrett and Hoch, 1998).
REFERENCES

