BREAKFAST AND COGNITIVE FUNCTION IN 10-YEAR OLD PRIMARY SCHOOL CHILDREN IN PENAMPANG, SABAH

QUEK SUE LYN

THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE DEGREE OF BACHELOR OF FOOD SCIENCE WITH HONOURS (FOOD SCIENCE AND NUTRITION)

SCHOOL OF FOOD SCIENCE AND NUTRITION
UNIVERSITI MALAYSIA SABAH
2009
BORANG PENGESAHAN STATUS TESIS

Judul: Breakfast and Cognitive Function in 10-Year Old Primary School Children in Penampang, Sabah

Jasah: Sarjana Muda Sains Makanan dyn. Kepujian (Sains Makanan dan Pemakanan)

Nama: QUEK SUE LYN

(HURUF BESAR)

(Mengandungi maklumat yang berdjarah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAOD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

SULIT

TERHAD

TIDAK TERHAD

Disahkan oleh

DR. YASMIN BENH HOI OOI
Nama Penyelia

Alamat Tetap: 4, JLN CHENG PERDANA
1/26, TAMIN CHENG PERDANA,
75250 MELAKA.

Tarikh: 18 MEI 2009

(CATATAN: * Potong yang tidak berkenaan.
Jika tesis ini SULIT atau TERHAOD, sila lampiran surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAOD.

Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

17 APRIL 2009

QUEK SUE LYN
HN2005-1778
VERIFICATION

NAME : QUEK SUE LYN
MATRIC NUMBER : HN2005-1778
TITLE : BREAKFAST AND COGNITIVE FUNCTION IN 10-YEAR OLD PRIMARY SCHOOL CHILDREN IN PENAMPANG, SABAH
DEGREE : BACHELOR OF FOOD SCIENCE WITH HONOURS

CERTIFIED BY

1. SUPERVISOR
 DR. YASMIN BEN HOUI OOI

2. EXAMINER
 DR. PATRICIA MATANJUN

3. EXAMINER
 DATIN RUGAYAH ISSA

4. DEAN
 PROF MADYA DR. MOHD. ISMAIL ABDULLAH
ACKNOWLEDGEMENT

I would like to express my gratitude and appreciation to my supervisor, Dr. Yasmin Beng Houi Ooi for all her advices and guidance which had led to the completion of this thesis. More importantly, I thank her for her time and patience which have undoubtedly been invaluable in allowing me to learn and grow in my experience of carrying out a proper scientific research work.

Apart from that, I would also like to thank the Ministry of Education (MOE) and the Sabah State Education Department for giving permission to conduct the study in SRK St. Joseph Penampang, Sabah.

Thirdly, I would like to thank SRK St. Joseph Penampang for welcoming and accommodating me for the entire duration of the study. I am grateful to Mr. Jainal Lebar (HM) and especially Mdm. Merilyn Ng Mui Len (PK HEM) for giving me the freedom to utilise the school facilities, canteen as well as the school compound. Besides that, individuals from the school who have greatly assisted me throughout the study include Mr. Martin Sibit (PK 1), Ms. Agnes Kinsil, Mdm. Lucy Asing, Mdm. Regina Masudal as well as the school office clerks.

I would also like to extend my appreciation to Mr. Randolph Lojiu, Ms. Hiew Yun Yee, Ms. Lim Yi Pei and Ms. Chin Jet Yei as well as other course mates for their various advices and assistance before, during and after the research which had led to the conclusion of this thesis.

Last but not least, I would like to thank my beloved parents, family and relatives for their love and faith in me. Their undying support and encouragement have tremendously motivated me to strive diligently throughout these years.
ABSTRACT

Relationship between breakfast omission and cognitive performance was investigated in primary school children using a cross-over, within-subject design. Subjects from SRK St. Joseph Penampang (n=51; m=25; f=26; age 10y) were recruited. Pre-preparation was an overnight fast but non-compliance was 39.6%. However results from non compliers to the overnight fasting protocol were not significantly different from compliers irrespective of treatment groups. On assessment day, subjects were randomly assigned to receive breakfast (BR) or no breakfast (NBR) in school. One week later, treatment groups were reversed. Breakfast treatment was a kaya sandwich, a 200ml chocolate malt drink and a common variety banana (approximately 413 kcal). One hour after treatment, subjects completed four cognitive tasks for: (1) short-term memory (Serial Recall Task, SRT and Brown-Peterson Task, BPT), (2) spatial memory (Spatial Memory Task, SMT), and (3) attention (Visual Search Task, VST). Brown-Peterson Task was not further analysed due to incorrect data. BR subjects performed better than NBR subjects in SRT, especially as serial positions progressed ($p<0.05$). NBR subjects significantly made more errors than BR subjects ($p<0.05$). BR subjects performed worse than NBR subjects in SMT and VST, albeit insignificant differences ($p>0.05$). Findings from the VST were congruent with Dickie & Bender (1982) and Chandler et al., (1995). Findings differed from Mahoney et al. (2005) in SMT. Poorer BR subjects (household income <RM1000/mo) performed significantly better for spatial ($p<0.05$). Thin NBR girls were severely affected in SRT ($p<0.05$). These findings could be due to (1) the level of food deprivation between compliers and non-compliers; (2) the breakfast treatment (i.e. glycaemic composition); and (3) nutritional status of the subjects. In conclusion, breakfast omission significantly affected short term memory, ($p<0.05$) but not for attention and spatial memory ($p>0.05$).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Breakfast
1.2 Breakfast and Cognitive Function
1.3 Objective
1.4 Hypothesis
1.5 Rationale

CHAPTER 2: LITERATURE REVIEW

2.1 Children's Daily Nutrient Requirements
2.2 Breakfast and Children's Nutritional Adequacy
2.3 Assessing Children's Growth and Development
2.4 Cognition and Cognitive Function
2.4.1 Memory
2.4.2 Attention
2.4.3 Perception and Spatial Memory
2.5 Assessing Cognitive Function
2.5.1 Short Term Memory (STM)
2.5.2 Attention

vii
2.5.3 Perception and Spatial Memory 18
2.6 Indicator of Socioeconomic Status 19
2.7 Socioeconomic & Nutritional Status, Breakfast & Cognitive Functions 21

CHAPTER 3: METHODOLOGY 25
3.1 Design 25
3.2 Subjects 25
3.3 Measurement 26
 3.3.1 Anthropometry 26
 3.3.2 Assessing Cognitive Function 27
3.4 Data Collection 29
 3.4.1 Duration 29
 3.4.2 Pre-Assessment 29
 3.4.3 Treatment 30
 3.4.4 Procedure 30
 3.4.5 Questionnaire 31
 3.4.6 Statistical Analysis 31
 3.4.7 Ethical Consideration 31

CHAPTER 4: RESULTS & DISCUSSION 33
4.1 Demography 33
4.2 Nutritional Status 37
4.3 Breakfast Consumption 38
4.4 Assessing Cognitive Function 41
 4.4.1 Visual Search Task 41
 4.4.2 Spatial Memory Task 43
 4.4.3 Brown-Peterson Task 45
 4.4.4 Serial Recall Task 45
4.5 Socioeconomic Status and Cognitive Function 48
 4.5.1 Household Income 48
 4.5.2 Number of Children 49
 4.5.3 RMT and PSS Participation 50
4.6 Nutritional Status and Cognitive Function 51
4.7 Viability of Cognitive Function Assessment 55
4.8 Non-Compliance 57
CHAPTER 5: CONCLUSION

5.1 Introduction 59
5.2 Limitation and Suggestion 62
5.3 Statement of Key Findings 65

REFERENCES 66
APPENDICES 72
LIST OF FIGURES

Figure 2.1	A single "mirror image" view, performance rises in childhood, is maintained in middle age and decline in late adulthood.	Page 13
Figure 2.2	Flow diagram for Atkinson & Shiffrin's (1968) model of memory. This model is called the Modal Model because of the huge influence it has had on memory research.	Page 13
Figure 2.3	Percentage of correct recall of three consonants.	Page 17
Figure 2.4	Superior recall of words close to the end of a list (recency effect), pretty good recall of words to the beginning of the list (primacy effect) and relatively poor recall of words in the middle of the list.	Page 18
Figure 4.1	Types of food taken by non-compliant subjects on assessment day.	Page 42
Figure 4.2	Proportion of correct responses as a function of serial position and treatment groups.	Page 47
Figure 4.3	Mean errors by type of error made according to treatment groups.	Page 48
LIST OF TABLES

Table 2.1 Types of tasks used for measuring memory.
Table 3.1 Quantity and energy content of the breakfast treatment.
Table 4.1 Socioeconomic status of subjects.
Table 4.2 Anthropometric measurement of subjects according to sexes.
Table 4.3 Nutritional status of subjects according to sexes.
Table 4.4 Breakfast consumption patterns of subjects according to sexes.
Table 4.5 Reason for breakfast consumption and feeling when in absence of breakfast between sexes.
Table 4.6 Association between SES factors and subjects' breakfast consumption.
Table 4.7 Results of Cancellation Test according to treatment groups.
Table 4.8 Results of Spatial Memory Task according to treatment groups.
Table 4.9 Change of size of primacy effect with treatment groups.
Table 4.10: Change of size of recency effect with treatment groups
Table 4.11 Areas of assessment according to treatment groups.
Table 4.12 Comparison between household income, treatment and cognitive tasks.
Table 4.13 Comparison between number of children, treatment and cognitive tasks.
Table 4.14 Comparison between BMI-for-Age with sex, BR treatment and cognitive tasks.
Table 4.15 Comparison between BMI-for-Age with sex, NBR treatment and cognitive tasks.
Table 4.16 Comparison between Height-for-Age with sex, treatment and cognitive tasks.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMI/A</td>
<td>BMI-for-Age</td>
</tr>
<tr>
<td>BPT</td>
<td>Brown-Peterson Task</td>
</tr>
<tr>
<td>BR</td>
<td>Breakfast treatment group</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic Index</td>
</tr>
<tr>
<td>H/A</td>
<td>Height-for-Age</td>
</tr>
<tr>
<td>Kcal</td>
<td>kilocalorie / calorie</td>
</tr>
<tr>
<td>NBR</td>
<td>Non-breakfast treatment group</td>
</tr>
<tr>
<td>PLI</td>
<td>Poverty Line Index</td>
</tr>
<tr>
<td>PSS</td>
<td>School Milk Programme / Program Susu Sekolah</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Daily Allowance</td>
</tr>
<tr>
<td>RNI</td>
<td>Recommended Nutrient Intake</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SES</td>
<td>socioeconomic status</td>
</tr>
<tr>
<td>SMT</td>
<td>Spatial Memory Task</td>
</tr>
<tr>
<td>SRT</td>
<td>Serial Recall Task</td>
</tr>
<tr>
<td>SSFP / RMT</td>
<td>School Supplementary Feeding Programme/ Rancangan Makanan Tambahan</td>
</tr>
<tr>
<td>STM</td>
<td>Short Term Memory</td>
</tr>
<tr>
<td>VST</td>
<td>Visual Search Task (Cancellation Test)</td>
</tr>
<tr>
<td>W/A</td>
<td>Weight-for-Age</td>
</tr>
<tr>
<td>W/H</td>
<td>Weight-for-Height</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WISC</td>
<td>Weshler’s Intelligent Scale for Children</td>
</tr>
<tr>
<td>WRAT</td>
<td>Wide Range Achievement Test</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Form BPPDP 1 sent to MOE for application to conduct study.</td>
<td>72</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Official SSMP letter attached with BPPDP 1 form that were sent to MOE.</td>
<td>77</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Permission to conduct study granted by MOE.</td>
<td>78</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Official SSMP letter attached with permission letter from MOE that were sent to JPNS.</td>
<td>79</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Permission to conduct study granted by JPNS.</td>
<td>80</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Covering letter to SRK St. Joseph Penampang for permission to conduct study in the school.</td>
<td>81</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Covering letter to parents/guardians.</td>
<td>82</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Study Information Sheet.</td>
<td>83</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Parent permission/consent form.</td>
<td>84</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Parent/guardian questionnaire.</td>
<td>85</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Subject questionnaire.</td>
<td>89</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Weight & standing height measurement form.</td>
<td>94</td>
</tr>
<tr>
<td>Appendix M</td>
<td>Visual Search Task (VST).</td>
<td>95</td>
</tr>
<tr>
<td>Appendix N</td>
<td>Spatial Memory Task (SMT).</td>
<td>100</td>
</tr>
<tr>
<td>Appendix O</td>
<td>Brown-Peterson Task (BPT).</td>
<td>103</td>
</tr>
<tr>
<td>Appendix P</td>
<td>Serial Recall Task (SRT)/Position Error Test.</td>
<td>105</td>
</tr>
<tr>
<td>Appendix Q</td>
<td>Breakfast treatment on assessment day.</td>
<td>107</td>
</tr>
<tr>
<td>Appendix R</td>
<td>Photographs taken on assessment day.</td>
<td>108</td>
</tr>
<tr>
<td>Appendix S</td>
<td>24th Scientific Conference of the Nutrition Society of Malaysia (NSM), Programme Book (pg.3).</td>
<td>109</td>
</tr>
<tr>
<td>Appendix T</td>
<td>24th Scientific Conference of the Nutrition Society of Malaysia (NSM), Programme Book (pg.37).</td>
<td>110</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Breakfast

Regardless of the many meals an individual can have in a single day, breakfast has earned the title as the most important meal of the day contributing substantially to daily nutrient intake and energy needs (Mahoney et al., 2005). As the word suggests, “breakfast” literally means “to break fast” as breakfast is typically eaten after a night’s rest, also considered as a “fasting period”. Ruxton et al. (1996) defined breakfast as any solid item of food taken before arriving and attending school, while the definition of breakfast according to Dickie & Bender (1982) focused on any solid food taken on the morning of the test. Therefore, the definition of breakfast for this study combined both definitions – breakfast: any solid item of food taken before attending school, on the morning before partaking in the test.

Overseas, types of foods consumed at breakfast across various population groups showed milk is one of the most consumed foods by children at breakfast in the United States, Canada and Europe (Rampersaud et al., 2005). Besides that, they also noted that breakfast cereals, which are usually consumed with milk, are also popular in the United States, Canada, the United Kingdom, Spain and Croatia. Various types of breads are also commonly consumed during breakfast. There have been changes observed in breakfast consumption patterns over a 26-year period; increased consumption of low-fat milk, ready-to-eat cereals, and juices and the decreased consumption of high-fat milk, whole-grain breads and eggs (Rampersaud et al., 2005).

In Malaysia, breakfast types may differ according to culture and ethnicity. Breakfast may consist of a popular Malay food such as nasi lemak. Other foods such as roti canai, kaya toast, half boiled eggs, wonton noodles and rice congee are also
among the favourites. In the Peninsular Malaysian East Coast, in addition to the above mentioned varieties, glutinous rice is sometimes eaten at breakfast, as are some types of sweet potatoes and cassava.

Studies have been done on the role of breakfast consumption among children and adolescents and its relationship in more specific areas, such as nutrient adequacy (Rampersaud et al., 2005) and quality of diet, obesity (Panagiatakos et al., 2007), improvement in student behaviour and learning environments, school attendance rates (Powell et al., 1998), decreased absence and tardiness rates, punctuality and psychosocial functioning (Murphy et al., 1998). Cueto & Chinen (2008) evaluated educational impacts of school breakfast in rural Peru, and found positive effects on school attendance and drop-out rates. Rampersaud et al. (2005) also reviewed breakfast roles in areas of body weight and BMI in children and adolescents. According to Panagiatakos et al. (2007), daily consumption of breakfast is inversely associated with the prevalence of overweight or obesity in 10 to 12-year-old children. Besides that, Rogers (1997) noted how bad behaviour and bad eating habits in children can be explained as in the existence of a probable association between difficult home circumstances and relatively poor academic performance.

Sometimes, breakfast is consumed based on timing and availability, with foods that could be consumed readily and obtained on-the-go such as ready-to-eat cereals, pre-packed breads/biscuits or boxed drinks/juices, more preferred. Other times, it is often missed as noted by Affenito (2007). Brugman et al. (1998) noted that skipping breakfast or inadequate breakfast consumption in children contributes to dietary inadequacies that are seldom compensated for in other meals. Breakfast skipping has clearly been shown to be a detrimental health practice for all ages of youth resulting in decreased daily intakes of metabolic regulators essential for growth and health (Hill, 1995). In a study of the impact of breakfast consumption on nutritional status of the diets of young adults (Nicklas et al., 1998), 37% of young adults skipping breakfast also reported lower total daily intakes of energy, protein per 1000 kcal, and saturated fat per 1000 kcal than those who consumed breakfast.
1.2 Breakfast and Cognitive Function

In the interest of this study which focused on the effects of missing breakfast on cognition in school children, several studies suggested that prolonged fasting could affect cognitive functions such as memory, impair academic performance, and also affect emotions and mood (Pollitt, 1995).

In the 1980s, Pollitt et al. (1981) studied the effects of brief fasting and stress on cognition (speed and accuracy in problem-solving tasks) in children. The study revealed that stress (defined as brief fasting) interfered with ability to discriminate between relevant and irrelevant features of visual stimuli in order to match identical figures. Cueto & Chinen (2008) evaluated significant and positive effects on short term memory, arithmetic and reading comprehension in multiple-grade schools.

Hypothetically, two probable biological mechanisms have been suggested on how breakfast could affect brain function and cognitive test performance. The first involves short-term metabolic changes linked with an overnight fast to maintain the availability of fuel and other nutrients to the central nervous system. The other involves the long-term beneficial changes that breakfast could have on nutrient intake and nutritional status, which in turn, can affect cognition (Pollitt & Matthews, 1998). This second mechanism is particularly relevant for children whose daily dietary intake barely meet requirements (Pollitt, 1995).

1.3 Objective

The study had three objectives:

1. To examine the effects of breakfast omission on cognitive functioning (i.e. cognitive test performance) in primary school children.
2. To examine the relationship between socioeconomic status factors and breakfast consumption of primary school children and cognitive functioning.
3. To examine the nutritional statuses of the 10 year old primary school children (Standard 4) using anthropometric measurements.
1.4 Hypothesis
This study hypothesised that breakfast omission in primary school children aged ten years (Standard 4) would result in poor cognitive functioning (i.e. poor cognitive tasks performances).

1.5 Rationale
Since the beginning of the 1980s, studies on the relationship between breakfast effects on cognitive functioning have been continuously expanding and evolving, providing crucial yet inconsistent results along the way. While many researchers overseas have studied relationships between breakfast and cognition, relatively few have been done in Malaysia.

Studies which focused on food insufficiency on children’s cognitive development (Alaimo et al., 2001) and breakfast composition on cognitive processes (Mahoney et al., 2005) were done in the United States. A number of studies which reported adverse effects of overnight fasting and breakfast omission on cognitive functioning in children were done in the United States (Pollitt et al., 1981; Pollitt et al., 1998), in Jamaica (Chandler, 1995; Simeon & Grantham-McGregor, 1989), United Kingdom (Dickie & Bender, 1982) and also Peru (Cueto et al., 1998). Brugman et al. (1998) studied associations of breakfast skipping with socio-demographic variables in the Netherlands.

In Malaysia, several studies have been done on children’s nutritional status and cognitive development, but focused more on children’s overall dietary intakes as opposed to only breakfast consumption. For example, a study by Sarina et al. (2005) was done among Malay and Indian primary school children in Standard 2 and 3 in Hulu Selangor using the McCarthy’s Scale of Children Abilities (MSCA) instrument to assess cognitive development. Another cross sectional study (Pook & Norimah, 2005) tested Chinese school children aged 9 to 12 years on the Weshler’s Intelligent Scale for Children (WISC, 3rd edition) in Kuala Lumpur. Haslina et al. studied household socioeconomic status, nutritional status and intelligent quotient (IQ) among Arang Asli children aged 3 to 8 years old in Sepang District and Carey Island, Banting.
All these studies used the 24-hour Diet Recall to measure children’s overall dietary intakes (NSM, 2005).

A study which was carried out in four regions of Peninsular Malaysia, Sabah and Sarawak investigating food habits and physical activity pattern among primary school children in Malaysia reported that Sabah had the highest prevalence of breakfast skipping in the country (Norimah et al., 2009). As such, this study could serve to shed more light on the effects of breakfast (omission or consumption) on children’s cognitive function in Sabah, as primary school children from SRK St. Joseph, Penampang were recruited.

The selection of children aged ten years, was based on the many studies done previously which investigated children of the same age range. Pollitt et al. (1981) examined well-nourished 9 to 11 year old boys and girls, while the study by Simeon & Grantham-McGregor (1989) was done on children of the same age group but were grouped according to nutritional status. Children with an average age of 12.5 years were used in Dickie & Bender’s (1982) investigation of breakfast and performance. Cueto et al. (1998) studied nutritionally at-risk boys with a mean age range of 10 to 11 years while Chandler et al. (1995) explored school breakfast effects on 11 year old boys and girls from rural schools. Therefore, a study done locally using the same age group could provide relevance when results are discussed.

It had been hypothesised that brain function in young children whose cognitive processes are still maturing is vulnerable to metabolic stresses of fasting. Since they are more likely to be susceptible to these stresses, they are most likely to benefit from breakfast consumption (Pollitt & Matthews, 1998). Alaimo et al. (2001) reported that younger food-insufficient children scored lower reading and arithmetic scores. Powell et al. (1998) reported significant benefit of breakfast to rural, primary school children’s achievement in arithmetic among the younger children of Grades 2 and 3 (ages 7 and 8 years), in particular among girls. These studies compared the availability of breakfast; the composition of the breakfast itself was not evaluated. The present study would use the same framework on Malaysian children, to see if the backgrounds of the students are from poor households. Although breakfast composition (e.g. Glycaemic Index, GI) has been shown to be a significant factor in cognitive function, the priority here is to investigate effects on breakfast omission.
The study could also serve to assist in increasing knowledge and awareness of the importance of breakfast in children among parents, guardians and teachers. By examining the possible relationships that exist in terms of breakfast omission with cognitive functions, parents/guardians could be encouraged to provide their children with morning meals before arriving to school. Furthermore in the long run, this study would provide data that could be used to facilitate in the structuring of school-based programmes, regardless whether feeding or academic related.
CHAPTER 2

LITERATURE REVIEW

2.1 Children’s Daily Nutrient Requirements

Being the first meal of the day, breakfast is brain food as it provides the first dietary energy source for the day (Grosvenor & Smolin, 2002). The Iowa Breakfast Studies defined a basic breakfast as one that provides one fourth the total daily caloric requirement and one-fourth the total daily protein allowance (Morgan et al., 1981). Children require certain amounts of macro- and micronutrients in their daily food intake in order to support their growing and maturing bodily functions. Children need energy and protein for growth as well as to maintain body tissues. Despite their growth and metabolic rates slowing down as they mature (nutrient requirement per unit of body weight decreases), however the total needs for energy and protein increases because body size increases and they become more active (Grosvenor & Smolin, 2002).

The Recommended Nutrient Intakes (RNI) for energy in boys aged 10 to 12 years is 2180 kcal daily while girls in the same age group require 1990 kcal. Protein requirement in boys with the same age group is 45g while girls require 46g of daily protein intake (MOH, 2005). For carbohydrates, children above the age of two are recommended to obtain about 55–60% of total daily energy, with carbohydrate sources coming more from the complex variety (Grosvenor & Smolin, 2002). Micronutrient needs are important as well to help in growing body functions. According to a survey done in the USA, children there are most likely to be deficient in folate, vitamins A, B6, C, E as well as minerals such as calcium, iron and zinc (Grosvenor & Smolin, 2002).
2.2 Breakfast and Children’s Nutritional Adequacy

In a review by Rampersaud et al. (2005), based on studies carried out in US populations of children from 5 to 18 years of age, mean energy intake at breakfast ranged from 275–669 kcal, and percentage contributions to total energy from carbohydrate, protein and total fat ranged from 49–72%, 11–16%, and 14–40% respectively. Breakfast eaters tended to have higher total daily intake of energy and micronutrients compared with non-breakfast eaters. Besides that, high energy types of breakfast were associated with higher mean daily intake of carbohydrates and a lower intake of lipids compared with lower energy breakfasts.

In a study by Ruxton et al., (1996), breakfast was reported to contribute 14% of energy, 10% of fat, 16% of protein, 18% of carbohydrates, and 9–36% of micronutrient intakes to the overall diets of 7 to 8 year old children. In particular a breakfast containing ready-to-eat breakfast cereals (RTEBC) eaten frequently, had a strong influence on the daily energy intakes of 7 to 8 year old children, especially by lowering the ratio of energy from fat.

According to Morgan et al. (1981), children considered to be ready-to-eat cereal eaters (those consuming at least three breakfasts, out of possible seven, that included ready-to-eat cereal) ate breakfasts which, on the average, contained less fat and cholesterol, one and a half times more thiamin, riboflavin, folacin, and vitamins B12 and D; and two times as much crude fiber, niacin, vitamin A, and pyridoxine. Regular breakfast eaters (particularly those who eat breakfast cereals) benefited from the higher average content of ascorbic acid, thiamin, niacin, riboflavin, folacin, calcium, phosphorus, iron, potassium, copper, zinc, magnesium, pyridoxine, and vitamins B12, A, and D. Breakfasts which contained no ready-to-eat cereal had a higher average content of calories, protein, fat, cholesterol, and sodium.

A review by Ruxton & Kirk (1997) noted that breakfasts, with the inclusion of breakfast cereals were more nutrient dense and lower in fat than in any other types of breakfasts. It concluded that breakfast consumption was a marker for an appropriate dietary pattern with regards to both macro- and micronutrients, particularly if breakfast cereals were included in the meal.
In a subject sample of children aged 2 to 10 years and adolescents, Preriosi et al. (1999) reported that breakfast supplied 12–18% of energy following the RDAs. Carbohydrates supplied 57–62% of breakfast energy; proteins supplied 11–13% while fats supplied 27–30%. As for vitamins, breakfast contributed more than 50% of vitamin B2 in children, more than 20% of vitamin B1, 10-15% vitamins A, B6, and C. Besides that, it was reported that intakes of micronutrients were: 45% of RDA for calcium and phosphorus, 33% of RDA for magnesium and 10-15% for iron, zinc and copper.

In Malaysia, one study (Moy et al., 2006) looked into the eating patterns of school children and adolescents (Standard 5, Secondary 2 and Secondary 4) in Kuala Lumpur. They found that 19.9% skipped at least one meal a day with the youngest group having the lowest prevalence. The most frequently missed meal is breakfast (12.6%) followed by lunch (6.7%) and dinner (4.4%). They also found out that most of the subjects were eating out at hawker stalls or fast food chains while the youngest group had high prevalence of snacking. However, detailed information on the children’s and adolescent’s nutritional status was not investigated. Yet, that particular study showed the increasing prevalence of breakfast skipping in Malaysian school children, particularly as their ages increased.

Literature has considered the probable vast benefits of breakfast in supplying all the daily nutrient intake and energy needs among children. It is therefore essential that breakfast consumption be one that is of balance and moderation, combining different food groups to achieve a complete morning meal.

2.3 Assessing Children’s Growth and Development

Recommendations for children are important to supply all necessary nutrients in sufficient amounts in order to cope with the child’s rapid growth and development as well as for activity and maintenance (Grosvenor & Smolin, 2002). Growth is most rapid in the first year of life, with an increase of about 10 inches or 50% increase in infant’s length. As the infant’s age increases, its growth rate slows down with only an increase of about 2–3 inches per year (Grosvenor & Smolin, 2002).
Monitoring children’s growth is vital in ensuring proper development. This can be done by comparing their growth patterns to standard growth patterns using growth charts. Anthropometric indices, weight-for-age (WA), height-for-age (HA) and weight-for-height (WH) are used as the main criteria for assessing adequacy of diet and growths (WHO, 1995) as well as the overall nutritional status in infants and children. Recently, the 2007 WHO Reference Growth Charts has been introduced worldwide with the aim to provide a guideline to assess the nutritional status of children and teenagers within the ages of five to nineteen years (WHO, 2007). All these indices can be deduced when plotting the respective measurements on the respective growth charts.

The WHO (2007) classification of BMI-for-Age (BMI/A) reflects the body mass relative to chronological age. As age increases, so does the body's need for energy. When insufficient energy is supplied to the body, weight will decrease. It is a form of malnutrition in children who are unable to reach the normality range (-2SD ≤ z-score ≤ +1SD; 2.3rd percentile ≤ Z-scores ≤ 97.7th percentile; or 5th-95th percentiles). Classification for Height-for-Age (H/A) reflects achieved linear growth and its deficits indicate long-term, cumulative inadequacies of health and nutrition. “Height” can also be referred to as “length” (for infants) or “stature” depending on the circumstances. The weight-for-height classification reflects the body weight relative to height. It is used to determine conditions such as wasting, thinness, overweight or obesity in subjects.

Categorisation of children according to the WHO BMI/A reference (WHO, 2007):

- **Severe thinness**: Below -3SD of WHO BMI/A median
- **Thinness**: -3SD ≤ to < -2SD of WHO BMI/A median
- **Normal**: -2SD ≤ to < 1SD of WHO BMI/A median
- **Overweight**: 1SD ≤ to < 2SD of WHO BMI/A median
- **Obese**: Above 2SD of WHO BMI/A median

Categorisation of children according to the WHO H/A reference (WHO, 2007):

- **Significantly stunted**: Below -3SD of WHO H/A median
- **Mildly stunted**: -3SD ≤ to < -2SD of WHO H/A median
- **Normal**: -2SD ≤ to < 1SD of WHO H/A median
- **Tallness**: Above 2SD of WHO H/A median
While growth very much depend on other factors such as genetics, lifestyle and the environment, it is generally accepted that diet plays a major factor in children's overall development. Therefore, monitoring growth and physical development in infants & children is an important indicator for their nutritional status.

2.4 Cognition and Cognitive Function

The term "cognition" (Latin: cognoscere, to know) is the process involved in knowing, or the act of knowing, which comprehensively includes perception and judgement. Cognition includes all processes of consciousness where knowledge is accumulated, such as perceiving, recognising, conceiving and reasoning. It is an experience of knowing that can be distinguished from an experience of feeling or willing (Encyclopedia Brittanica, 2008).

In cognitive development, areas of study cover a wide range from representation, memory, language, conceptual development, reasoning, problem solving, and also strategy development and use (Smelser & Baltes, 2001). However, cognitive functioning in mainstream psychology tends to apply to processes such as memory (sensory and primary memory, encoding, retrieval, and storage), attention, perception (visual), action, problem solving, imagery (mental and visual), language (structuring and processing), motor control, as well as decision making and deductive reasoning (Willingham, 2007). Currently, all these areas of cognition exist as separate forms of studies and are not held together by a single theory as there is little communication in terms of interaction studies. This study investigated only a small area of the entire scope of cognition, which is short-term memory, spatial abilities (perception memory) and attention demanding abilities.

Cognitive abilities rise steeply from infancy to young adulthood and then are either maintained or decline to old age, depending on the specific ability (Craik & Bialystok, 2006). As shown in Figure 2.1, there exists vulnerability in youth and old age that is not present in the middle of life. Learning and remembering are essential to an individual's survival, and lifespan changes in these abilities depend greatly on brain plasticity, the growth and decline of brain matter and nervous system. In children, very rapid and competent learning seen in infants and children is a function of differential cell loss and synaptic growth which in combination with white matter
REFERENCES

