GENERATING AND VISUALIZING LATIN
CUBE AND SUDOKU CUBE

NG E LUEN

DISSERTATION SUBMITTED IN PARTIAL FULLFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH
HONORS

MATHEMATICS WITH COMPUTER GRAPHICS PROGRAM
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

April 2007
BORANG PENGESAHAN STATUS TESIS@

JUDUL: Generating and Visualizing Latin Cube and Sudoku Cube

Ijazah: Degree of Bachelor of Science. (Sarjana Muda Seins)

SESI PENGAJIAN: Tahun 3

Saya NG E Luen

(HURUF BESAR)

mengaku membenarkan tesis (LPSM/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. *Sila tandakan (/)

<table>
<thead>
<tr>
<th></th>
<th>SULIT</th>
<th>TERHAD</th>
<th>TIDAK TERHAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Mengandungi maklumat yang berdaulat keselamatan atau kepentingan Malaysia seperti yang termaktub dalam AKTA:RAHSIA RASMII 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/bedan di mana penyelidikan dijalankan)

Disahkan oleh

(TANDATANGAN PENULIS)

Alamat Tetap: 130-A, Kampus Cina, Part 21, 88400

Mutan Melatiang, Pns.

Tarijk: 19/04/2007

CATATAN: * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@ Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kurnius dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that this dissertation is my own work except for the summaries and quotations whereby each of its origin and source has been duly acknowledged.

12 March 2007

NG E LUEN
HS2004 – 2252
AUTHENTICATION

1. SUPERVISOR
 (Mr. Tiong Kung Ming)

2. EXAMINER 1
 (Mr. Rajasegeran Ramasamy)

3. DEAN
 (SUPT./KS. Assoc. Prof Dr. Shariff A.K. Omang)
ACKNOWLEDGEMENT

First, I would like to thank my supervisor, Mr. Victor Tiong Kung Ming for his guidance and advices in helping me to eliminate the problems throughout the writing process for this dissertation. Without his help, this dissertation will not be completed successfully.

Several of my friends have provided some valuable ideas, which are very helpful for this dissertation. Here, I specially thank to Mr. Lim Keng Poh. He always tries to help me to solve the problems when I am facing the programming problem. By his help, the programs can be run properly and effectively. I would also like to thank Mr, Ganesan Armugam, who has provided some idea of Latin Square and SuDoku for my dissertation. He also gave a lot of advice in playing these games, which is needed to complete the methodology for this dissertation.

Finally, I would like to thank my family, which give the greatest support throughout the writing process. And also, I would like to thank anyone, who has contributed in this dissertation. I am sorry if I did not mention your name here but I will always appreciate your help in this dissertation.
Latin Square and SuDoku is \(n \times n \) array and can extend to three dimensions which can form a cube. This research is to determine whether different layers of Latin Square or SuDoku can form a cube or not, which is called Latin Cube and SuDoku Cube respectively. This research also is to investigate whether a Latin Cube or SuDoku Cube is unique or not. Row interchanging is used to find the matching layer for a Latin Square to form a cube. Method 1 and Method 2 are used to find the matching layer for a SuDoku to form a cube. The basic idea of Method 1 and Method 2 is from row interchanging and column interchanging. Two programs are written in C++ computer language by using these methods, for Latin Cube and SuDoku Cube respectively. These programs can find the matching layer for a Latin Square and SuDoku, and save the outputs in VRML file type (.wrl). These outputs, or cube, can be viewed in a 3D environment by using VRML. The cubes can be viewed and studied in detail using VRML.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>AUTHENTICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND | 1 |
1.2 OBJECTIVE OF RESEARCH | 4 |
1.3 SCOPE OF RESEARCH | 4 |
1.4 HYPOTHESIS | 5 |

CHAPTER 2 LITERATURE REVIEW

2.1 LATIN SQUARE | 6 |
2.2 SUDOKU | 9 |
 2.2.1 Brief History of SuDoku | 9 |
 2.2.2 Strategies to Solve SuDoku | 10 |
 2.2.3 Total Number of Possible SuDoku Grid | 11 |
 2.2.4 Dion Cube | 11 |

CHAPTER 3 METHODOLOGY

3.1 BACKGROUND | 13 |
3.2 GENERATING A LATIN CUBE | 13 |
3.3 GENERATING A SUDOKU CUBE | 17 |
 3.3.1 Method 1 ($m \times m$ Region Input) | 17 |
 3.3.2 Method 2 (Initial Layer Input) | 25 |
3.4 INVESTIGATION ON LATIN CUBE AND SUDOKU CUBE | 30 |
 3.4.1 Latin Cube | 30 |
 3.4.2 SuDoku Cube | 31 |
3.5 VERIFICATION OF THE LATIN CUBE AND SUDOKU CUBE 32
3.6 ALGORITHM FOR LATIN CUBE AND SUDOKU CUBE 33

CHAPTER 4 RESULTS AND DISCUSSION
4.1 RESULT 37
 4.1.1 Output for Latin Cube 37
 4.1.2 Output for SuDoku Cube 47
4.2 DISCUSSION 60
 4.2.1 Limitations of the Programs 60
 4.2.2 Limitations of VRML 64

CHAPTER 5 CONCLUSION AND SUGGESTIONS
5.1 CONCLUSION 67
5.2 SUGGESTIONS FOR FURTHER RESEARCH 69
REFERENCES 70
LIST OF TABLES

<table>
<thead>
<tr>
<th>No. of Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The number of reduced Latin Square with different n</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Total number of Latin Square</td>
<td>8</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No. of Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of a Latin Square of order 3</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Latin Square with different entries</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>An example of 9×9 SuDoku</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>A Latin Cube with $n = 4$</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>An example of SuDoku Cube with $m = 2$ and $n = 4$</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>An example of reduced Latin Square</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>An example of not a reduced Latin Square</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>An example of Dion Cube</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>4×4 Latin Square</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>From first layer to second layer</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>From second layer to third layer</td>
<td>15</td>
</tr>
<tr>
<td>3.4</td>
<td>From third layer to fourth layer</td>
<td>15</td>
</tr>
<tr>
<td>3.5</td>
<td>Latin Square in sequence</td>
<td>15</td>
</tr>
<tr>
<td>3.6</td>
<td>Row interchanging for order n Latin Square</td>
<td>16</td>
</tr>
<tr>
<td>3.7</td>
<td>Obtain different layers by using column interchanging</td>
<td>16</td>
</tr>
<tr>
<td>3.8</td>
<td>A SuDoku grid that will be used in explanation</td>
<td>17</td>
</tr>
<tr>
<td>3.9</td>
<td>Initial input</td>
<td>18</td>
</tr>
<tr>
<td>3.10</td>
<td>The way to obtain second and third regions</td>
<td>18</td>
</tr>
<tr>
<td>3.11</td>
<td>The way to obtain fourth region and seventh region</td>
<td>19</td>
</tr>
<tr>
<td>3.12</td>
<td>The way to obtain fifth and sixth regions</td>
<td>19</td>
</tr>
<tr>
<td>3.13</td>
<td>The way to obtain eighth and ninth regions</td>
<td>19</td>
</tr>
<tr>
<td>3.14</td>
<td>A Complete SuDoku grid</td>
<td>20</td>
</tr>
<tr>
<td>3.15</td>
<td>The way rows and columns interchange</td>
<td>21</td>
</tr>
<tr>
<td>3.16</td>
<td>From initial layer to second layer</td>
<td>21</td>
</tr>
<tr>
<td>3.17</td>
<td>From second layer to third layer</td>
<td>22</td>
</tr>
<tr>
<td>3.18</td>
<td>Obtaining the fourth, fifth and sixth layers from the initial layer</td>
<td>23</td>
</tr>
<tr>
<td>3.19</td>
<td>Obtaining the seventh, eighth and ninth layers from the fourth layer</td>
<td>24</td>
</tr>
<tr>
<td>3.20</td>
<td>An example for Method 2</td>
<td>25</td>
</tr>
<tr>
<td>3.21</td>
<td>Obtaining the second and third layers</td>
<td>26</td>
</tr>
<tr>
<td>3.22</td>
<td>Obtaining the fourth layer</td>
<td>27</td>
</tr>
</tbody>
</table>
3.23 Obtaining the fifth and sixth layers 28
3.24 Obtaining the seventh, eighth and ninth layers 29
3.25 Four Latin Squares obtained by using row interchanging 31
3.26 Four Latin Squares obtained by using column interchanging 31
3.27 First column from layer 1 to 9 33
3.28 Implementation of obtaining the Latin Cube 35
3.29 Implementation of obtaining SuDoku Cube 36
4.1 An example output of the program (layer 1 and 2) 38
4.2 An example output of the program (layer 3 and 4) 38
4.3 Viewing Latin Cube in VRML (from front or the original position) 39
4.4 Viewing Latin Cube in VRML from the top 40
4.5 Viewing the Latin Cube in VRML from the left side 41
4.6 Fit the cube (from Figure 4.5) to the window 41
4.7 Viewed the cube layer by layer (after fit to window) 42
4.8 Example output of a cube in order 9 (data input) 43
4.9 Example output of a cube in order 9 (layer 1 and layer 6) 44
4.10 Example output of a cube in order 9 (layer 7 to layer 9) 45
4.11 Viewing the cube from the top and the left side 46
4.12 Viewing the cube layer by layer 47
4.13 Output of Option 1 (layer 1 and 2) 48
4.14 Output of Option 1 (layer 3 and 4) 49
4.15 Viewing SuDoku Cube in VRML (in original position) 50
4.16 Viewing SuDoku Cube from the top (fit to the window) 50
4.17 Viewing SuDoku Cube from the side (fit to the window) 51
4.18 View the SuDoku Cube layer by layer 52
4.19 Output of Option 1 with the size of region is 3 (input data) 52
4.20 Output of Option 1 with the size of region is 3 (layer 1 to layer 6) 53
4.21 Output of Option 1 with the size of region is 3 (layer 7 to layer 9) 54
4.22 Viewing SuDoku Cube in VRML from the back and top left corner 55
4.23 Viewing the SuDoku Cube layer by layer 56
4.24 Output of Option 2 (input data) 57
4.25 Output of Option 2 (layer 1 to layer 2) 57
4.26 Viewing SuDoku Cube in VRML from top right corner 58
4.27 Viewing SuDoku Cube in VRML from back top left corner 59
4.28 Viewing SuDoku Cube layer by layer 59
4.29 The error when the size is out of range 61
4.30 The error when the size is a non-numeric input 62
4.31 An example of a data which is entered wrongly 63
4.32 An order 4 Latin Cube 65
4.33 An order 15 Latin Cube 65
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

A Latin Square in the order of n is an $n \times n$ array where the entries are from a set of n distinct symbols. These symbols are arranged in such a way that each symbol occurs exactly once in each row and in each column (Crownover & Thibault, 2005). Figure 1.1 and Figure 1.2 show examples of Latin Square in order 3 and order 4.

![Figure 1.1 Example of a Latin Square of order 3](image1)

![Figure 1.2 Latin Square order 4 with different entries](image2)

SuDoku is an $n \times n$ array where n is equal to m^2, m is natural number. We can simplify it as a mathematical model:
\[n = m^2, \quad m = 1, 2, 3 \ldots \text{ or } m \in \mathbb{N} \]

The entries of a SuDoku is from a set of \(m^2 \) distinct symbols where are arranged in such way that every symbol occurs exactly once in each column, each row and each \(m \times m \) region. These rules are similar to Latin Squares rules but there exists one extra rule which states that the symbols in an \(m \times m \) region also must occur not more than once.

Latin Square and SuDoku both are \(n \times n \) array. But the size of SuDoku is specified as \(n = m^2 \) which \(m \) is a positive integer. Therefore, we can conclude that SuDoku is subset of Latin Square. With the additional rule of SuDoku, it can be said that SuDoku is a special case of Latin Square (Weisstein, 2006). Any solution to a SuDoku puzzle is a Latin Square (Wikipedia, 2006). Figure 1.3 shows an example of 9 \(\times \) 9 SuDoku.

![Figure 1.3 An example of 9 \(\times \) 9 SuDoku](image)

From an order \(n \) Latin Square, if the rows for that Latin Square are rearranged, a different Latin Square will exist. It will give the same result if the columns are rearranged. So, if the procedure is repeated with \(n-1 \) times, \(n-1 \) new Latin Square will be obtained. Consequently, these Latin Squares will form a cube (call it Latin Cube) if
they are combined together. This is the main idea of the method that will be discussed in this research. Figure 1.4 shows a Latin Cube.

![Figure 1.4 A Latin Cube with $n = 4$](image)

The same idea will be applied in SuDoku. But, SuDoku consist an extra rule which leads to a higher complexity to find the matching layers. The interchanging of rows and columns will be applied at the same time to a SuDoku. The purpose is to eliminate the possibility of clashing among the elements in an $m \times m$ region. Figure 1.5 shows an example of $4 \times 4 \times 4$ SuDoku Cube.

![Figure 1.5 An example of SuDoku Cube with $m = 2$ and $n = 4$](image)
From Figure 1.3 and Figure 1.4, the Latin square and SuDoku seem just lying on the surface of cube. In fact, it does not only occur on the surface of the cube. If the cube is separated into layer, every layer, no matter vertical or horizontal, a Latin Square or SuDoku will be obtained respectively. It means that the cube is formed by combining n layers of Latin Square or SuDoku where $n \in N$. It is hard to imagine or view the Latin Cube and SuDoku Cube in 2D form. The Latin Cube and SuDoku Cube will be viewed in a 3D environment, in Chapter 4.

1.2 OBJECTIVES OF RESEARCH

This research has four main objectives:

i. To determine whether different layers of Latin Square can form a Latin Cube that fulfils Latin Square rules.

ii. To determine whether different layers of SuDoku can form a SuDoku cube that fulfils SuDoku rules.

iii. To create a program that can produce a Latin Cube and SuDoku Cube respectively, by obtaining the first layer.

iv. To investigate whether a Latin Cube or SuDoku Cube is unique or not.

1.3 SCOPE OF RESEARCH

This research just covers the method of finding matching layers to form a Latin Cube or SuDoku Cube. This research will not touch on methods that are used to solve a Latin Square or a SuDoku. The methods that are discussed in this research also can not be used to solve any Latin Cube or SuDoku Cube. It is only about how to generate
and visualize the Latin Cube and SuDoku Cube. The size of Latin Cube can up to $80 \times 80 \times 80$. The number larger than that is not allowed because of the limitation of compiler, processor and system memory. The size of SuDoku Cube can up to $64 \times 64 \times 64 (m = 8)$. The size $81 \times 81 \times 81 (m = 9)$ SuDoku Cube is not allowed because of the same reason.

1.4 HYPOTHESIS

The methods discussed in this research will find the matching layers for a Latin Square or SuDoku to form a Latin Cube and SuDoku Cube. The set of matching layers will not be unique because different Latin Cube and SuDoku Cube can be formed from an initial layer.
CHAPTER 2

LITERATURE REVIEW

2.1 LATIN SQUARE

In 1783, a great mathematician, Leonhard Euler introduced Latin Square as a "nouveau espece de carres magiques", means a new kind of a familiar puzzle, Magic Square (Bogomolny, 2006). Euler used Latin as the name of Latin Square because he used Latin characters as the symbols in a square (Wikipedia, 2006).

A reduced Latin Square or sometimes called normalized or in standard form if the elements in first column and first row are in natural order (Wikipedia, 2006). Figure 2.1 shows an example of reduced Latin Square and Figure 2.2 shows an example that is not a reduced Latin Square.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1 \\
\end{array}
\]

Figure 2.1 An example of reduced Latin Square
Figure 2.2 An example of not a reduced Latin Square

The Latin Square in Figure 2.1 is said to be reduced because the first row and first column also \(\{1, 2, 3, 4\} \). The example in Figure 2.2 is not a reduced form because the first column is not in natural order. A not reduced Latin Square can be changed to reduced form by permuting or reordering (Wikipedia, 2006). This permuting or reordering concept is applied in this research to obtain different Latin Squares from an initial Latin Square.

When a game, especially a puzzle game becomes famous, the mathematician will try to calculate all the number of possible puzzle. For Latin Square, all the possible Latin Squares can be computed by using the following formula:

\[
[(n!)(n - 1)!] \times R
\]

where \(n \) is the size of a Latin Square and \(R \) is the number of reduced Latin Square for certain size of Latin Square (Wikipedia, 2006). Table 2.1 shows the number of reduced Latin Square for different size.

The total number of possible Latin Square is needed to know so that the possible Latin Cube for a certain order can be calculated. For example, the possible Latin Cube for an order 4 Latin Square should not be more than 576 because a dimension is added. This is important when find a Latin Cube in certain order. The
total number can be estimated before the cube can be found. Table 2.2 shows the total number of Latin Square for $n = 1 \ldots 11$.

Table 2.1 The number of reduced Latin Square with different n

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>9408</td>
</tr>
<tr>
<td>7</td>
<td>16942080</td>
</tr>
<tr>
<td>8</td>
<td>535281401856</td>
</tr>
<tr>
<td>9</td>
<td>377597570964258816</td>
</tr>
<tr>
<td>10</td>
<td>7580721483160132811489280</td>
</tr>
<tr>
<td>11</td>
<td>5363937773277371298119673540771840</td>
</tr>
</tbody>
</table>

Table 2.2 Total number of Latin Square

<table>
<thead>
<tr>
<th>n</th>
<th>Total number of Latin Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>576</td>
</tr>
<tr>
<td>5</td>
<td>161280</td>
</tr>
<tr>
<td>6</td>
<td>812851200</td>
</tr>
<tr>
<td>7</td>
<td>61479419904000</td>
</tr>
<tr>
<td>8</td>
<td>108776032459082956800</td>
</tr>
<tr>
<td>9</td>
<td>5524751496156892842531225600</td>
</tr>
<tr>
<td>10</td>
<td>9982437658213039871725064756920320000</td>
</tr>
<tr>
<td>11</td>
<td>77696683617177014410744434673423068231106560000000</td>
</tr>
</tbody>
</table>
2.2 SUDOKU

This section will discuss about a brief history of SuDoku, some basic strategies to solve the SuDoku, total number of possible SuDoku grid and Dion Cube, which is where the idea of SuDoku Cube came from.

2.2.1 Brief History of SuDoku

SuDoku is a puzzle that is similar to Latin Square. This puzzle was designed by Howard Garns, a retired architect and freelance puzzle constructor (Maxwell, 2005). The main idea came from the Latin Square that created by Euler, but Howard Garns added an extra rule for it, which the entries in every \(m \times m \) region must occur no more than once (Carter, 2006).

SuDoku puzzle was first published in 1979 at U.S. (Wikipedia, 2006). The SuDoku Puzzle was first published by the specialist puzzle publisher in New York, Dell Magazines, in its magazine Dell Pencil Puzzles and Word Games. They put the title as “Number Place” (Wikipedia, 2006). So, in U.S., SuDoku puzzle is also known as “Number Place” (Santos-Garc’ia & Palomino, 2006).

In April 1984, the SuDoku puzzle was first introduced in Japan by Nikoli, in the paper Monthly Nikolist and known as “Suuji wa dokushin ni kagiru” (Timmerman, 2006). SuDoku can be translated as "the numbers must be single" or "the numbers must occur only once" (Winkler, 2005). The puzzle was named by Kaji Maki, the
president of Nikoli. At a later date, the name was abbreviated to SuDoku where Su means number and Doku means single or odd (Wikipedia, 2006).

2.2.2 Strategies to Solve SuDoku

Usually, there are a few strategies to solve a SuDoku puzzle. The first strategy is scanning. Scanning consist two basic techniques, which are cross-hatching and counting. Cross-hatching, being the scanning of rows or columns, to identify which line in a particular region may contain a certain number (Lexico Publishing Group, 2006). Then, the process is repeated among the rows and the columns. Counting is used to identify a missing number in a row, column or an $m \times m$ region.

The second strategy is marking-up. This method is used when all the blank cells have more than one candidate. Then, a blank cell can be marked up with the possible candidate. In this situation, the last strategy can be used, which is analyzing. The what-if approach is using here. This means that a blank cell can be chosen and then make a guess to select a candidate number (Lexico Publishing Group, 2006). If the number that had chosen is the solution, then, the solving progress can be continued. Otherwise, these two strategies will be repeated.

SuDoku requires no math ability. It is a puzzle of logic and will not involve the mathematics operation such as adding and subtracting. So, players do not need to master in mathematics when they play the puzzle (Kingfisher Books, 2005).
2.2.3 Total Number of Possible SuDoku Grid

Similar to the Latin Square, many people are interested in finding the total number of possible SuDoku grid. Felgenhauer and Jarvis (2005) wrote a paper that enumerates the total number of possible SuDoku grids. In this paper, they calculated that SuDoku have 6670903752021072936960 possible grids.

This calculation is based on the standard 9×9 SuDoku. The formula to get this number showed as below:

$$9! \times 72^2 \times 2^7 \times 27,704,267,971 = 6670903752021072936960$$

$$\approx 6.671 \times 10^{21}$$

The last factor is a prime number (Wikipedia, 2006). This formula was derived by using logic theory. The total number of possible SuDoku grid is observed because the purpose is same with the purpose to know the total number of Latin Square.

2.2.4 Dion Cube

In May 2005, Dion Church, a Telegraph SuDoku enthusiast (Wikipedia, 2006) comes up with an “ultimate SuDoku”, which is a three dimension SuDoku. This 3D SuDoku is called the Dion cube. The entire rules that apply in 2D SuDoku also apply in 3D SuDoku. The Dion cube is first published in the Daily Telegraph in May 2005. (Taalman, 2006). Figure 2.3 shows an example of Dion Cube.
REFERENCES

