NUTRITIONAL COMPOSITION AND PHYSICAL CHARACTERISTICS OF EDIBLE ANURAN MEAT
(Rana erythraea and Limnonectes blythii)

PANG HOOI KHEE

THIS DISSERTATION IS SUBMITTED IN PARTIAL FULLFILLMENT FOR BACHELOR DEGREE OF FOOD SCIENCE WITH HONORS IN FOOD TECHNOLOGY AND BIOPROCESS

SCHOOL OF FOOD SCIENCE AND NUTRITION
UNIVERSITI MALAYSIA SABAH
2007
NAMA MAHASISWA: PANG HOOI KHEE

SILAI MEMBENARKAN TESIS (LPSI Satjanal Doktor Falsafah) ini di simpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. ** Sila tandakan (/) (Mengandungi maklumat yang berdasar keselamatan atau kepentingan Malaysia seperti yang termaktub dalam AKTA RAHSIA RASMI 1972)
 SULIT
 TERHAD
 √ TIDAK TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

(TANDATANGAN PENULIS)

amat Tetap: 5, Lebah Merpati, Taman Transkrian, 19300
Nibong Tebal.

Tarikh: 4/5/07

(TANDATANGAN PUSTAKAWAN)

Miss Ho Ai Ling
Nama Penyelia

Tarikh: 4/5/07

TATAN: * Potong yang tidak berkenaan.
* Jika tesis ini SULIT atau TERHAD, sila lampiran surat daripada pihak berkuasa/organsasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyesuaian, atau disertai bagi pengajian secara kerja kursus dan penyesuaian, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

26 MARCH 2007

PANG HOOI KHEE
HN2004-2032
VERIFICATION

1. SUPERVISOR
 (MS. HO AI LING)

2. EXAMINER 1
 (DR. CHYE FOOK YEE)

3. EXAMINER 2
 (DR. MUHAMMAD IQBAL HASHMI)

4. DEAN
 (ASSOC. PROF. DR. MOHD. ISMAIL ABDULLAH)

SIGNATURE

[Signatures]

UMS UNIVERSITY MALAYSIA SABAH
ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I am deeply indebted to my supervisor Ms. Ho Ai Ling whose help, stimulating suggestions and encouragement that helped me in all the time of research for and writing of this thesis.

In addition, I would like to thank the expert in anuran, Mr. Kueh Boon Hee, lecturer from Institute of Tropical Biology and Conservation (ITBC). He had given fully help and support in providing information about anuran and identification for anuran species.

Beside, I would like to thank the Dean of School of Food Science and Technology, Prof. Madya Dr. Ismail Abdullah and all the lecturers of SSMP for the excellent teachings and suggestions during my three years of studying in University Malaysia Sabah (UMS).

Furthermore I have to thank my friends who encouraged me to go ahead with my thesis. I want to thank them for all their help, support, and interest. Without their encouragement, I could not have completed my thesis. They were always there to meet and talk about my ideas and to ask me good questions to help me think through my problems.

Last but not least, I would like to give my special thanks to my parents as well as my siblings whose patient love enabled me to complete this work.

PANG HOOI KHEE

HN2004-2032
ABSTRACT

The objectives of this study were to analyze the proximate composition, fatty acids and physical characteristic of *Rana erythraea* and *Limnonectes blythii*. Edible portion of both anurans were compared to chicken meat. In the proximate analysis, moisture, protein, fat and ash content for *R. erythraea* were 77.75 ± 1.68%, 16.60 ± 0.40%, 0.83 ± 0.09%, 3.38 ± 0.16% whereas *L. blythii* were 80.07 ± 0.77 fatty%, 17.29 ± 0.33%, 0.76 ± 0.12%, 0.83 ± 0.15%, respectively. For acids composition, *R. erythraea* has 25.48 ± 0.15%, 35.98 ± 2.44% and 38.54 ± 2.34% for SFA, MUFA and PUFA respectively; while for *L. blythii* is contains 39.62 ± 1.49%, 28.61 ± 2.64% and 31.77 ± 4.13% respectively. The main SFA were palmitic acid (C16:0) and Stearic acid (C18:0) while oleic acid (C18:1) and linoleic acid (C18:2) were the dominant MUFA and PUFA. PUFA: SFA ratio for both anurans were higher than 0.40. This ratio was recommended as a balanced fatty acids intake in a healthy diet. In the view of physical characteristic, cooking loss was higher in *L. blythii* (32.34 ± 1.28%) than *R. erythraea* (18.53 ± 0.98%). pH of both anurans (*R. erythraea* and *L. blythii*) was 6.58 ± 0.03 and 6.53 ± 0.03 respectively. The anurans are higher in moisture and protein content, while lower in fat content and higher in PUFA: SFA ratio than chicken meat. Besides, anurans’ meats have lower cooking loss and higher pH than chicken meat. Therefore, the anurans’ meat can be considered as lean meat and are excellent protein source. Beside, they are more tender and have high eating quality.
ABSTRAK

KANDUNGAN NUTRISI DAN SIFAT FIZIKAL DAGING ANURAN

(Rana erythraea dan Limnonectes blythii)

Objektif kajian ini adalah untuk menganalisa komposisi proksimit, asid lemak dan sifat fizikal Rana erythraea dan Limnonectes blythii. Dua jenis anuran ini juga dibandingkan dengan daging ayam. Dalam analisis proksimit didapati kandungan kelembapan, protein, lemak dan abu dalam R. erythraea adalah 77.75 ± 1.68%, 16.60 ± 0.40%, 0.83 ± 0.09% dan 3.38 ± 0.16% masing-masing manakala untuk L. blythii adalah 80.07 ± 0.77%, 17.29 ± 0.33%, 0.76 ± 0.12% dan 0.83 ± 0.15%, masing-masing. Peratus bagi SFA, MUFA dan PUFA dalam R. erythraea adalah 25.48 ± 0.15%, 35.98 ± 2.44% dan 38.54 ± 2.34%. Untuk L. blythii pula, peratusnya adalah 39.62 ± 1.49%, 28.61 ± 2.64% dan 31.77 ± 4.13%. SFA yang utama adalah asid palmitik (C16:0) dan asid stearik (C18:0) manakala MUFA dan PUFA yang utama adalah asid oleik (C18:1) dan asid linolik (C18:2). Nisbah PUFA:SFA oleh kedua-dua spesies anuran adalah lebih dari 0.40. Ini menunjukkan kedua-dua species ini mengandungi kandungan asid lemak yang seimbang bagi pemakanan yang sihat. Dari segi sifat fizikal, kehilangan kelembapan pemasakan, L. blythii (32.34 ± 1.28%) adalah lebih tinggi daripada R. erythraea (18.53 ± 0.98%). pH dalam kedua-dua anuran (R. erythraea and L. blythii) adalah 6.58 ± 0.03 dan 6.53 ± 0.03 masing-masing. Secara keseluruhan, anuran mengandungi kandungan kelembapan dan protein yang lebih tinggi berbanding dengan daging ayam, pada masa yang sama anuran mengandungi kandungan lemak yang lebih rendah dan nisbah PUFA:SFA yang tinggi. Selain itu, kehilangan kelembapan pemasakan daging ayam adalah lebih tinggi daripada anuran. Oleh itu, daging anuran boleh digolongkan sebagai daging kelembapan lemak rendah dan merupakan sumber protein yang sangat baik dan ia adalah lebih lembut dan mempunyai kualiti pemakanan yang lebih tinggi.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i.</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii.</td>
</tr>
<tr>
<td>VERIFICATION</td>
<td>iii.</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv.</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v.</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi.</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii.</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii.</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix.</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii.</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii.</td>
</tr>
<tr>
<td>LIST OF APPENDIXS</td>
<td>xiv.</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

CHAPTER 2: LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Meat Industry</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Current Issues in Meat Industry and New Consumer Trend</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Consumer Perception on Meat Quality</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3.</td>
<td>Eating Habit of Anurans’ Meat</td>
<td>9</td>
</tr>
<tr>
<td>2.1.4.</td>
<td>Comparison of Edible Anuran with Others Exotic Meat</td>
<td>10</td>
</tr>
<tr>
<td>2.2.</td>
<td>Edible Anurans</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Rana erythraea</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Limnonectes blythii</td>
<td>15</td>
</tr>
</tbody>
</table>
2.3. Meat and Human Nutrition 16
 2.3.1. Implication of Meat for Human Health 19
 2.3.2. Essential Nutrition 21
 2.3.2.a. Fat and Fatty acids 22
 2.3.2.b. Protein 23
 2.3.2.c. Minerals 24
 2.3.3. Cholesterol 26
2.4. The Eating Quality of Meat 27
 2.4.1. Water Holding Capacity 27
 2.4.1.a. Water Holding of Meat on Cooking 29
 2.4.2. Texture and Tenderness 31
 2.4.2.a. Effect of pH on Meat Tenderness 33
 2.4.3. Colour and Flavour 34
 2.4.4. Effects of Fat and Fatty Acids on Meat Eating Quality 35

CHAPTER 3: MATERIALS AND METHODS 38

3.1. Sampling and Slaughter Procedures 38
 3.1.1. Rana erythraea 38
 3.1.2. Limnonectes blythii 39
3.2. Preparation of Test Sample 39
3.3. Proximate Analysis 39
 3.3.1. Determination of Moisture Content 39
 3.3.2. Determination of Protein Content 40
 3.3.3. Determination of Fat Content 42
 3.3.4. Determination of Total Ash Content 43
3.4. Determination of Fatty Acids Composition 44
 3.4.1. Lipid Extraction 44
 3.4.2. Preparation of Fatty Acid Methyl Ester (FAME) 44
 3.4.3. Gas-Chromatography Analysis 45
3.5. Physical Characteristics 45
 3.5.1. Cooking Loss 45
 3.5.2. pH 46
3.6. Statistical Analysis 46
<table>
<thead>
<tr>
<th>Chapter 4: Results and Discussion</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Proximate Analysis</td>
<td>47</td>
</tr>
<tr>
<td>4.2. Fatty Acids Profile</td>
<td>51</td>
</tr>
<tr>
<td>4.3. Cooking Loss</td>
<td>55</td>
</tr>
<tr>
<td>4.4. pH</td>
<td>58</td>
</tr>
</tbody>
</table>

| Chapter 5: Conclusion | 60 |

| References | 63 |
|Appendices | 73 |
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rana erythraea</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Limnonectes blythii</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table no.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.</td>
<td>Proximate nutrient compositions and fatty acids of raw chicken, beef, lamb and pork</td>
<td>18</td>
</tr>
<tr>
<td>4.1.</td>
<td>Proximate analysis of chicken, Rana erythraea and Limnonectes blythii</td>
<td>48</td>
</tr>
<tr>
<td>4.2.</td>
<td>Fatty acids composition of total lipid on chicken, R. erythraea and L. blythii meat</td>
<td>51</td>
</tr>
<tr>
<td>4.3.</td>
<td>Cooking loss of chicken, Rana erythraea and Limnonectes blythii</td>
<td>56</td>
</tr>
<tr>
<td>4.4.</td>
<td>pH of chicken, Rana erythraea and Limnonectes blythii</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty Acid Methyl Ester</td>
</tr>
<tr>
<td>FID</td>
<td>Flame Ionization Detector</td>
</tr>
<tr>
<td>HDL</td>
<td>High-Density Lipoprotein</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IUCN</td>
<td>The International Union for the Conservation of Nature and Natural Resources</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-Density Lipoprotein</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated Fatty Acid</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acid</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated Fatty Acid</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package of Social Science</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>WHC</td>
<td>Water Holding Capacity</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>More than</td>
</tr>
<tr>
<td>±</td>
<td>Plus minus Sign</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>μL</td>
<td>microliter</td>
</tr>
<tr>
<td>μm</td>
<td>micrometer</td>
</tr>
<tr>
<td>ω</td>
<td>Omega</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight by Weight</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix no.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Figure 1: Carcass of Rana erythraea</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Figure 2: Carcass of Rana erythraea</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SPSS Output of Independent T-test for Proximate Analysis</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>Figure 3: Chromatogram of Fatty Acids for External Standard</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Table 1: Fatty Acids Composition in External Standard (Calibration Table)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Figure 4: Chromatogram of Fatty Acids for Chicken Meat (Batch 1)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Table 2: Fatty Acids Composition in Chicken Meat (Batch 1)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Figure 5: Chromatogram of Fatty Acids for Chicken Meat (Batch 2)</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Table 3: Fatty Acids Composition in Chicken Meat (Batch 2)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Figure 6: Chromatogram of Fatty Acids for Rana erythraea (Batch 1 Set 1)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Table 5: Fatty Acids Composition in Rana erythraea (Batch 1 Set 1)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Figure 7: Chromatogram of Fatty Acids for Rana erythraea (Batch 1 Set 2)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Table 5: Fatty Acids Composition in Rana erythraea (Batch 1 Set 2)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Figure 8: Chromatogram of Fatty Acids for Rana erythraea (Batch 2 Set 1)</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Table 6: Fatty Acids Composition in Rana erythraea (Batch 2 Set 1)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Figure 9: Chromatogram of Fatty Acids for Rana erythraea (Batch 2 Set 2)</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Table 7: Fatty Acids Composition in Rana erythraea (Batch 2 Set 2)</td>
<td></td>
</tr>
</tbody>
</table>
J Figure 10: Chromatogram of Fatty Acids for *Limnonectes blythii* (Batch 1 Set 1)

Table 8: Fatty Acids Composition in *Limnonectes blythii* (Batch 1 Set 1)

K Figure 11: Chromatogram of Fatty Acids for *Limnonectes blythii* (Batch 1 Set 2)

Table 9: Fatty Acids Composition in *Limnonectes blythii* (Batch 1 Set 2)

L Figure 12: Chromatogram of Fatty Acids for *Limnonectes blythii* (Batch 2 Set 1)

Table 10: Fatty Acids Composition in *Limnonectes blythii* (Batch 2 Set 1)

M Figure 13: Chromatogram of Fatty Acids for *Limnonectes blythii* (Batch 2 Set 2)

Table 11: Fatty Acids Composition in *Limnonectes blythii* (Batch 2 Set 2)

N SPSS Output of Independent Group T-test for Fatty Acids Composition

O SPSS Output of Independent Group T-test for Cooking Loss and pH
CHAPTER 1

INTRODUCTION

Throughout the history, meat has always been an important dish on the dining table because of its appealing flavors, texture and its high nutritional value (Morrissey et al., 1998). From nutritional prospective, meat is a valuable food. It not only provides energy, protein, long-chain fatty acids, but also vitamins such as B-vitamins, vitamin D, and minerals. For most people, meat makes a significant contribution to their nutrient intake (Robinson, 2001) and poultry is among the most popular food products world-wide. The consumers’ demand is partly due to the desirable flavor of poultry products (Al-Najdawi & Abdullah, 2002).

However, in recent years the meat industry has been facing increasing scrutiny because of concerns such as those relating to saturated fat, cholesterol, heart disease, etc (Morrissey et al., 1998). The increased health concerns have resulted in a shift away of high-fat, high-cholesterol products to low fat, low cholesterol products in human diet (Resurreccion, 2003). According to the study of Eichhorn et al. (1986), health professionals agree that persons who are susceptible to chronic atherosclerosis
should monitor their consumption of cholesterol, saturated fat and total calories.

Exotic meats such as edible anuran are an alternative to solve these worries. In marketing terms, exotic meats include anything which is not a supermarket staple (Westbrook, 2005). Anuran, horse, rabbit, deer, soft-shelled river turtle, big-tailed monkey, crocodile and snake are common consumed exotic meat. Anuran meat is not only appreciated for its exquisite flavour and texture but also as a source of protein with high biological value (Ramos et al., 2004). According to Taithongchhai (2005) edible anuran meat has been claimed as a healthy food which is high in calcium and low in cholesterol. This criterion is very beneficial to the health conscious society today.

In Thailand, canned frog meat has been introduced to the market by the people of Bo Talo (Taithongchai, 2005). Anuran legs are also extremely popular in Europe, Canada and the United States (Amphibiaweb, 2006). In the 1990's, Europe imported 6,000 metric tons of frog legs each year. Between 1981 and 1984, the United States imported more than 6.5 million pounds (3 million kg) of anuran meat per year. That is the equivalent of approximately 26 million anurans (Amphibiaweb, 2006).

In Borneo, anuran meat as part of the meal is common and popular especially among local people such as Kadazan-Dusuns, Ibans, and Bidayuhs. Local species of anuran mostly consumed are from Rana leporina group which include R. ingeri, R. kuhlii, R. ibanorum and Fejervarya cancrivora which is relatively larger in size and have
heavily muscled legs. *F. cancrivora* is the anurans of choice that served up in Chinese restaurants as “theen kai” or “paddy chicken” (Inger & Stuebing, 1997). *R. erythraea* has smaller size compared to the other species mentioned above, but yet is still consumed by local people (IUCN, 2004; Kueh, 2006). This species can be found at flooded rice field (Inger & Stuebing, 1997). Due to its habitat that is closer to human, it is easier for those who famous for its meat to obtain it.

Limnonectes blythii, also known as Malayan Giant Frog or Blyth’s Giant Frog is widely found in south-east Asia including Peninsular Malaysia (IUCN, 2004). It lives in forest and along the banks of streams and often targeted due to high market demand. *L. blythii* has relatively larger size which is approximately 15 cm measuring from snout to vent (Inger, 1990). It is favored for its eating quality and thus is being nowadays (IUCN, 2004).

Demand for anuran meat as food in local or international market cannot be ignored. The total amount of domesticated frog was stated as high as 1,072,000 solely in Peninsular Malaysia in the year 2003 (Department of Veterinary Services, 2004b). Although it has high market demand, however, research on nutrient composition and physical characteristics of anuran meat are still limited and further study is required.
Objectives

1. To carry out proximate analysis, and fatty acid determination on *Rana erythraea* and *Limnonectes blythii*.

2. To determine the physical characteristics of edible portion of *Rana erythraea* and *Limnonectes blythii*.

3. To make comparison between chicken meat with *Rana erythraea* and *Limnonectes blythii* on its nutritional composition and physical characteristics.
2.1. Meat Industry

It is a fact that humans have been consuming meat for around 30,000 years (Lubbadeh et al., 1999). In the history, the real issues about eating meat emerged after the introduction and growth of intensive livestock industry (De Boer et al., 2006). Meat and meat products are essential components in the people's diets of developed countries. Meat comprises roughly 10–20% of energy intake in most people in meat consuming countries (Valsta et al., 2005). Consumption from the meat, poultry, and fish group reached 241 pounds per capita at year 2000 in United States. Poultry increased more than fivefold—from 17 to 93 pounds per capita between 1909 and 2000 (USDA, 2004). Previous study by Resurreccion (2003) stated that consumption of red meat and poultry per capita has not changed significantly, but when examined separately, beef appears to be losing market share to chicken. The negative trend in beef per capita consumption coupled with the increase in capita consumption of chicken shows that US consumers do not perceive beef as being competitive with
chicken in terms of offering low fat and low cholesterol product lines (Resurreccion, 2003).

For the year 1999 through 2002, consumption from poultry meat had reached 781.970 million ton and even reached 854,000 million ton in 2003 in Malaysia (Department of Veterinary Services, 2005a). These increasing numbers had shown the large market demand of poultry meat in Malaysia.

There are some others domesticated animals consumed by Malaysian which included horse, deer, rabbit, frog (anuran) and others. Table 2.1 was shown the domesticated other animals in Peninsular Malaysia.

Table 2.1: Population of Domesticated Animals 2001-2003

<table>
<thead>
<tr>
<th>Year</th>
<th>Horse (Total)</th>
<th>Deer (Total)</th>
<th>Rabbit (Total)</th>
<th>Frog (Total)</th>
<th>Others (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>3,214</td>
<td>9,461</td>
<td>9,129</td>
<td>3,528,420</td>
<td>589,905</td>
</tr>
<tr>
<td>2002</td>
<td>3,387</td>
<td>9,230</td>
<td>7,181</td>
<td>861,500</td>
<td>183,631</td>
</tr>
<tr>
<td>2003</td>
<td>2,910</td>
<td>8,077</td>
<td>7,598</td>
<td>1,072,000</td>
<td>72,569</td>
</tr>
</tbody>
</table>

Source: Department of Veterinary Services, Malaysia

Statistics from Malaysia Department of Veterinary Services (2004a, 2005b) stated that the populations of edible anuran rose from 861,500 in 2002 to 1,072,000 in 2003 in Peninsular Malaysia.
2.1.1. Current Issues in Meat Industry and New Consumer Trend

There are several factors influencing the changes in consumer demand for meat. Some of the most important factors are: product characteristics (sensory and nutritional properties, safety, price, convenience, etc), consumer factors (changing preference, health concern, etc) and environment-related factors (psychological, health, family or educational aspects, general economic situation, climate, legislation, etc). These factors are usually closely linked to social, economic, political and geographical aspects (Guenther et al., 2005; Jimenez-Colmenero et al., 2001; Resurreccion, 2003).

Meat and meat products always been a high valued food (Lubbadeh et al., 1999; Robinson, 2001) and are important source of proteins, vitamins and minerals, but they also contain fat, saturated fatty acids, cholesterol, salt, etc (Jimenez-Colmenero et al., 2001). Thus, excessive consumption at the expense of a balance diet remains undesirable (Robinson, 2001).

In typical Western diets, low ratios of PUFA/SFA and high levels of cholesterol have been considered as one of the major the risk factors of cardiovascular diseases, which are among the most important causes of human mortality in developed countries (Alfaia et al., 2006). The emerging public consensus that limiting dietary cholesterol contributes to good health has resulted in a series of new guidelines for food labeling which include specific requirements for cholesterol (Fletouris et al., 1998).
An earlier report on Nutritional Aspects of Cardiovascular Disease recommended a reduction in saturates and total fat to energy intake. These include reducing the fat intake of meat and meat products by 50%, with no change in the amount of carcasses meat, but a switch to leaner meat (Robinson, 2001).

The patterns of meat consumption are changing. More and more people are eschewing meat and meat products in favour of a vegetarian or vegan diet (Robinson, 2001).

2.1.2. Consumer perception on meat quality

Quality characteristics of meat are influenced by muscle structure and chemical composition. Quality is product specific and is actually a measurement of acceptability by the consumer (Miller, 1994). The most important quality features in meat and meat products are sensory characteristic, health related and nutritional properties (Hoffman et al., 2003; Muñoz, 1998; Resurreccion, 2003; Wood et al., 1998). Among the quality assessment, tenderness is probably the most important to consumer (Wood et al., 1998).

British consumers generally prefer opaque white fat on meat cut and a high lean:fat ratio (Maw et al., 2003). In the study of four European countries: France, Germany, Spain and the UK, the most important product characteristic, which consumers base
REFERENCES

Biesalski, H.K. 2005. Meat as a component of a healthy diet – are there any risks or benefits if meat is avoided in the diet? *Meat Science.* **70:** 509-524.

The Penang Tourism Action Council (Online) in http://www.tourismpenang.gov.my/

