PHYTOCHEMICAL AND BIOLOGICAL STUDIES ON SWEET POTATO (IPOMOEA BATATAS)

LAI CHAN WEI
PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

DISsertATION SUBMITTED IN PARTIAL FULfilMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

INDUSTRIAL CHEMISTRY PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

APRIL, 2007
BORANG PENGESAHAN STATUS TESIS

JUDUL: Physicochemical & Biological Studies on Sweet Potato (Ipomoea Batatas)

Ijazah: Degree of Bachelor of Science with Honours (Industrial Chemistry)

SESI PENG AJIAN: 6

Saya LAI CHAN WEI

(HURUF BESAR)

mengaku membencarkan tesis (LPS/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah bakhmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibencarkan membuat salinan untuk tujuan pengajian sabaja.
3. Perpustakaan dibencarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (/)
 [] SULIT
 [] TERHAD
 [] TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Dirahkan oleh

(TANDATANGAN PENGUATAN)

Nama Penyelia

Alamat Tetap: SB, Jln Abdul I
84000, Muar, Johor

CATATAN: * Potong yang tidak bercenon.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu didekaskan sebagai SULIT dan TERHAD.
@ Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that this dissertation is based on my original work, except for quotations and summaries each of which have been fully acknowledged.

APRIL, 2007

LAI CHAN WEI

HS2004-1051
VERIFICATION

NAME: LAI CHAN WEI

TITLE: PHYTOCHEMICAL AND BIOLOGICAL STUDIES ON SWEET POTATO
(IPOMOEA BATATAS)

APRIL, 2007

DR. HOW SIEW ENG

MR. MOH PAK YAN

DR. MD. LUTFOR RAHMAN

PROF MADYA DR. SHARIFF
A.K. OMANG
School of Science and Technology
ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all people who have assisted me in the completion of this project. I would like to express my sincere gratitude and appreciation to Dr. How Siew Eng, my advisor, for her constant support and guidance throughout the long course of the entire study.

I also offer thanks to En. Samudi and En. Sani for their technical help, all final year students for their support and encouragement. The support of all my best friends Khoo Yau Liang, Yong Wu Hock, Teo Pick Yien, Kua Shwu Fun, Wong How Cai, Ng Seong Wooi, Bong Wan Yuen, Tang Iyu Ying, Chee Lye Yung, Chong Chia Chin, Lim Kim Lee, Wong Siew Ching and fellow friends are appreciated.

Special thanks are given to my parents and sister for their love, support, patience and encouragement with out whose help my degree’s study would not have been possible. Last but not least, I would like to show my gratitude to my lovely girlfriend, Leo Bey Fen, who gave me invaluable support and concern, with understanding helped bring this effort to fruition.
ABSTRACT

Sweet potato has received a broad attention because it is an important resource of food and there is an abundance of pharmacologically active ingredients in it. Three genotypes (storage roots and leaves) of sweet potato commercially available in Sabah (orange and purple fleshed) were studied for its phytochemical contents, antioxidation, antimicrobial and anti-kinase (MAPK) properties. Methanol crude extracts were obtained which were further partitioned into petroleum ether, chloroform and butanol extracts using solvent-solvent extractions. Phytochemical screenings demonstrated that the petroleum ether and chloroform extracts of all the genotypes contained saponins, tannins and anthraquinones whereas the butanol extract contained more classes of compounds (saponins, tannins, flavonoids and anthraquinones). The petroleum ether extract of storage roots (purple fleshed, Tambunan) showed a very potent antioxidation activity with relative antioxidation value of 1.025 (compared to fullness BHT, a synthetic antioxidant) as evaluated using the ferric thiocyanate (FTC) method. Petroleum ether extracts showed moderate to strong antioxidation activities. All the extracts demonstrated moderate antimicrobial activities against *S. aureus* (S 277) and *B. cereus* (B 43/04B) as evaluated a disc diffusion method. Relatively, the butanol extract was the most potent antimicrobial agent among all the extracts. However, no inhibition against *E. coli* (E 91/026) was observed. It was interesting to found out that all the butanol extracts of the storage roots showed very potent MAPK kinase inhibition as evaluated using a yeast screening system (yeast growing zone was 17 mm). However, inhibition of GSK-3β was only detected in the petroleum ether extract of the leaves with 15 mm inhibition zone. Hence, sweet potato can be used as an easy accessible source of natural antioxidants, as a food supplement, or in the pharmaceutical and medical industries.
KAJIAN FITOKIMIA DAN AKTIVITI BIOLOGI KE ATAS KELEDEK (IPOMOEA BATATAS)

ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>Declaration</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Abstrak</td>
<td>vi</td>
</tr>
<tr>
<td>List of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background
1.2 Objectives of the study
1.3 Scope of study

CHAPTER 2 LITERATURE REVIEW

2.1 Phytochemistry
2.2 Phytochemicals
2.3 The chemical compounds from plants
 2.3.1 Phenols
 2.3.2 Simple phenols
 2.3.3 Phenols ethers
 2.3.4 Phenylpropanoids
 2.3.5 Flavonoids
 2.3.6 Anthocyanins
 2.3.7 Tannins
 2.3.8 Quinones

Page Numbers: 1, 5, 5, 6, 7, 7, 8, 9, 9, 10, 12, 13, 14
2.4 Taxonomy classification of sweet potato [Ipomoea batatas (L.) Lam.]

2.4.1 Origin and ecology

2.4.2 Scientific classification

2.4.3 Morphology

2.4.4 Usage

2.5 Chemical constituents of sweet potato

2.5.1 Phenol

2.5.2 Flavonoid

2.5.3 Anthocyanin
 a. Anthocyanins contained in purple-fleshed sweet potato
 b. Physiological functionality
 c. Utilization

2.5.4 Pectin

2.6 Anti-oxidation activities

2.6.1 Anti-oxidation properties
 a. Reducing power activity
 b. Scavenging activity

2.7 Anti-microbial properties

2.7.1 Bacteria as infectious agents
 a. Bacillus subtilis
 b. Escherichia coli
 c. Staphylococcus aureus

2.7.2 Fungi as infectious agents
 a. Candida albicans

2.8 Inhibit HIV activity

2.9 Anti-cancer activity

2.10 Vascular relaxing properties

CHAPTER 3 MATERIALS AND METHODS

3.1 Introduction

3.2 Chemicals and apparatus

3.3 Sample preparation
3.4 Extraction
3.5 Phytochemical screening
 3.5.1 Screening of alkaloids
 a. Preparation of reagents
 b. Dragendorff test
 c. Wagner test
 3.5.2 Screening of saponins
 a. Foam test
 b. Liebermann-Burchadd test
 3.5.3 Screening of flavonoids
 a. Wiltstatter-Sianidin test
 b. Bate-Smither test
 c. Metacalf test
 3.5.4 Screening of tannins
 a. Gelatin test
 b. Ferric chloride test
 3.5.5 Screening of anthraquinones
 a. Borntrager test
 b. Derivative antraquinones test.
3.6 Biological activities
 3.6.1 Antioxidation test
 3.6.2 Antimicrobial test
 a. Preparation of agar media
 b. Nutrient agar (NA)
 c. Preparation of sample concentration stock
 d. Bacteria culture media
 e. Preparation of stock culture
 f. Preparation of lactophenol cotton blue
 g. Preparation of discs
 h. Interaction between bacteria and control solution
 j. Procedures
 3.6.3 Screening of MAPK kinase inhibitor
 a. Preparation of sample solution
b. Preparation of yeast cultivation media 63

c. Preparation of MAPK kinase media 65

d. Expected results for MAPK kinase inhibitor screening system 67

e. GSK-3β screening system 68

3.7 Summary of methodology 70

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Preparation of crude extracts 71

4.2 Phytochemical of screenings 72

4.2.1 Screening of alkaloids 72

4.2.2 Screening of saponins and sapogenins 73

4.2.3 Screening of flavonoids 75

4.2.4 Screening of tannins 76

4.2.5 Screening of anthraquinones 78

4.2.6 Summary of the phytochemical screening tests 79

4.3 Antioxidation test 81

4.4 Antimicrobial test 85

4.4.1 Screening of plant fraction extracts against bacteria 86

4.4.2 Discussion of antimicrobial test 89

4.5 Screening of MAPK kinase inhibitor 91

4.6 GSK-3β screening system 93

CHAPTER 5 CONCLUSION 96

REFERENCE 98

APPENDIX 109
LIST OF TABLES

Table No. Page
2.1 The taxonomy of *Ipomoea batatas*. 16
2.2 Phytochemicals and antioxidants components of tuberous root and leaf of sweet potato. 20
2.3 Free radical chain reaction mechanism. 29
2.4 Some comparison characteristics of Gram-positive and Gram-negative bacteria. 36
2.5 The scientific classification of *Bacillus subtilis*. 38
2.6 The scientific classification of *Escherichia coli*. 39
2.7 The scientific classification of *Staphylococcus aureus*. 40
3.1 The chemicals for extraction, phytochemical screening, antioxidation, anti-kinase and anti-microbial test. 46
3.2 The apparatus used. 47
3.3 Expected observation of appearance of alkaloids. 51
3.4 Duration time of bubble and quantitative determination. 52
3.5 Flavonoid type and its colour showed in Wilstatter-Sianidin Test. 53
3.6 Yeast cultivation media. 54
3.7 MAPK Kinase inhibitor assay medium yeast strain MKKI[P386]P386 65
3.8 Preparation of GSK-3β inhibitor assay medium. 69
4.1 Fraction of samples and yields. 72
4.2 Results of alkaloid screening on fraction extracts of leaves and storage roots of sweet potato. 73
4.3 Results of saponins and sapogenins screening on fraction extracts of leaves and storage roots of sweet potato. 74
4.4 Results of flavonoids screening on fraction extracts of leaves and storage roots of sweet potato. 76
4.5 Results of tannins screening on fraction extracts of leaves and storage roots of sweet potato. 77
4.6 Results of anthraquinones screening on various extracts of leaves and storage roots of sweet potato. 78
4.7 A summary of phytochemicals analysis of sweet potato extracts (PE, CH and BUT respectively).

4.8 Relative absorbance values of fraction extracts and negative control toward BHT value.

4.9 Screening of MAPK kinase inhibitor for fraction extracts.

4.10 Screening of GSK-3β for fraction extracts.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Some phenolic plant natural products.</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Phenol ethers.</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Examples of plant phenylpropanoids.</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Common classes of flavonoids.</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Quinones.</td>
<td>14</td>
</tr>
<tr>
<td>2.6a</td>
<td>Leaves of sweet potato.</td>
<td>17</td>
</tr>
<tr>
<td>2.6b</td>
<td>Flower of sweet potato</td>
<td>17</td>
</tr>
<tr>
<td>2.6c</td>
<td>Orange tuberous roots of sweet potato.</td>
<td>17</td>
</tr>
<tr>
<td>2.6d</td>
<td>Purple tuberous roots of sweet potato.</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Structure of acylated flavonoid glucosides.</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Major anthocyanins contained in purple-fleshed sweet potato.</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Inhibit HIV compounds.</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>The effect of extracts on mutant yeasts, MKK1 p386.</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Steps carried out in this study.</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Absorbance of fraction extracts of storage root (Orange flesh, Ranau) as measured by the FTC method.</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Absorbance of fraction extracts of storage root (Purple flesh, Ranau) as measured by the FTC method.</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Absorbance of fraction extracts of storage root (Purple flesh, Tambunana) as measured by the FTC method.</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Absorbance of fraction extracts of leaves as measured by the FTC method.</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Average diameter inhibition zones of 3 fraction extracts of storage roots with orange fleshed (Ranau).</td>
<td>87</td>
</tr>
<tr>
<td>4.6</td>
<td>Average diameter inhibition zones of 3 fraction extracts of storage roots with purple fleshed (Ranau).</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Average diameter inhibition zones of 3 fraction extracts of storage roots with purple fleshed (Tambunana).</td>
<td>88</td>
</tr>
<tr>
<td>4.8</td>
<td>Average diameter inhibition zones of 3 fraction extracts of leaves.</td>
<td>89</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>Nutrient Agar</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>GSK</td>
<td>Glycogen synthase kinase</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>B. cereus</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>CH</td>
<td>Chloroform</td>
</tr>
<tr>
<td>PE</td>
<td>Petroleum Ether</td>
</tr>
<tr>
<td>BUT</td>
<td>n-Buthanol</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Since the beginning of civilization, human have succeeded in using plants in various ways, such as for building shelters, food and also as a source for medicine (Ahmad & Raji, 1992). Exploration of the plant kingdom has been made in search of chemical compounds of medicinal values and has been going on ever since, resulting in many empirical discoveries uncovering the main sources of botanical drugs. Remedies for various ailments normally involve the use of roots, leaves and bark of the plants (Ahmad & Raji, 1992).

In recent years, there has been a global trend toward the use of natural phytochemical, as antioxidants and functional ingredients, which are present in natural resources such as vegetable, fruits, oilseeds and herbs (Huang et al., 2006). The use of traditional medicine is widespread, and plants still represent a large source of natural
antioxidants that might serve as leads for the development of novel drugs (Barton et al., 1999). Several anti-inflammatory, digestive, anti-necrotic, neuroprotective, and hepatoprotective drugs have recently been shown to have an anti-oxidation and radical-scavenging mechanism as part of their activity (Huang et al., 2004). Phytochemicals and antioxidant constituents in plant material have raised interest among scientists, food manufacturers, producers, and consumers for their roles in the maintenance of human health (Milner, 1999). Numerous epidemiological studies suggest that diets rich in phytochemicals and antioxidants execute a protective role in health and disease (Lako et al., 2006).

Moreover, fruits and vegetables in the diet have been found in epidemiology studies to be protective against several chronic diseases. Frequent consumption of fruits and vegetables is associated with a lowered risk of cancer, cardiovascular disease, cataracts, heart disease, hypertension and stroke (Lako et al., 2006). The risk of macular degeneration and stroke is diminished in people consuming large amounts of fruits and vegetables. Over 170 epidemiological cancer studies have been showed that there is a lower risk with increasing intake of fruit and vegetables. It is generally assumed that the vitamin and pro-vitamin antioxidants in these foods (ascorbic acid, tocopherols, and carotenoids) account for the beneficial effects (Vinson et al., 1998).

However, belief in the medicinal power of foods is not a recent event but has been a widely accepted philosophy for generations (Milner, 1999). Moreover, researchers have found that some foods have functional properties because they provide physiological benefits which may enhance health and reduce the risk of developing chronic diseases. Functional foods are a very important part of wellness
and are defined as those which are whole, fortified, enriched or enhanced, providing health benefits beyond basic nutrition when consumed as part of regular, varied diet (Simmons, 2005). The term "functional food" is surfacing as a generic descriptor of the benefits that accompany ingesting foods that go beyond those accounted for merely by the nutritive provided. The Institute of Medicine of the National Academy of Sciences, United State has expanded this definition to include “any food or food ingredient that may provide a health benefit beyond the traditional nutrients it contains” (Milner, 1999).

Sweet potato has received a broad attention because it is an important resource of food and there is an abundance of pharmacologically active ingredients in it. So far, sweet potato has been widely used as a food staple, vegetable, and animal feed for industrial starch extraction and various processed products (Huang et al., 2003; Srisuwan et al., 2006). At the same time, more modern research show that sweet potato had higher levels of both carbohydrate and dietary fiber than potato and also had a stronger anti-oxidation activity than most other vegetables in a typical Western diet (Guan et al., 2006).

A lot of works have been performed on the health-related function of sweet potato, and several important biological activities are attributed to sweet potato (Zhao et al., 2005). Sweet potato (Ipomoea batatas L.), in which vitamin C, chlorogenic acid, caffeic acid, quercetin, and rutin are abundant, is one of the functional food products aimed at introducing human dietary ingredients that aid specific body functions in addition to being nutritious (Guan et al., 2006). Extracts from sweet potato show strong radical scavenging and anti-mutagenic activities, significantly
reduced high blood pressure and carbon tetrachloride-induced liver injury, anti-inflammatory, antimicrobial, and antihypertensive activities, and ultraviolet protection effects (Aruoma, 1998; Hou et al., 2001). Furthermore, sweet potato was recently identified to possess a postprandial anti-hyperglycemic (anti-diabetic) effect in rats through retardation of maltase activity (Guan et al., 2006; Konczak-Islam et al., 2003).

Sweet potato is nutritionally valuable, with higher levels of both carbohydrate and dietary fiber than potato (Solanum tuberosum), and a strong anti-oxidation activity that has been claimed to surpass most other vegetables in a typical Western diet. Hydroxycinnamic acids (HCA) are the main phenolic antioxidants in most commercially available sweet potato varieties, which can vary in storage root size, shape, flavor, texture, and colour, with the most common being white-, cream-, yellow-, or orange-fleshed. Several varieties of sweet potato have been developed with intense purple coloration, and conferred by high anthocyanin content in Japan and New Zealand (Philpott et al., 2004).
1.2 Objectives of the study

1. To determine phytochemicals in sweet potato (*Ipomoea batatas*).
2. To screen the extracts for anti-kinase, anti-oxidation and anti-microbial activities.

1.3 Scope of study

Three varieties of sweet potato tuberous roots and leaves were selected in these studies which were purple fleshed sweet potato and orange fleshed sweet potato. These sweet potatoes were originated from Ranau and Tambunan, Sabah. Tuberous roots and leaves of those variety sweet potatoes were selected in this study because no report on the anti-oxidation, anti-microbial and anti-kinase activities of those varieties are presently available. Solid-solvent extraction and solvent-solvent extraction were carried out for bioactive compounds extraction from sweet potato. Phytochemical test and biological activity test for sweet potato (*Ipomoea batatas*) were carried out in this study. Screening of alkaloid, flavonoid, saponin, tannin and anthraquinon were included in the phytochemical study. Biological activities included anti-oxidation test, anti-microbial test and MAPK kinase and GSK-3β test which showed medicinal use bioactive compounds in sweet potato.
CHAPTER 2

LITERATURE REVIEW

2.1 Phytochemistry

The subject of phytochemistry, or plant chemistry, has developed in recent years as a distinct discipline, somewhere in between natural product organic chemistry and plant biochemistry and is closely related to both. It is concerned with the enormous variety of organic substances that are elaborated and accumulated by plants and deals with the chemical structures of these substances, their biosynthesis, turnover and metabolism, their natural distribution and their biological function (Harbone, 1998).

In all these operations, methods are needed for separation, purification and identification of the many different constituents present in plants. Phytochemistry is directly related to the successful exploitation of known techniques, and the continuing development of new techniques to solve outstanding problems as they appear. One of the challenges of phytochemistry are to carry out all the above operations on vanishingly small amounts of material (Harbone, 1998).
2.2 Phytochemicals

Phytochemicals from fruits and vegetables have been shown to exert varied beneficial biological actions (Simmons, 2005). Phytochemicals are biologically-active, non-nutritive secondary metabolites which provide plants with colour, flavour and natural toxicity to pests (Johnson & Williamson, 2003). They are usually used to refer to compounds found in plants which are not required for normal functioning of the body but which nonetheless have a beneficial effect on health or an active role in the amelioration of disease (Harborne, 1973).

The classification of this huge range of compounds is fall into three main groups which are phenolic compound, glucosinolates, and carotenoids. Many thousands of phenolic compounds have been identified. They include monophenols, the hydroxycinnamic, acid group which contain caffeic and ferulic acid, flavonoids and glycosides, phytoestrogens and tannins (Johnson & Williamson, 2003).

2.3 Chemical compounds from plants

2.3.1 Phenols

The vast majority of the plant-based aromatic natural products are phenols. Numerous categories of these compounds are derived from phenol which includes simple phenols, phenylpropanoids, flavonoids, tannins and quinines (Kaufman et al., 1999).
Phenolic compounds are usually susceptible to different factors (e.g., acidic solution and high temperature) during the extraction process. Drying at room temperature may enhance the enzymatic degradation and thus lower the amount of phenolics in the samples. Increasing the temperature above 60 °C lowering the phenolic amount considerably. At high temperatures, certain phenolics may decompose or combine with the other plant components (Miean & Mohamed, 2001).

In addition, other phenolic and polyphenolic compounds are present in plants such as cinnamic acid derivatives, for example, chlorogenic acid, and isomers of flavones known as isoflavones. Many of these phenols have been found to be more powerful anti-oxidation activity than vitamins C, E, and carotene using an in vitro model for heart disease, namely the oxidation of lower density lipoproteins (Vinson et al., 1998).

2.3.2 Simple phenols

Most of the simple phenols are monomeric components of the polymeric polyphenols and acids which make up plant tissues, including lignin, melanin, flavolan and tannins. These individual components are obtained by acid hydrolysis of plant tissues. The components include p-hydroxybenzoic acid, protocatechuic acid, vanillic, syringic and gallic acid. Free phenols which do not require degradation of cell-wall polymers are relatively rare in plants. Hydroquinone, catechol, orcinol, and other simple phenols are found in relatively low concentrations. Some examples are shown in Figure 2.1.
Figure 2.1 Some phenolic plant natural products (Kaufman et al., 1999).

2.3.3 Phenols ethers

Many of the phenols also exist as their methyl ether; a few are shown in Figure 2.2. Khellin and visnagin are the active coumarin derivatives of the ammi visnaga fruit (*Ammi visnaga*). Trans Anethole is chiefly responsible for the taste and smell of anise seeds (*Pimpinella anisum*).

![Khellin and trans-Anethole](image)

Khellin: $R^1 = \text{OCH}_3$
Visnagin: $R^1 = \text{H}$

Figure 2.2 Phenol ethers (Kaufman et al., 1999).

2.3.4 Phenylpropanoids

As the name implies, the phenylpropanoids contain a three-carbon side chain attached to a phenol. Common examples include the hydroxycoumarins, phenylpropenes and the lignans. Anethole and myristicin, the principles of nutmeg, are also representative
REFERENCES

Hardman, W. E. & Cameron, I. L. 1995. Site specific reduction of colon cancer incidence, without a concomitant reduction in cryptal cell proliferation, in 1,2-dimethylhydrazine treated rats by diets containing 10% pectin with 5% or 20% corn oil. *Carcinogenesis* 16, pp. 1425–1431.

