PRODUCT DEVELOPMENT OF CHOCOLATE FLAVOURED RICE SOY MILK

TAN MEI LING

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF BACHELOR OF FOOD SCIENCE WITH HONOURS (FOOD TECHNOLOGY AND BIOPROCESS)

SCHOOL OF FOOD SCIENCE AND NUTRITION
UNIVERSITI MALAYSIA SABAH
2012
BORANG PENGESAHAN STATUS TESIS

JUDUL:
CHOCOLATE FLAVOURED RICE SOY MILK

DAZAH:
ijazah Sarjana muda Sains matan dan dengan kepujian

SESJI PENGAYAN:
2008/2012

TAN MEI LING

(HURUF BESAR)

mengaku membenarkan tesis (LPS/ Sarjana/ Doktor Falsafah) ini di simpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuak salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (I)**

<table>
<thead>
<tr>
<th>SULIT</th>
<th>TERHD</th>
<th>TIDAK TERHD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Mengandungi maklumat yang berurusan keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TANDATANGAN PENULIS

Alamat Tetap:
97 Jalan Seri Kraf 10,
Segamat Baru 18500 Segamat,
Johor

Tarikh: 10/7/2012

TANDATANGAN PUSTAKAWAN

Dr. Muhammad Iqbal Hashimi

Nama Penyelii

Tarikh: 10/7/2012

CATATAN:
* Potong yang tidak berkenaan.
* Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
* Tesis dimaksudkan sebagai tesis bagi ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby to declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which has been duly acknowledged.

21st May 2012

Tan Mei Ling
BN08110124
CERTIFICATION

NAME : TAN MEI LING
MATRIC NO : BN08110124
TITLE : PRODUCT DEVELOPMENT OF CHOCOLATE FLAVOURED RICE SOY MILK
DEGREE : BACHELOR OF FOOD SCIENCE WITH HONOURS (FOOD TECHNOLOGY AND BIOPROCESS)
VIVA DATE : 21 JUNE 2012

DECLARED BY

1. SUPERVISOR
 DR. MUHAMMAD IQBAL HASHIMI

2. EXAMINER – 1
 EN. MANSOOR ABD HAMID

3. EXAMINER – 2
 Dr. AFSANEH FARHADIAN

4. DEAN OF SSMP
 ASSOC. PROF DR. SHARIFUDIN MD. SHAARANI
ACKNOWLEDGEMENT

This dissertation would not be able to finish without the help and support of many individual and organizations. I would like to grab this opportunity to express my special gratitude and appreciation to each and everyone who aiding me in the process of completing my dissertation.

First of all I would like to express my deepest gratitude to my supervisor, Dr. Muhammad Iqbal Hashimi for his outstanding guidance, caring, patience, and supply me with an excellent atmosphere for doing research. He is always patiently correct my writing and willing to listen to my problem and help me to find out a solution. I have gained a lot of precious knowledge and experience under his supervision form beginning until the end. Not forget, great appreciation to Assoc. Prof. Dr. Sharifudin Md. Shaarani for giving opportunity to carry out my final year project.

Besides, I would like to thank to officers and staffs from School of Food Science and Nutrition for helping me in my data collection stage. They are always patient and willingness in offering help so that my final year project can be run smoothly. Great deals appreciated go to the contribution of my faculty, in providing all the equipment and chemical that I needed in my data collection procedure, and also supplying me a comfortable air-conditioned laboratory to done my lab work.

Last but not least I would like to show my gratitude to my family and all my friends in helping me along the way in writing my final year project. Their understanding and love throughout the period of the studies, their unlimited support, help, advises, cooperation and encouragement in the process of completing my final year project.
ABSTRACT

Product is developed using blank upland rice, soy bean, cocoa powder and sugar to substitute milk product for people who are lactose intolerance, milk allergy and vegan. Formulation F2, F4 and F7 of milk sample was chosen as best three formulations out of nine formulations in BIB Ranking Test. 7-Point Hedonic Test help in selections of formulation F4 of milk sample as the best formulation. Formulation 4 obtained highest mean score in taste, texture and overall acceptance. Proximate analysis carried out on formulation F4 and also a control to compare the difference among them. The milk sample contain 76.20±0.034% of moisture, 0.38±0.906% of ash, 1.35±0.018% of fat, 2.11±0.016% of protein, 1.92±0.352% of dietary fibre and 18.04±0.744% of carbohydrate. Milk sample has total energy value of 96.59 kcal or 408.82 kJ per 100ml which lower than in control. Microbiological test was carried out for both total colony count in both total plate count and yeast and mould count. pH value is found to increased first from 6.72±0.006 to 7.05±0.006 and decreased back to 5.92±0.300 along the storage period. Milk sample is found unsafe to be consumed after 5 days of storage. Pair comparison test was done to find out differences between fresh and storage sample from aspects of appearance, taste, texture, aroma and overall acceptance. Result showed that majority of panellists can spot the difference between fresh and day-5 sample. Consumer test shows 91% of consumers like the product and 56% is willing to buy it if it can be found in market.
ABSTRAK

PEMBANGUNAN PRODUK SUSU BERAS KACANG SOYA BERPERISA COKLAT

Produk susu dihasilkan dengan menggunakan beras bukit hitam, kacang soya, serbuk koko dan gula. Ia bertujuan untuk mengganti produk susu supaya dapat diminum oleh orang yang intoleransi laktosa, alahan susu dan vegan. Formulasi F2, F4 dan F7 telah dipilih sebagai tiga formulasi terbaik daripada 9 formulasi dalam Ujian Pemeringkatan BIB. Sampel susu F4 telah dipilih sebagai formulasi terbaik melalui Ujian Hedonik. F4 mempunyai skor min yang tertinggi dari segi tekstur, rasa dan penerimaan keseluruhan. Analisis proximat dijalankan ke atas sampel susu dan piawaian untuk membandingkan perbezaan antara mereka. Sampel susu didapati mempunyai 76.20±0.034% kandungan kelembapan, 0.38±0.906% kandungan abu, 1.35±0.018% kandungan lemak, 2.11±0.016% of protein, 1.92±0.352% serabut kasar and 18.04±0.744% karbohidrat. 100 ml Sampel susu mempunyai jumlah tenaga sebanyak 96.59 kcal atau 408.82 kJ dan ini adalah lebih rendah daripada jumlah tenaga dalam piawaian. Ujian mikrobiologi dijalani ke atas sampel susu merangkumi Jumlah Kiraan Plat dan juga kiraan koloni yis dan kulat. Nilai pH sampel didapati meningkat dari 6.72±0.006 kepada 7.05±0.006 dan menurun balik kepada 5.92±0.300 sepanjang tempoh penyimpanan. Sampel susu didapati tidak selamat untuk diminum selepas 5 hari simpanan. Ujian Sensori Perbandingan Berganda dilakukan untuk mengetahui perbezaan antara sampel segar dan sampel penyimpanan dari segi penampilan, rasa, tekstur, aroma, dan penerimaan keseluruhan. Keputusan menunjukkan bahawa majority ahli panel dapat mengesan perbezaan di antara sampel segar dengan sampel yang disimpan selama lima hari. Ujian Sensori Penerimaan Pengguna dijalankan dan keputusan menunjukkan bahawa 91% pengguna amat menyukainya dan 56% pengguna akan membelinya jika ia didapati di pasaran.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Background | 1 |
1.2 Objectives | 4 |
1.3 Rationale | 4 |

CHAPTER 2: LITERATURE REVIEW

2.1 Rice | 8 |
2.1.1 Traditional Upland Rice | 8 |
2.1.2 Geographical Distribution of Upland Rice | 8 |
2.1.3 Upland rice in Malaysia | 9 |
2.1.4 Traditional Upland Black Rice | 11 |
2.1.5 Nutritional Value of Upland Black Rice | 11 |
2.2 Soybean | 13 |
2.2.1 Physical Characteristic of Soybean | 13 |
2.2.2 Nutritional Value of Soy Bean | 16 |
2.2.3 Traditional Soy Food Product | 19 |
 a. Soy Milk | 20 |
2.2.4 Soy Protein Product
 a. Soy Flour
 b. Soy Protein Concentrates
 c. Soy Protein Isolate
 d. Textured Soy Protein

2.3 Cocoa Powder
 2.3.1 Cocoa
 2.3.2 Nutritional Value of Cocoa Powder

2.4 Sugar
 2.4.1 Sugarcane
 2.4.2 Sugar beet
 2.4.3 Functions of Sugar in Food

CHAPTER 3: METHODOLOGY

3.1 Raw Materials
3.2 Equipments
3.3 Chemicals and apparatus
3.4 Experimental design
 3.4.1 Formulation
 3.4.2 Preparation of Soy Milk
 3.4.3 Preparation of Rice Milk
 3.4.4 Processing of Chocolate Flavoured Rice Soy Milk
3.5 Best Formulation Selection
 3.5.1 Balance Incomplete Block Design (BIB) Rating Test
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2</td>
<td>7-Points Hedonic Rating Test</td>
</tr>
<tr>
<td>3.6</td>
<td>Proximate Analysis</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Determination of Moisture Content</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Determination of Ash Content</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Determination of Crude Protein Content</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Determination of Crude Fat Content</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Determination of Dietary Fibre Content</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Determination of Carbohydrate Content</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Calculation of Total Energy Value</td>
</tr>
<tr>
<td>3.7</td>
<td>Study of Shelf Life</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Sample Preparation</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Microbiological Test</td>
</tr>
<tr>
<td>a.</td>
<td>Preparation of Medium</td>
</tr>
<tr>
<td>b.</td>
<td>Preparation of Sample</td>
</tr>
<tr>
<td>c.</td>
<td>Total Plate Count</td>
</tr>
<tr>
<td>d.</td>
<td>Yeast and Mould Count</td>
</tr>
<tr>
<td>e.</td>
<td>Colony Count</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Determination of pH value</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Sensory Test</td>
</tr>
<tr>
<td>a.</td>
<td>Pair Comparison Test</td>
</tr>
<tr>
<td>3.8</td>
<td>Consumer Test</td>
</tr>
<tr>
<td>3.9</td>
<td>Statistical analysis</td>
</tr>
<tr>
<td>CHAPTER 4: RESULTS AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Result of Sensory Test</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Balance Incomplete Block Design (BIB) Ranking Test</td>
</tr>
</tbody>
</table>
4.1.2 7-Point Hedonic Test

a. Appearance 50
b. Aroma 51
c. Taste 52
d. Texture 53
e. Overall Acceptance 54

4.2 Results from Proximate Analysis

4.2.1 Moisture Analysis 54
4.2.2 Ash Analysis 55
4.2.3 Crude Fat Analysis 56
4.2.4 Crude Protein Analysis 57
4.2.5 Dietary Fibre Analysis 58
4.2.6 Carbohydrate Analysis 59
4.2.7 Calculation of Total Energy Value 59

4.3 Study of Shelf Life

4.3.1 Microbiological Test 60

a. Total Plate Count 60
b. Yeast and Mould Count 62

4.3.2 Determination of pH value 63

4.3.3 Paired Comparison Test 65

a. Appearance 65
b. Aroma 66
c. Taste 66
d. Texture 67
e. Overall Acceptance 68

4.4 Consumer Test

4.4.1 Recognizable of Black Upland Rice/ Bario 69
4.4.2 Existence of Similar Product 70
4.4.3 Percentages of Respondent who Like the Product 71
4.4.4 Buying Potential of Product 72
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>The Locations of Upland Rice Fields and their GPS Coordinates from the Selected Locations in Malaysia</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Amino Acids Composition of Soybean</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Nutrition Profile of Soy Bean Expressed Per 100 g Dry Matter</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Products Containing Soy Protein</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Nutritional Value of Cocoa Powder per 100 g</td>
<td>28</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Ingredients needed to make chocolate flavoured rice soy milk</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Equipments needed to make chocolate flavoured rice soy milk</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Chemical needed to carry out proximate analysis and Microbiology tests</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Apparatus needed to carry out proximate analysis and Microbiology tests</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Formulations for the chocolate flavoured rice soy milk</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>BIB Design for Chocolate flavoured rice soy milk</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Rank sum for each formulation</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Results of Hedonic Test for chocolate flavoured rice soy milk</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Proximate analysis of chocolate flavoured rice soy milk and control</td>
<td>54</td>
</tr>
</tbody>
</table>
Table 4.4 Results for total energy value for sample and control 59
Table 4.5 Total Plate Count of chocolate flavoured rice soy milk 62
Table 4.6 Yeast and mould count for chocolate flavoured rice soy milk 63
Table 4.7 pH value for chocolate flavoured rice soy milk 64
Table 4.8 Results from pair comparison test of chocolate flavoured rice soy milk 65
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Rice anatomy</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Structures' of Cyanidin 3-glucoside and Peonidin 3-glucoside</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Soybean Plant</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Soybean Seed</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Structure of Primary Isoflavones in Soybean</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Traditional Method for Making Tofu</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Typical Preparation Process for Koikuchi Shoyu</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Structure of Sucrose</td>
<td>29</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Percentage of Respondent Heard of Black Upland Rice (%)</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Percentage of Respondent who tried similar product before (%)</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Percentage of Respondent who likes the product (%)</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Percentage of Respondent who would buy the product (%)</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

℃ Celcius

g gram

ha hectare

kcal kilocalorie

kg kilogram

< less than

L liter

m meter

mg milligram

ml milliliter

% percentage

sq. square

t tonnes
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BIB</td>
<td>Balanced Incomplete Block</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-Forming Unit</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-Density Lipoprotein</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>NRV</td>
<td>Nutrient Reference Value</td>
</tr>
<tr>
<td>PCA</td>
<td>Plate Count Agar</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>TNTC</td>
<td>Too Numerous To Count</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Balance Incomplete Block Ranking Test</td>
<td>89</td>
</tr>
<tr>
<td>Appendix B</td>
<td>7-Point Hedonic Test</td>
<td>90</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Paired Comparison Test</td>
<td>91</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Consumer Test</td>
<td>92</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Rank Sum for Each Formulation after BIB Ranking Test</td>
<td>93</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Friedman Analysis for BIB Ranking Test</td>
<td>94</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Upper -α Probability Points of x^2-Distribution</td>
<td>95</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Results for BIB Ranking Test</td>
<td>97</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Results for 7-Point Hedonic Test</td>
<td>99</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Results for Proximate Analysis and Dietary Fibre</td>
<td>103</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Results for pH Value</td>
<td>106</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Results for Paired Comparison Test</td>
<td>108</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Lactose malabsorption problem became the most common disease in all over the world. From the report done by Vesa et al. (2000), it showed that there are people above 50 percent in South America, Africa and Asia, 15 percent among whites, 53 percent of Mexican Americans and 80 percent of Blacks in United States, 2 percent in Scandinavia to about 70 percent in Sicily in Europe, 6 percent in Australia and last, 9 percent in New Zealand showing symptoms of lactose malabsorption. Finding by Asmawi et al. (2006) showed that 300 Malaysian subjects indicating there consist of 88 percent of Malays, 91 percent of Chinese and 83 percent of Indian in Malaysia were lactose intolerance.

Lactose is a kind of disaccharide consisting glucose and galactose (Heyman et al., 2006) and in intestine, it requires to be hydrolyzed by β-galactosidase which termed as lactase-phlorizin in hydrolase (EC 3.2.1.23/26), generally named lactase (Vesa et al., 2000). Lactose intolerance is due to the inequality between number of lactose intake and quantity of existed lactase to hydrolyze it. Intake of Lactose by specific people who is lactose intolerance will have symptoms such as abdominal pain, diarrhea, nausea and so on (Heyman et al., 2006).

Besides, many people have also suffered from milk allergy. Milk allergy refers to extreme response by adverse body’s immune system toward protein in milk (Anderson et al., 2010). This happens due to the unavailability of immune system to recognize
milk protein as being harmless and will try to eliminate it. Bovine’s milk allergy is most commonly occurred and can be caused by Immunoglobulin E (IgE)-mediated or non-IgE-mediated reactions. IgE-mediated allergy occur when organism unsuccessful to tolerate toward food allergens such as casein; a type of protein in milk where as non-IgE-mediated allergy develops is less well understood (Benbamou et al., 2009). The symptoms caused by IgE-mediated bovine’s milk allergy comprise cutaneous such as eczema, gastrointestinal such as nausea or vomiting and respiratory manifestation such as rhino conjunctivitis (Crittenden et al., 2005).

People with lactose intolerance and milk allergy are usually avoiding consumption of milk and dairy products. However, milk and dairy products are much important to human body. Research indicates that milk rich in nine essential nutrients such as protein, vitamin A, Vitamin D, vitamin B12, riboflavin, niacin, calcium, potassium and phosphorus. Deficiency intake of those dairy nutrients can cause disease like hypertension, obesity, diabetes and others (National Medical Association, 2009). Thus, milk-substitute products are much needed to minimize the risk of nutritional deficits. This thesis paper work will be developing a new milk formulation using traditional black upland rice, soy bean and cocoa powder which are lactose-free and gluten-free.

The new milk formulation also can be the non-dairy milk substitute for vegans. Vegans are people who not only eliminating intake of flesh products such as beef, pork, chicken, fish, wild or domestic game and so on but also milk, eggs and others animal products (Marcus, 2001). By regular intake of the new milk product, vegans can obtain all of the essential nutrient they needed for health.
Soy is added in the formulation to due to its high content of protein, fats, carbohydrates, dietary fiber, vitamins and minerals. Soybeans are well known to be rich in different types of isoflavones (IFs) such as daidzein and genistein which can help in prevention of hormone-related cancer, cardiovascular disease, hypertension and so on (Zhou and Boocock, 2006). Soy milk consists of liquid extract of soybean and can be consuming as a nutritional beverage (Golbitz et al., 2006). Soy milk not only contains nearly equivalent amounts of protein in bovine's milk but also have more Iron (Fe) and fiber content than bovine's milk (Loo, 2009), thus it is suitable to fill up the deficiency of protein and enhance the nutritional value of this milk formulation.

The addition of cocoa powder in the formulation is carrying out to enhance the aroma and flavour of rice soy milk. Frauendorfer et al. (2006) described that cocoa powder contains about 35 odor-active constituents such as 4-hydroxy-2,5-dimethyl-3(2H)-furanone which contributing caramel-like flavour to cocoa powder whereas phenylacetaldehyde make cocoa powder have honey-like taste. Besides, 31 types of aroma compounds have found in cocoa powder, for example like 3-methylbutanal and 3-methylbutonic acid which contributing malty aroma to cocoa powder. Research has showed that school children prefer flavoured milk especially chocolate flavor than plain milk (Babolian Hendijani et al., 2010). Thus, by adding cocoa powder into the milk formulation can help to increase the preference of consumer and further to increase the market value of this milk product.

According to Lehr and Chang (2010), Malaysian has consumed about 1000 million litres of milk per annum. However, milk production in Malaysia only achieves about 56m liters per annum, which is equal to a self-sufficiency index of about 5 percent. Thus, our country has to import the rest of the milk from New Zealand, Australia and European Union to sustain for the demand of Malaysian. Constrain of dairy industries in Malaysia may due to the warm and humid climatic conditions which
unlikely for milk production (Warr et al., 2008). Since the weather in Malaysia is suitable for cultivation of rice, rice milk can be produce as a milk-substitute product to reducing the cost needed in importing of milk.

1.2 Objectives

a. To produce chocolate flavoured rice soy milk from black upland rice and soybean.
b. To determine the percentage of black upland rice, soybean, sugar and cocoa powder required to produce good quality chocolate flavoured rice soy milk.
c. To determine the proximate value and the shelf life of chocolate flavoured rice soy milk.
d. To determine consumers’ level of acceptance towards chocolate flavoured rice soy milk.

1.3 Rationale

Malaysian consumed 1000 million litres of milk per annum. However, milk production in Malaysia only achieved for 56 million litres per annum, which can only support for 5 percent self-sufficiency index (Lehr and Chang, 2010). Malaysia has to import milk and dairy product from other countries like New Zealand, Australia and European Union. Therefore a new formulation of milk substitute product can be developed to fulfill the demand. Besides, high yield of upland rice is possible in Malaysia since large track of idle lands has found in Peninsular Malaysia and the rice is cultivated in dry land without accumulation of water
CHAPTER 2

LITERATURE REVIEW

2.1 Rice

Rice (*Oryza sativa* L.) is a plant under the family grasses, Gramineae (Poaceae). It acts as one of the major food crops and becomes the staple diet in supplies approximately 20 percent of dietary energy worldwide and it has even higher proportion is Asia with an average share of around 30% in 2000 (Frei and Becker, 2005). Rice has been estimated to produce about 650 million tones globally and about 156 hectares of rice cultivation area all around the world. Among all the areas, Asia as the main rice cultivation area and have contribute in 90 percent of the world’s production. As people in Asian countries have consumed 75 percent of the world rice supply, rice plays an important role to food security of Asia (Fairhurst and Dobermann, 2002).

The genus *Oryza* belongs to the tribe Oryzeae of the family Poaceae. Oryzeae tribe contain 12 genera and the genus *Oryza* comprise about 22 species, in which 20 are wild rice species and the other two are cultivated, termed as *O. sativa* and *O. glaberrima* (The office of the Gene Technology Regulator, 2005). Randhawa et al. (2006) described that *O. sativa* is grown in Asia and has been spread to all over of rice growing areas in different countries including North and South American, European Union, Middle Eastern and African where as *O. glaberrima* is normally grown in western tropical Africa.
It has been proved that *O. sativa* is originated from foothills of Himalayas in the North and hills in the North-east of India to mountain ranges of South-east Asia and South-west China, while delta of River Niger in Africa is the place of origin for *O. glaberrima* (Warrier et al., 2011). These places are heterogeneity and can be regard as centres of rice diversity. However, this diversity is forfeit quickly due to the shifting of rice growers to modern cultivars (Randhawa et al., 2006).

Some varieties of rice are cultivated in wet-land while some is suitable to cultivate in dry-land (Ellinger, 2009). Wet-land rice consists of three types which are irrigated lowland rice, rainfed lowland rice and floating rice. The former two are mostly puddled and plants are transplanted. Irrigated lowland rice refers to cultivation of rice in irrigated bunded field. Farmer usually will maintain 5 to 10 centimeters (cm) of water on the field. Rainfed lowland rice is cultivated for at least part of cropping season in rainwater flooded bunded field to water depth over 100cm for not more than 10 days. Floating rice grown in environment which tends to be flooded, the field will suffer from excess water, deep and uncontrollable flooding on a regular basis (Bourman et al., 2007).

Unmilled rice, can also be refer as paddy is harvested when the grains contain 25 percent of moisture and proceed to the milling process. Schramm (2006) stated that rice milling process included removal of husk or shell, the shelled rice is then undergo milling process to eliminate the bran layer and the last step is whitening of rice to achieve market requirement of rice kernel’s appearance. When the first outermost layer of husk is removed, black rice is produced and thus can be considered as whole grain rice (Kahlon, 2009). De-husked rice is then removed the bran layer without breaking up the endosperm thus produce white rice (Carpenter, 2000). Flows
References

