SYNTHESIS OF V-SHAPED LIQUID CRYSTALS HAVING NITRO GROUPS AS TERMINAL

KUIEK BEE SUAN

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

INDUSTRIAL CHEMISTRY PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITY MALAYSIA SABAH

APRIL, 2007
BORANG PENGESAHAN STATUS TESIS@

JUDUL: SYNTHESIS OF V-SHAPED LIQUID CRYSTALS HAVING
NITRO GROUPS AS TERMINAL

Ijazah: DEGREE OF BACHELOR OF SCIENCE WITH HONOURS (INDUSTRIAL CHEMISTRY)

SESJI PENGAJIAN: 04/05

Saya KUIEK BEK SUM

(HURUF BESAR)

mengaku membenarkan tesis (LPS/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian saba'a.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. **Sila tandakan (/)

 [] SULIT

 [] TERHAD

 [] TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh

(TANDATANGAN PUSTAKAWAN)

Alamat Tetap: 3751 TAN SRI SENTOSA JAYA 16450 KETERIH

KELANTAN

Tarikh: ____________________

CATATAN: * Potong yang tidak berkenaan.

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

@ Tesis dimaklumkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that this dissertation is based on my original work, except for quotations and summaries each of which have been fully acknowledged.

KUIEK BEE SUAN

HS2004-1449

APRIL, 2007
VERIFICATION

Name: Kuiek Bee Suan

Title: Synthesis of V-Shaped Liquid Crystals Having Nitro Groups As Terminal

Dr. Md. Lutfor Rahman

Dr. How Siew Eng

Dr. Noumie Surugau

Supt/Ks Prof Madya Dr. Shariff A.K Omang

APRIL, 2007
ACKNOWLEDGEMENTS

Special thanks are given to my supervisor, Dr. Md. Lutfor Rahman, for being such a great individual in providing his experience and guidance in helping me to complete this project smoothly. Besides that, he also spent a lot of time and patience to assist me. Without him, this project would be much more difficult to complete.

Grateful acknowledgement is made to all of the laboratory assistants, namely Mr. Mustafa, and Mr. Sani for their cooperation during the project. Besides that, they also provide the equipments that needed for the project.

Many thanks also go out to my parents and family members, for their continued encouragement throughout the period of this study.
ABSTRACT

The main objectives of the study were to synthesized V-shaped liquid crystals materials with mesogenic properties. 4-Nitroaniline was used as a starting material for the synthesis. The peripheral cores were prepared from 4-Nitroaniline in which the amino group was diazotized by sodium nitrite and the obtained diazonium salt was coupled with phenol to yield 4-(4-nitrophenoxy)phenol. The obtained compound was used for the Williamson ether synthesis to obtained 1-bromo-4-(4-nitrophenoxy)phenoxyhexane. The target molecule 1,2-bis-[4-(4-nitrophenoxy)phenoxymethyl] benzen was prepared by 1-bromo-4-(4-nitrophenoxy)phenoxyhexane was used to dialkylate catechol in the presence of potassium carbonate and potassium iodide. Melting point of the final compound was in the range between 68 °C to 74 °C. From the obtained IR spectra, the functional groups in both compounds, 1-bromo-4-(4-nitrophenoxy)phenoxyhexane and 1,2-bis-[4-(4-nitrophenoxy)phenoxymethyl]benzene was compared. The spectrum showed that the synthesized compound had all the functional groups as in the projected molecular structure. The mesomorphic properties of final compound were investigated by differential scanning calorimetry (DSC). However, from the DSC study, the compound did not show liquid crystal phase.
Sintesis Hablur Cecair Berbentuk V Dengan Kumpulan Nitro Sebagai Kumpulan Terminal

ABSTRAK

Objektif utama disertasi ini adalah untuk mensintesis hablur berbentuk V yang menunjukkan sifat mesogenik. Bahan permulaan yang digunakan untuk sintesis ini ialah 4-Nitrofenilamina. Langkah permulaan bagi sintesis ini melibatkan tindak balas penggabungan garam diazonium dengan fenol untuk menghasilkan 4-(4-nitrofenilazo)fenol. Seterusnya, bahan yang dihasilkan menjalani sintesis eter Williamson dan menghasilkan 1-bromo-4-(4-nitrophenylazo)phenoxyhexane. Seterusnya, bertindak balas dengan catechol dengan kehadiran kalium karbonat dan kalium iodida untuk menghasilkan 1,2-bis-[4-(4-nitrophenylazo)phenoxy]hexyloxybenzene sebagai hasil terakhir dengan julat takat didih di antara 68 °C - 74 °C. Melalui perbandingan kedua-dua spektum inframerah bagi 1-bromo-4-(4-nitrophenylazo)phenoxyhexane dan 1,2-bis-[4-(4-nitrophenylazo)phenoxyhexyloxy]benzene, didapati bahawa bahan yang disintesikan mempunyai kesemua jenis kumpulan berfungsi seperti yang dijangkakan. Sifat mesomofik hasil itu dikaji dengan menggunakan differential scanning calorimetry (DSC). Namun, didapati bahawa hasil tersebut tidak menunjukkan mesophase.
CONTENTS

DECLARATION i
VERIFICATION ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
ABSTRAK v
CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF SCHEMES xii
LIST OF PHOTOS xiii
LIST OF SYMBOLS xiv

CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Research Objectives 3
1.3 Scope of The Study 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 Liquid Crystals 4
2.2 General Types of Liquid Crystals 6
2.3 Physical Properties of Liquid Crystals

2.4 Liquid Crystal Phases

2.5 Thermotropic Liquid Crystals

2.5.1 Nematic Phases

2.5.2 Smectic Phases

 a. Smectic with Liquid Layers

 b. Smectic with Ordered Layers

 c. Smectic with Bond-Orientational Order

2.5.3 Cholesteric Phases

2.5.4 Columnar Phases

2.6 Organic Synthesis for the Mesogen

2.6.1 Diazo Coupling Reaction

2.6.2 Williamson Ether Synthesis

2.7 Characterization and Identification of Phase Structures

2.7.1 Differential Scanning Calorimetry (DSC)

2.7.2 Fourier Transform Infra Red (FTIR)

2.7.3 Nuclear Magnetic Resonance Spectroscopy (NMR)

2.7.4 Column Chromatography

CHAPTER 3 MATERIALS AND METHODOLOGY

3.1 Equipments

3.2 Chemicals

3.3 Synthesis of Mesogen
3.3.1 4-(4-Nitrophenylazo)phenol 34
3.3.2 1-Bromo-[4-(4-nitrophenylazo)phenoxy]hexane 36
3.3.3 1,2-bis-[4-(4-nitrophenylazo)phenoxy]hexyloxy]benzene 37

CHAPTER 4 RESULTS AND DISCUSSION 38
4.1 Synthesis of 4-(4-Nitrophenylazo)phenol 38
4.2 Synthesis of 1-Bromo-[4-(4-nitrophenylazo)phenoxy]hexane 42
4.3 Synthesis of 1,2-bis-[4-(4-nitrophenylazo)phenoxyhexyloxy]benzene through Williamson Ether 47
4.4 Identification of Compounds using Nuclear Magnetic Resonance (NMR) 51
4.5 Determination of Mesomorphic Properties of Final Compound 55

CHAPTER 5 CONCLUSION 57

REFERENCES 58

APPENDIXES 64
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristics of nonchiral smectics</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Mesophases in chiral materials</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemicals used in the synthesis</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Total yield of the synthesized compound by Diazonium coupling reaction</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>The IR data of 4-(4-Nitrophenylazo)phenol</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>Total yield of the synthesized compound by Williamson Ether Synthesis</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>The IR data of 1-Bromo-4-(4-nitrophenylazo)phenoxyhexane</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Total yield of the synthesized compound by Williamson Synthesis</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>IR spectrum of 1,2-bis-[4-(4-nitrophenylazo)phenoxyhexyloxy]benzene</td>
<td>49</td>
</tr>
<tr>
<td>4.7</td>
<td>The 1H NMR data of the synthesized compound</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Phase behaviour and transition temperatures (°C) of Compound 4</td>
<td>55</td>
</tr>
<tr>
<td>Figure Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic arrangements of molecules in various phases</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>The structure of nematic phase</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>The plan and elevation structures of the smectic phases</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Several types of smectic phases</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic arrangement of molecules in smectic A (S_A) phases</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic arrangement of molecules in smectic C phases</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>The structure of tilted smectic phases</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>The structures of orthogonal smectic phases</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>The schematic representation of a smectic C* phase</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Structure of cholesteric phases</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic arrangements of molecules in chiral calamities mesogens</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>The structure of columnar phases</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Projected molecular structure after diazotization reaction</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>IR spectrum for 4-(4-Nitrophenylazo)phenol</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Projected molecular structure after Williamson Ether Synthesis</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>IR spectrum for 1-Bromo-4-(4-nitrophenylazo)phenoxyhexane</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>Projected molecular structure after Williamson Ether Synthesis</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>IR spectrum for 1,2-bis-[4-(4-nitrophenylazo)phenoxyhexyloxy]benzene</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>Proton signals for 1,2-bis-[4-(4-nitrophenylazo)phenoxyhexyloxy]benzene</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme 2.1</th>
<th>General reaction of diazo coupling reaction</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2.2</td>
<td>General mechanism of Williamson ether synthesis</td>
<td>27</td>
</tr>
<tr>
<td>Scheme 3.1</td>
<td>Diazonium coupling reaction of 4-nitroaniline</td>
<td>35</td>
</tr>
<tr>
<td>Scheme 3.2</td>
<td>Williamson ether synthesis of 4-(4-Nitrophenylazo)phenol</td>
<td>36</td>
</tr>
<tr>
<td>Scheme 3.3</td>
<td>Williamson ether synthesis</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF PHOTOS

Photo 4.1 A dark red solid of 4-(4-Nitrophenylazo)phenol synthesized via Diazonium coupling reaction 39

Photo 4.2 A bright orange solid of 1-Bromo-4-(4-Nitrophenylazo)phenoxymethane obtained by Williamson Ether Synthesis 42

Photo 4.3 An orange solid of 1,2-bis-[4-(4-Nitrophenylazo)phenoxymethoxy]benzene synthesized by Williamson Synthesis 46
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_A</td>
<td>Smectic A phase</td>
</tr>
<tr>
<td>S_B</td>
<td>Smectic B phase</td>
</tr>
<tr>
<td>$S_{B(\text{cry})}$</td>
<td>Smectic B crystal phase</td>
</tr>
<tr>
<td>S_C</td>
<td>Smectic C phase</td>
</tr>
<tr>
<td>S_{C^*}</td>
<td>chiral Smectic C phase</td>
</tr>
<tr>
<td>S_L</td>
<td>Smectic L phase</td>
</tr>
<tr>
<td>S_F</td>
<td>Smectic F phase</td>
</tr>
<tr>
<td>S_I</td>
<td>Smectic I phase</td>
</tr>
<tr>
<td>S_E</td>
<td>Smectic E phase</td>
</tr>
<tr>
<td>S_G</td>
<td>Smectic G phase</td>
</tr>
<tr>
<td>S_H</td>
<td>Smectic H phase</td>
</tr>
<tr>
<td>N</td>
<td>Nematic phase</td>
</tr>
<tr>
<td>N^*</td>
<td>chiral nematic phase</td>
</tr>
</tbody>
</table>
1.1 Introduction

Liquid crystal is a substance that flow like a liquid but has some order in its arrangement of molecules. There are a few of type of thermotropic liquid crystals, such as rod-like molecules, disc-shaped molecules, bent-shaped molecules, V-shaped molecules, banana-shaped molecules and so on.

Bent-core V-shaped is also known as fused twins or U-shaped. The first synthesis of bent-core molecules was discovered by Vorlander and Apel (Yelamagga et al., 2004). It can be classified into two categories, like V-shaped and banana-shaped (Yelamagga et al., 2004). Yelamagga et al. (2004) has reported the first bent-core V-shaped synthesized by Vorlander and Apel is 1,2-phenylene bis[4-(ethoxyphenylazoxy)benzoate] which show a nematic phase. Bent core V-shaped molecules are formed two mesogenic segments attached covalently to a benzene ring in the 1,2-positions (Yelamagga et al., 2004). Prasad (2001a) reported a number of azobenzene-based bent-core V-shaped molecules exhibit nematic, smectic A, and
crystal E phases. V-shaped liquid crystals exhibit mesophases are used in many
device applications. A study of liquid crystals composed of bent-shaped molecules
reveals that compounds with azo linkages have surprising advantages. Azo
compounds are thermally very stable and bring in a new dimension to photochromism
(Prasad, 2001a, 2001b).

Liquid crystals (LCs) with rod-like molecules shows nematic and/or smectic
mesophases, while liquid crystals with flat disc-shaped molecules exhibit nematic
and/or columnar mesophases (Yelamaggad et al., 2004). The most ordered phase is
the smectic phase, which molecules are aligned parallel to one another in regular layer
(Whittaker et al., 2001). Besides that, the smectic phase where found at lower
temperature than the nematic which form well-defined layers that can slide over one
another like soap. Thus, the smectic is positional ordered along one direction. The
molecules are oriented along the layer normal in the Smectic A phase, while, in the
Smectic C phase, they are tilted away from the layer normal. In the nematic phase, the
simplest LC, the molecules are aligned parallel to one another, but are no longer
arranged in layers (Whittaker et al., 2001).

The cholesteric phase is characterized by ordered layers in which the
molecules are aligned with respect to one another within each layer, but the layers are
no longer ordered with respect to one another. In all these phases, the material flows
like a liquid, but shows optical properties akin to those of a solid crystal. The typical
operating range for liquid crystals is between -5°C and 70°C. Below this range, the
material is true crystalline solid, and above this range, all order is lost and the material
behaves as an isotropic liquid (Whittaker et al., 2001). The common application of
liquid crystal is liquid crystal displays (LCDs), dyes, and liquid crystal thermometer and so on.

1.2 RESEARCH OBJECTIVES

✧ To synthesis a V-shaped liquid crystal material which exhibit mesogenic properties.
✧ To analyze the structure of the liquid crystal materials using Fourier Transform Infra Red Spectroscopy (FTIR) and Nuclear Magnetic Resonance Spectroscopy (NMR).
✧ To determine the phase transition using Differential Scanning Calorimetry (DSC).

1.3 SCOPE OF THE STUDY

The synthesis focuses only on the organic synthesis of the V-shaped liquid crystals and the determination of liquid crystals properties. The physical properties of liquid crystals can be determined by using FTIR, NMR and DSC.
2.1 Liquid Crystals

A phase of matter whose order is intermediate between that of a liquid and that of crystals are known as liquid crystals. Generally, there are several common characteristics of liquid crystal materials, such as a rod-like molecular structure, rigidness of the long axis, and strong dipoles and or easily polarizable substituents.

The tendency of the molecules (mesogens) to pint along a common axis is the distinguishing characteristic of the liquid crystalline state which is known as director. This is in contrast to molecules in the liquid phase, which have no intrinsic order. In the solid state, molecules are highly ordered and have little translational freedom. The characteristic orientational order of the liquid crystal state is between the traditional solid and liquid phases and this is the origin of the term mesogenic state, used synonymously with liquid crystal state.
Singh (2002) reported that the molecules in a crystal are ordered whereas in liquid they are not. The following possibilities exist at the melting point when a molecular material composed of anisotropic molecules is heated from the solid phase (Figure 2.1):

a) Both types of order (positional and orientational) disappear simultaneously and the resulting phase will be an "isotropic liquid (IL)" possessing $T(3) \times O(3)$ symmetry.

![Diagram showing molecular arrangements in various phases](image)

Figure 2.1 Schematic arrangements of molecules in various phases (Singh, 2002).

b) Only orientational order disappears leaving the positional order intact and the corresponding phase is called a "plastic crystal (PC)". The materials in this phase
are exhibit rotator phases; the molecules freely rotate along one or more of their molecules axes, whereas their centers of mass are fixed in a lattice.

c) The positional order either fully or partially disappears while some degree of orientational order is maintained. Thus, the phase is called as “liquid crystal (LC)”.

Another term in use is mesophase (intermediate phase) or mesomorphic phase. In this phase, the unique axes of the molecules remain, on average, parallel to each other leading to a preferred direction in space. To describe the local direction of alignment by a unit vector \(\mathbf{n} \), the director, this gives at each point in a sample the direction of preferred axis. A compound that exhibits a mesophase is called a mesogenic compound (Singh, 2002).

2.2 General Types of Liquid Crystals

The liquid crystals can be grouped into several types according to their geometrical structure of the mesogenic molecules. The liquid crystals that formed from the rod-shapes molecules (one axis is much longer than the other two) are called “calamitics”. The mesophases derived from the disc-like molecules (one molecular axis is much shorter than the other two) are known as “discotics” (Ericksen, 1970). Intermediate between rod-like and disc-like molecules are the lath-like species (Singh, 2002).
The liquid crystals are categorized in two different ways; thermotropic liquid crystals, shows mesophases by thermally and lyotropic liquid crystals, exhibits mesophases by the influence of solvents (Demus and Richter, 1978).

Nematic and smectic mesophases is the main subdivision of calamitics thermotropic liquid crystals. There are many types of smectic phases, which indicated as S_A, S_B, S_C, and S_L, which differ in the orientation of the preferred direction of the molecules with the respect to the layer normal and the distribution of the centers of the molecules within the layer (Singh, 2002).

2.3 Physical Properties of Liquid Crystals

The physical properties of liquid crystals can be distinguished into two categories, scalar and nonscalar properties. The thermodynamics transition parameters are called scalar properties, such as transition temperature, transition enthalpy, entropy changes, transition density, and fractional density changes, whereas, the most important nonscalar properties are the dielectric, diamagnetic, optical, elastic, and viscous coefficients (Singh, 2002).

Besides that, the liquid crystalline also can be characterized through their orientational, positional, and conformational orders. Orientational order refers to a measure of the tendency of the molecules to align along the director on a long-range basis, which is presents in all the liquid crystal phases and usually is the most important (Singh, 2002). The positional order is to characterize the various mesophases (nematic, smectic A,
smectic C, etc.) and also can be investigated by their textures or their X-ray diffraction patterns which allow a determination of the layer thickness. The conformational order is to measure how the rings, fractional groups and end chains within a molecule are oriented and arises because of the short-range intramolecular and intermolecular forces (Singh, 2002).

2.4 Liquid Crystal Phases

The liquid crystal state is a distinct phase of matter observed between the crystalline (solid) and isotropic (liquid) states. There are many types of liquid crystal states, depending upon the amount of order in the material. Most thermotropic liquid crystals will have an isotropic phase at high temperature. That is, heating will eventually drive them into a conventional liquid phase characterized by random and isotropic molecular ordering (little to no long-range order), and fluid-like flow behavior.

Under other conditions (for instance, lower temperature), a liquid crystal might inhabit one or more phases with significant anisotropic orientational structure and long-range orientational order while still having an ability to flow. The orientational order may be quasicrystalline. This section will explain the phase behavior of liquid crystal materials.
2.5 Thermotropic Liquid Crystals

Thermotropic transactions occur in most liquid crystals, and they are defined by the fact that the transitions to the liquid crystalline state are induced thermally. That is, one can arrive at the liquid crystalline state by raising the temperature of a solid and/or lowering the temperature of a liquid.

Thermotropic liquid crystals can be classified into two types: enantiotropic liquid crystals, which can be changed into the liquid crystal state from either lowering the temperature of a liquid or raising of the temperature of a solid, and monotropic liquid crystals, which can only be changed into the liquid crystal state from either an increase in the temperature of a solid or a decrease in the temperature of a liquid, but not both. In general, thermotropic mesophases occur because of anisotropic dispersion forces between the molecules and because of packing interactions.

2.5.1 Nematic Phases

The word “nematic” is derived from Greek: nematos, thread-like (Murell et al., 1994). The nematic liquid crystal phase is characterized by molecules that have no positional order but tend to point in the same direction (along the director). The nematic phase is essentially a one-dimensionally ordered elastic fluid in which the molecules are orientationally ordered (Goodby, 1998). The molecules in nematic phase (Figure 2.2) point vertically but are arranged with no particular order.
REFERENCES

