PHYSICAL CHARACTERISTICS OF BANANA *Musa paradisiaca* cv. Saba DURING RIPENING AND SENESCENCE.

ZAINAL ABIDIN HJ. MOHAMAD

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THIS DISSERTATION IS SUBMITTED IN PARTIAL FULLFILMENT OF
THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF BACHELOR
SCIENCE WITH HONOURS

PLANT TECHNOLOGY PROGRAMME
SCHOOL OF SCIENCE AND TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

NOVEMBER 2007
BORANG PENGENALAN STATUS TESIS

JUDUL: PHYSICAL CHARACTERISTICS OF BANANA MUSA PARADISIACA EV. SABA DURING RIPENING AND SENESCENCE

IJAZAH: SARJANA MUDA (KERTAJAN) TEKNOLOGI TUMBUHAN

SAYA ZAINAL ABIDIN HJ. MOHAMAD (HURUF BESAR)

SESI PENGAJIAN: 2004/2005

mengakui membenarkan tesis (LPJSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (/)

[] SULIT
[] TERHAD
[] TIDAK TERHAD

(Mengandungi maklumat yang berdaulat keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan Oleh

(TANDATANGAN PENULIS)

Alamat Tetap: W.B.T 67/9,0000
SANDALAN SABA

Tarikh: 01/12/07

(TANDATANGAN PUSTAKAWAN)

MR. JUKHLIY JAMES SILIP
Nama Penyelidik

Tarikh: 01/12/07

CATATAN: *Potong yang tidak diketa
**Jika tesis ini SULIT atau TERHAD, sila lamparkan surat daripada pihak berkuasa /organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
@Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidik atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPJSM).
DECLARATION

I certify that this thesis, 'Physical characteristic of banana *Musa paradisiaca* cv. Saba during ripening and senescence' does not incorporate without acknowledgement any material previously submitted for a bachelor degree in any university; and that to the best of my knowledge and it does not contain any material previously published or written by another person where due references has not made in the text.

09 November 2007

ZAINAL ABIDIN HJ.MOHAMAD

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

HS2004-8008
CONFIRMED BY

1. SUPERVISOR
(MR. JUPIKELY JAMES SILIP)

2. EXAMINER 1
(Mr. LUM MOK SAM)

3. DEAN
(SUPT / KS PROF. MADYA DR. SHARIF A.K OMANG)

Signature

JUPIKELY JAMES SILIP
ACKNOWLEDGEMENT

There are many people that deserve to be mentioned in this section; it will be difficult to fit them all on one page. First and foremost, I would like to thank my advisor Mr. Jupikley James Silip, who took me on as a student and pushed and pulled me forward from day one. His insights, patience, and superb knowledge of laboratory procedures, pertinent literature, and how to phrase a scientific document have been invaluable for the completion of this thesis.

I would like to thank as people in and around our lab on the first floor of School of Science and Technology for various good deeds starting from helping to take samples, getting me started in the lab, and lending me analytical balance and other equipments.

Last but not least, I would like to thank my parents, my father Mr. Hj. Mohamad Aduk and my beloved mother Mrs. Oyang Thabarun who put up the money for three years of Diploma studies and enabled me that way to be where I am today.

Many thanks also to my housemate and friends; Mr. Ikram Mohd. Safian, Mr. Isjamlan Taulani, Mr. Jonathan Ukab, Mr. Ammirudin and Mr. Wilfred for helping me finalize my project.

And finally, to my wonderful friend, Miss Noorshilawati Abdul Aziz, whose “Are you done yet with your thesis?” pushed me forward, and gave me the strength to get up every morning to work on it and to finish it!
ABSTRAK

ABSTRACT

This research was carried out to observe the changes in physical characteristics of *Musa paradisiaca* cv. *Saba* during ripening and senescence stored at ambient temperature. From the observation that been done, the physical characteristics of banana had changed along with increment of maturity index. Overall, banana at ripening stages has better physical characteristics compare to banana at senescence stages. This study showed that the weight loss at ripening stages were lower than the weight loss at senescence stages. As for observation of pulp firmness, it recorded that pulp firmness were higher at ripening stages than senescence stages. Pulp to peel ratio shows an increment along with increment of maturity indexes. As for peel weight, it recorded that peel weight at ripening stages were higher compare to senescence stages. These situations are opposite to pulp weight where by pulp weight at ripening stages is lower than senescence stages. Based on this research, number of days of fruit taken too ripe increased along with the increment of ripening indexes.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Declaration</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Photos</td>
<td>x</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figure</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Objective 5

CHAPTER 2 LITERATURE REVIEW

2.1 Banana 6
2.2 Saba Cultivar 9
2.3 Banana Quality 10
2.4 Changes That Occur During Growth, Maturation, Ripening and Senescence 10
2.4.1 Color 11
2.4.2 Pulp Firmness 12
2.4.3 Pulp to Peel Ratio 12
2.4.4 Pulp pH 13
2.4.5 Sugar Accumulation 13
2.4.6 Respiration Rate 15
2.4.7 Flavor Development 16
CHAPTER 3 MATERIALS AND METHODS

3.1 Materials
 3.1.1 Source of Banana 26
 3.1.2 Penetrometer 26
 3.1.3 Analytical Balance 27

3.2 Methods
 3.2.1 Selection of Banana 27
 3.2.2 Cleaning 27
 3.2.3 Sampling 28
 3.2.4 Data Collection 28

3.3 Assessments of Data Collection
 3.3.1 Weight loss 28
 3.3.2 Pulp and peel weight 29
 3.3.3 Pulp Firmness 29
 3.3.4 Pulp to Peel Ratio 30
 3.3.5 Days to Reach Ripening Index 30

3.4 Experimental Design 32
LIST OF TABLES

<table>
<thead>
<tr>
<th>Number of Tables</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Commercial banana cultivar names and synonyms in ASEAN</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Starch, total sugars and total soluble solid contents (TSS) of different banana cultivars in ASEAN at the unripe and ripe stage</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Titratable acids (TA) and pH at the unripe and ripe stage of different banana cultivars in ASEAN</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Peel color score index</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Assessment of Musa paradisiacal cv. Saba banana at ripening index 1, 4, 6, 8 and 10</td>
<td>33</td>
</tr>
</tbody>
</table>
LIST OF PHOTOS

<table>
<thead>
<tr>
<th>Number of Photos</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Saba cultivar</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Pulp and peel at different ripening stage</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>°C</td>
<td>degree of celcius</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number of Figure</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Bananas are native fruit to Southeast Asia and later on introduced to all tropical countries. Since then, it has become one of the most important crops in the world. As the centre origin of bananas, Southeast Asia is also play as important role for its centre of diversity. In areas where subsistence farming predominates, a great diversity of its varieties exists. Exotic cultivars vary from area to area and from country to country (Valmayor et al., 1990).
Table 1.1 Commercial banana cultivar names and synonyms in ASEAN.

<table>
<thead>
<tr>
<th>Filipino</th>
<th>Indonesian</th>
<th>Malaysian</th>
<th>Thailand</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Lakatan"</td>
<td>"Pisang Barangan"</td>
<td>"Pisang Berangan"</td>
<td>-</td>
</tr>
<tr>
<td>"Latundan"</td>
<td>"Pisang Raja Sereh"</td>
<td>"Pisang Rastali"</td>
<td>-</td>
</tr>
<tr>
<td>"Bungulan"</td>
<td>"Pisang"</td>
<td>"Pisang"</td>
<td>"Kluai Hom Khieo"</td>
</tr>
<tr>
<td></td>
<td>Ambon Lumut</td>
<td>Masak hijau"</td>
<td></td>
</tr>
<tr>
<td>"Saba"</td>
<td>"Pisang Kepok"</td>
<td>"Pisang Nipah"</td>
<td>"Kluai Hin"</td>
</tr>
<tr>
<td>"Ambon"</td>
<td>"Pisang Ambon Putih"</td>
<td>"Pisang Embun"</td>
<td>"Kluai Hom Dok Mai"</td>
</tr>
<tr>
<td>"Amas"</td>
<td>"Pisang Mas"</td>
<td>"Pisang Mas"</td>
<td>"Kluai Kha"</td>
</tr>
<tr>
<td>"Tindok"</td>
<td>"Pisang Tanduk"</td>
<td>"Pisang Tanduk"</td>
<td>"Kluai Nga Chang"</td>
</tr>
<tr>
<td>"Katali"</td>
<td>"Pisang Awak"</td>
<td>"Pisang Awak"</td>
<td>"Kluai Namwa"</td>
</tr>
</tbody>
</table>

The commercial banana cultivar names and synonyms in ASEAN are shown in Table 1.1. In 2004, the world total export of banana accounted for 15.9 million tones. Bananas are also a very important staple commodity for many developing countries, together with wheat, rice or corn, hence the relevance of bananas for food security. Some of the main bananas producing countries, such as India or Brazil, are hardly involved in international trade. In fact, only about one fifth of total banana production is internationally traded. Nevertheless, the share of banana trade in world banana
production increased slightly in the last decades (from around 18% in the sixties and seventies to over 22% in the nineties). The international banana market shows a highly regional character (Food and Agriculture Organization of the United Nations, 2004).

Due to the special climatic condition to grow bananas, they are usually grown in tropical countries where most of them are developing countries. About 98% of world production of banana is grown in developing countries. Commonly, developed countries is the main target or destination for exports banana (Food and Agriculture Organization of the United Nations, 2004).

Banana is one of the important fruits in Malaysia and is widely grown all states especially in Peninsular Malaysia. In 1982, about 15,384 hectares area is cultivated with banana where Johor, Pahang and Perak are major producing states. Raub, Parit, Kuala Kangsar, Kluang, Pontian, Batu Pahat, Lipis and Larut-Matang are the important banana growing areas (Abdullah et al., 1990).

Traditionally, banana cultivation is confined to small holdings as a cash crop, or intercrop with other tree crops such as cacao, coffee or oil palm (Abdullah et al., 1990).

Visual quality plays an important role in marketing of banana fruit. It was powerful attraction that can easily attract customers. So, banana cultivars such as ‘saba’ cultivar that exhibit some unpleasant visual on its peel especially at higher ripening index usually are not in list of the first choice of customers. This is also true for sellers. If the
sellers found out that the peel is look like to deteriorate, he or she might not sell it to the customers. Therefore, the justification of this study is to tell people that even though the banana pulp is look like to deteriorate, but the flesh is still good and can be consumed especially for making fried banana.
1.2 Objective

The objective of this study is to observe the physical changes of banana *Musa paradisiaca* cv. Saba during ripening and senescence.
CHAPTER 2

LITERATURE REVIEW

2.1 Banana

Banana or *Musa* spp. is one of the most popular tropical fruit around the world. In Malaysia and Indonesia, banana is called “Pisang”, in Philippines, the local people called it “Saging” while local people in Thailand and Vietnam called banana “Kluai” and “Chuoi” respectively.

The exact origin of edible bananas is unknown (Espino *et al*., 1991). But this statement conflicts with Abdullah *et al*., (1990). According to Food and Agriculture Organization of the United Nations (2004), and Abdullah *et al*. (1990), banana are originated from Southeast Asia where it grows wildly in the jungles of Malaysia, Indonesia and Philippines.
The first Europeans to know about banana were the armies of Alexander the Great in 327 B.C. During the middle ages, Moslems and Christians believed that banana is a forbidden fruit of paradise (Food and Agriculture Organization of the United Nations, 2004). According to Espino et al. (1991) in his books, Indo-Malesian region is considered as the main centre of banana diversity. It is believed that *Musa accuminata Colla* is a major parent for most edible bananas.

Banana is member of the genus *Musa*; part of family Musaceae and derived from wild species *Musa acuminata* (AA) and *Musa balbisiana*. About 1000 varieties exist around the world in 50 groups. The most valuable banana is Cavendish varieties which been exported in many countries (Food and Agriculture Organization of the United Nations, 2004).

Banana plant is often referred to as a tree-like perennial herb. It can reach 2 to 9 m in height with short underground stem or corm. The short rhizomes will grow from the underground stem to produce a clump of aerial suckers close to the parent plant.

As for roots, banana roots are adventitious and spreading 4 to 5 m laterally and generally forming a dense mat in the top 15 cm. New leaves that grow from the corm will grow up continuously through the centre of the pseudostem with their laminas tightly rolled. The emerging leaf unfolds a large oblong blade (150 to 400 cm x 70 to 100 cm) with well-marked, pronounced supporting midrib and arrange pinnately.
Terminal inflorescence grows from each corm and its peduncle extending through the centre of the pseudostem. Terminal inflorescence is a compound spike of flowers and arranged by groups, compact and conical when still young.

Generally about 12 to 15 flowers are produced for each node and 5 to 15 nodes produce female flowers. Bracts are open in sequence from base to top while the peduncles elongates. Banana fruit is berry-like, seedless, 6 to 25 cm x 2.5 to 5 cm in size, green, yellow or reddish and curved. Each cluster of fruit is known as ‘hands’ while individual fruit are called ‘fingers’.

Banana is suitable planted in warm and humid tropical climates. The optimum temperature for optimum growth of banana is $27^\circ C$ and the maximum temperature is $38^\circ C$. Injuries such as chilling injuries will develop when banana is placed in area with temperature reaches $13^\circ C$. It requires full sun in order to grow but excessive exposure to sun light causes sunburn. Other than that, banana is sensitive to strong wind which can blows over banana plant and causes distortion (Espino et al., 1991). To avoid wind destruction, use bamboos as a shield. This can be done by planting bamboo trees on edge of the plantation (Espino et al., 1991).
2.2 Saba Cultivar

Saba banana is one of the important cultivar in Philippines. Nevertheless, the awareness of Saba banana economic value has spread through out Malaysia especially in Sabah (Photo 2.1). Saba banana usually consume after cooking and one of the famous cooking purpose banana cultivar. Bunch weight is about 14 kg to 22 kg with 10 to 16 hands and 12 to 20 fingers per hand (Valmayor et al., 1990).

The fruit is angular and skin thick while the pulp is creamy white with fine texture and well develop core. Commonly, flesh will become sweet upon ripening (Valmayor et al., 1990).
2.3 **Banana Quality**

Quality is a mixture of parameter or characteristics that defines the value of certain vegetables and fruits. Basically, characteristics that been used to determine quality are physical quality (size, appearances, shape and also free from any diseases), color (skin and flesh), taste (sugar and acid contain, aroma), changes in texture either hardening or softening and also fiber contain while quality that related to nutritional value is vitamin and minerals (Kader, 2002).

2.4 **Changes That Occur During Growth, Maturation, Ripening and Senescence**

Banana fruit usually undergo 4 phases of development namely: growth, maturation, ripening and senescence. Growth stage can be characterized by rapid cell division and elongation while maturation phase can be marked by physical and chemical changes that have bearings on fruit quality and postharvest behavior. As for ripening stage, it can be characterized by increased of respiration rate and ethylene production and followed by a decline which will trigger the senescence stage.

The growth of banana fruit usually follows a simple sigmoid curve. In the early stage of growth, banana fruit usually experienced slow changes in physical characteristic but later on rapid increase in size, volume, weight, pulp firmness, pulp and peel weight. All of these changes occur simultaneously with visual changes such as skin color, nature...
REFERENCES

http://www.codexalimentarius.net/web/standard_list.jsp.

http://www.fao.org/docrep/006/t0308e/T0308E00.htm

