AERODYNAMIC STUDIES ON A MULTISTORIED BUILDING MODEL

SAW CHENG LEE

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY
UNIVERSITY MALAYSIA SABAH
KOTA KINABALU

2006
JUDUL: Aerodynamic Studies on A multi-storied Building Model

IIAZAH: Ijazah Sarjana Muda (Kajian Turban Mulaikai)

Saya SAW CHEONG LEE

(HURUF BESAR)

Mengakui membenarkan tesis (LPS/Sarjana/Doktor Falsafah) ini di simpan di Perpusatakan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. ** Sila tandakan (/).

(Mengandungi maklumat yang berdaur keselamatan atau kepentingan Malaysia seperti yang termaktub dalam AKTA RAHSIA RASMI 1972).

SULIT

TERHAD

TIDAK TERHAD

Disahkan oleh

(TANDATANGAN PENULIS)

Alamat Tetap: 43, Persiaran Wira Surya 35,

Taman Pangsia 31350 IPoh, Perak.

Tarih: 28/4/06

(TANDATANGAN PUSTAKAWAN)

Prof. Dr. M. Garudahan

Nama Penyelia

Tarih: 28/4/06

CATATAN: * Potong yang tidak berkenaan.
* Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan atau Laporan Projek Sarjana Muda (LPSM)
AERODYNAMIC STUDIES ON A MULTISTORIED BUILDING MODEL

SAW CHENG LEE

A PROJECT REPORT PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF DEGREE IN MECHANICAL ENGINEERING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY
UNIVERSITY MALAYSIA SABAH
KOTA KINABALU

2006
DECLARATION

I certify that this thesis is the only work of mine except certain statement or information of which I have explained the source of it.

28 APRIL 2006

SAW CHENG LEE
HK 2002-3508

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

APPROVED BY

(Prof. Dr. Mukka Govardhan)
SUPERVISOR

(Mr. Harimi Mohamed)
EXAMINER

(Mr. Mohd. Kamel Wan Ibrahim)
CHAIRMAN
ACKNOWLEDGMENT

No book of the scope can be developed without the support of many peoples. This is especially true for this thesis which was carried out for the period of one year. My first acknowledgment, therefore, has to be to my thesis supervisor, Prof. M. Govardhan, for his valuable guidance, support, interest and the care in bringing the thesis to this form.

Special mention must be made of my friends, Lim Chee Hong, Lok Yee Fai, Ku Joo Han and all other my friends for their valuable help at many stages of the project work. I should also thank to Hong Wai Onn, Chong Wai Ken, Lim Hong Teh, Kim Shi Yuen and Chin Wai Hon, who made my four years of stay at University Malaysia Sabah joyful.

I would also like to acknowledge the support of the hydraulic lab assistant, Mr. Saiful and the staffs of the workshop for their valuable help.

I would like to express my deep sense of gratitude to my parents, my elder sister, my elder brother and my brother-in-law for their continuing encouragement and constant support.

Last, and most obviously not the least, is the directly and indirectly support of my friends, lecturers and staffs of University Malaysia Sabah, in successfully completing this work.

Saw Cheng Lee
ABSTRACT

Wind tunnel tests on structural models are needed when the full-scale structures cannot be tested or analysed. Very few industrial structures can be analysed accurately, particularly when they have solid and not lattice faces. Objects of tunnel tests include bridges, chimneys, vehicles, buildings, and radars. The model under investigation is non-aerodynamic building model. The wind tunnels tests on the building model are carried out to include flow visualization, pressure distributions on the various faces of the building and drag coefficient. Flow visualization tests are carried out by using the woollen tuft technique at three different speeds and at three different yaw angles. Flow visualization by wool tuft technique is able to show the characteristic of the flow around the building. Pressure distribution tests on the building model are carried out by using the wind tunnel technique and Bernoulli Principle. Around 164 static pressure ports available on all faces of the building are connected to a water tube manometer. Results showed high pressure along the centre line of the front surface of the building. CFD (Computational Fluid Dynamic) analyses of the flow visualization, pressure distribution and drag coefficient are carried out by using Cosmosflowwork 2004. Some modifications are made on the shape of building to reduce the value of drag coefficient. The computational results of flow visualization and pressure distribution are compared with the experimental results.

Keyword: Wind tunnel test, tall building, flow visualization, pressure coefficient, CFD, drag coefficient.
ABSTRAK

Kata kunci: ujian terowong angin, bangunan tinggi, pengambaran pengaliran, penyebaran tekanan, CFD, pekali heretan.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi-xiii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xiv-xv</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1-4</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Aim of present investigation</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Project objective</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Project scope</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>5-10</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Wind pressure on tall building</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Influence of adjacent building to wind</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Wind effect on tall building</td>
<td>7</td>
</tr>
<tr>
<td>2.5 New technique for evaluating the fluctuating lift and drag force distribution on building structure</td>
<td>9</td>
</tr>
</tbody>
</table>
CHAPTER 3

STUDIES OF THE PRESENT INVESTIGATION

3.1 Wind tunnel techniques

- **3.1.1** Wind tunnel
 - **3.1.1.1** Closed-jet tunnel
 - **3.1.1.2** Open-jet tunnel

3.2 Flow visualization

- **3.2.1** Wool tuft technique
- **3.2.2** Oil flow technique
- **3.2.3** Smoke technique

3.3 Pressure distribution

- **3.3.1** Wind pressures on building
- **3.3.2** Interaction of wind and structure
 - **3.3.2.1** Flat plate
 - **3.3.2.2** Rectangular block
- **3.3.3** Variables affecting pressure distribution
 - **3.3.3.1** Building shape
 - **3.3.3.2** Opening
 - **3.3.3.3** Wind direction
 - **3.3.3.4** Increase of wind speed with height
 - **3.3.3.5** Shielding
CHAPTER 4 METHODOLOGY

4.1 Experimental setup 26
4.2 Basic component of University Malaysia Sabah 28
 4.2.1 Test section 29
 4.2.2 Contraction cone 29
 4.2.3 Settling chamber and screens 29
 4.2.4 Diffuser 30
 4.2.5 Driving unit 30
4.3 Experimental procedure 30
 4.3.1 Flow visualization 31
 4.3.2 Pressure distribution 34
4.4 Computational setup 35
 4.4.1 Refining mesh during calculation 39
 4.4.2 Governing equation 40

CHAPTER 5 RESULT AND DISCUSSION

5.1 Introduction 42
5.2 Flow visualization 43
 5.2.1 Flow visualization for different yaw angles and speed 48
5.3 Pressure distribution 55
5.3.1 Pressure distribution for different yaw angles 60

5.4 Drag coefficient 70

5.5 Modification of the building model 73

CHAPTER 6 CONCLUSION AND FUTURE RECOMMENDATION 75-76

6.1 Introduction 75

6.2 Conclusion 75

6.3 Future recommendation 76

REFERENCES 77-78
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE No</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Drag coefficient value of the modified building model</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No</th>
<th>Description</th>
<th>Page. No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Test area of open-jet wind tunnel (University Malaysia Sabah)</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Wind flow around building (www.vent-axia.com)</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Wool tuft visualization on the tested building model</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>Pressure contour on a wall at right angles to wind direction (Dalgliesh, 1962)</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Drag coefficient for rectangular clad building (Macdonald, 1975)</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Isometric view of building model</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Wind tunnel of University Malaysia Sabah</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>The tested model with fully wool tuft</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Base of the building model</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Tested model on the test section</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Multi-tubes water manometer</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>The computational domain and the tested building model in COSMOS-FLOWORK</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>(a) Front surface, (b) top surface, (c) side surface and (d) back surface for wool tuft testing of building model at speed 22 m/s and yaw angle 0 degree</td>
<td>44</td>
</tr>
<tr>
<td>5.2</td>
<td>Velocity vectors (front view), yaw angle 0 degree</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Velocity vectors (back view), yaw angle 0 degree</td>
<td>45</td>
</tr>
<tr>
<td>5.4</td>
<td>Velocity vectors (side view), yaw angle 0 degree</td>
<td>46</td>
</tr>
</tbody>
</table>
5.5 Flow trajectories at speed 22 m/s and yaw angle 0 degree

5.6 (a) Front surface, (b) top surface, (c) side surface and (d) back surface for wool tuft testing of building model at speed 38 m/s and yaw angle -12 degree

5.7 Velocity vector (front view), yaw angle -12 degree

5.8 Velocity vector (back view), yaw angle -12 degree

5.9 Velocity vector (side view), yaw angle -12 degree

5.10 Flow trajectories at speed 38 m/s and yaw angle -12 degree

5.11 Velocity vector (front view), yaw angle 90 degree

5.12 Velocity vector (back view), yaw angle 90 degree

5.13 Velocity vector (side view), yaw angle 90 degree

5.14 Pressure coefficient on all the surfaces of the tested building model in yaw angle 0 degree

5.15 Variation of pressure (front surface)

5.16 Variation of pressure (back surface)

5.17 Variation of pressure (outer side surface)

5.18 Variation of pressure (top surface)

5.19 Variation of pressure (inner side surface)

5.20 Pressure coefficient of front building surface at 22 m/s, different yaw angles

5.21 Variation pressure (front surface) at (a) yaw angle 0 degree, (b) 12 degree and (c) 6 degree

5.22 Pressure coefficient on all the surfaces of the tested building model in +12 degree yaw angle

5.23 Pressure coefficient on all the surfaces of the tested building model in -12 degree yaw angle
5.24 Pressure coefficient of building top surface at speed 22 m/s, different yaw angles

5.25 Pressure coefficient of building back surface at speed 22 m/s, different yaw angles

5.26 Static pressure on building surface at speed 22 m/s and yaw angle 90 degree

5.27 Variation of pressure (front surface), yaw angle 90 degree

5.28 Variation of pressure (back surface), yaw angle 90 degree

5.29 Variation of pressure (outer side surface), yaw angle 90 degree

5.30 Static pressure on front surface of building model at 22 m/s and different yaw angles

5.31 Drag coefficient value of the tested building model in CFD result at yaw angle 0 degree

5.32 Drag coefficient value of the tested building model in CFD result at different yaw angles

5.33 Velocity vector (side view) at wind direction of yaw angle 45 degree
 Normal stress in y-direction

 Normal stress in z-direction

 Shear stress

 Shear stress in y to x direction

 Shear stress in z to x direction

 Shear stress in x to y direction

 Shear stress in z to y direction

 Shear stress in x to z direction

 Shear stress in y to z direction
CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Wind loads have become particularly significant because of the increasing number of high-rise buildings. Other factors have also contributed to the importance of wind in design: light-weight low-slope roofs, curtain wall construction and the appearance of special structure having aerodynamic shapes.

Some tall buildings that extend into regions of high wind velocity have swayed excessively in strong winds. Improperly anchored light-weight roofs have been sucked off bodily by wind forces, and roofing materials have been lifted by high local suctions and eventually peeled from large areas of roofs. These and many other problems have emphasized the importance of the clearer understanding of winds and its effects.

With the old simplified approach, the total effect of wind was often represented merely by a uniform lateral pressure on the windward side of a building and suction on the leeward wall.
Wind loads present a challenge when designing very tall structures. Even in relatively light winds, a building behaves as a very large sail, and is subjected to large aerodynamic loads that push the building to one side.

Wind loads vary around the world. Meteorological data collected by the national weather services are one of the most reliable sources of wind data. Factors that effect the wind loads include building height and size, direction of prevailing winds, velocity of prevailing winds and the positive or negative pressure due to the architectural design features. All of these factors are taken into account when the lateral loads on the facades are calculated.

1.2 AIM OF PRESENT INVESTIGATION

The architect is mostly concerned with the wind environment in the immediate vicinity of the particular building being designed. In many cases, even when the buildings are exposed, it is usually possible to provide canopies, local wind breaks, sealed arcades, etc. to achieve satisfactory wind condition in adjacent areas.

The study of flow fields induced around buildings has increased in recent years mainly because some large building have been erected which, because of combinations of shape, height and isolation, have induced wind flows in public accessways and recreational areas much higher than could be reasonably tolerated. Hence, it has become common practice now to submit building design proposals to wind tunnel testing to determine the likely wind environment around the buildings and to modify and add protection to achieve acceptable conditions.
However, it is important to realize the worst features of the tall rectangular building to avoid some unpredictable accident. To overcome the problem it is often necessary to undertake major configuration changes, such as reducing height, changing planform or setting a tower well back on a podium. It is obviously that this type of problem cannot be solved easily after a building has been constructed and must be taken into account in the very design stages.

1.3 PROJECT OBJECTIVE

It is explicitly that the problem must be solved before the building has been constructed. All of the considerable problems must be taken account at the early design stage. The building design proposal needs to be submitted to the wind tunnel testing.

The objectives of the present investigations are

1) To visualise the flow over the building model.
2) To determine the pressure distribution along the centre line of the building model.
3) To carry out CFD investigation on the same building model to determine the flow pattern over the building.
4) To determine the formation of vortices, separations zones and drag force experienced by the building.
5) To suggest practical means of reducing the drag force acting on the building.
6) To compare experimental and numerical result.

All of the above objectives are intended to be achieved at various of angles of attack to which a normal tall building is subjected to.
1.4 PROJECT SCOPE

The project scope is listed as below.

Chapter 1 of the thesis gives a general introduction to the topic of investigation and the objective of the present investigation.

Chapter 2 of the thesis gives a brief review of previous investigations carried out on flow visualization, followed by pressure distribution on the building and drag coefficient of the building against the wind.

Chapter 3 of the thesis gives a relative study of the present investigation.

Chapter 4 of the thesis gives the explanations on the project methodology like experimental setup, experimental procedures and the computational setup.

Chapter 5 of the thesis gives the experimental and computational results following by the discussions and the comparison of the result.

Chapter 6 of the thesis deals with the conclusion and future recommendation based on the present investigations.
CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Aerodynamic studies on the multi-storied building by the experimental or computational investigations have been one of the fundamental interests to the researchers in the area of fluid mechanics, right from the beginning of the 19th century. Significant investigations have been carried out to establish the aerodynamic studies on the multi-storeyed building.

2.2 WIND PRESSURE ON TALL BUILDING

Full-scale studies are without doubt a powerful tool to analyze wind effects on structures. Recently several groups have been engaging in this subject and their results were reported here and there. Full-scale studies of wind pressures on a tall prismatic building under a strong wind are illustrated herein. The records which were obtained from a
propeller-vane anemometer and wind pressure transducers provided on the structure during the highest gust are analyzed.

Makino, et al. (1971) obtained the results from the full-scale studies under the wind of about 20 m/s. They reported that the wind pressures on the leeward surface were nearly uncorrelated to the wind but greatly influenced by the wakes of the structures. Well correlated ranges of the leeward elevation were estimated as within about 20 meters. Periodic changes of the wind pressures which might be caused by Karman vortices were clearly observed on the cross-correlations of the records from the windows along the mean wind direction. Vortex excitations were not synchronized to the natural frequencies of the structure. A predominant Strouhal number of the structure was considered to be about 0.1.

In the same year (1971), Takeuchi, et al. (1971) recorded together the actual wind pressure and its response on a tall building under strong wind with wind speed on it. They showed the distribution of wind pressure over faces of the building and compared with the results obtained from the wind tunnel tests. Also from statistical point of view the records were analyzed. From the results of the analyses the following facts could be mentioned. Windward face carries almost the entire wind load. Wind pressure coefficient of windward side is larger than that at leeward side. The maximum value of the mean wind pressures appears at the centre of the windward face. The larger the mean wind pressures, the larger the deviation from the normal distribution. Under strong wind, sometimes the building shows translational vibration and at the other time shows torsional motion.
2.3 INFLUENCE OF ADJACENT BUILDINGS TO WIND

To understand the modifications of airflow by high-rise buildings in urban area, Ishizaki and Sung (1971) conducted the wind tunnel experiments on the modification of airflow in the gap between the two same size model buildings. The wind speed in the gap shows the maximum value at a certain separation distance. The maximum value of the relative wind speed observed in the experiment is 1.4 and this value decreases with increasing width of the gap, and also with increasing length of the model buildings in the direction of wind.

2.4 WIND EFFECTS ON TALL BUILDINGS

Kolousek and Pimer (1975) presented a theoretical solution of free vibration of tall building structures. Since the structure is solved as a general three-dimensional system, the modes of free vibration are not two-dimensional. In addition to a general, unsimplified solution of the system they outlined a simplified procedure which assumes the floors of the storeys to be stiff in their plane and elastic in the direction perpendicular to that plane. The second part deals with forced vibration produced by wind effects. Since the cross spectral densities of load acting on the building, are not known, an approximate solution is derived in which the building is replaced by a simple model with three degrees of freedom, and expressions are obtained of the power spectral density of the deflection. They also deduced an expression of the torque producing rotation of the building about the vertical axis. According to these results, even if a building is not wholly symmetrical, the response to wind loads is not a spatial mode of vibration but one composed of plane
vibration and a torsional component. A detailed analysis of simultaneous records of displacements of four points of the sixteenth storey has revealed two kinds of response: one without the torsional component, the other with the torsional component. Torques deduced in the second part, were evaluated and their dependence on the mean wind velocity at the height of the building top was established. The response of another tall building – one with a reinforced concrete supporting structure – is also shown to be composed of plane vibration and torsion.

Models of tall buildings of constant rectangular cross-section have been subjected to simulated strong winds in a boundary layer wind tunnel by Saunders and Melbourne (1975). These models were standing clear of the upstream roughness and were orientated with one face perpendicular to the incident mean wind. The cross-wind displacement spectrum of each model was measured and the non-dimensional cross-wind force spectral density was calculated. Velocity spectra near the wake of some of the models were measured. From the measurements and analysis, it has been concluded that for tall rectangular buildings under conditions similar to those tested i.e, is the cross-wind motion of these buildings is primarily due to the energy available in the high frequency side-band of the mechanism of vortex shedding. That is, the cross-wind motion of these buildings is predominantly due to wake excitation. The non-dimensional cross-wind force spectral densities of these buildings are insensitive to the level of motion for reduced velocities up to at least 10 m/s. With the result, the effect of the level of motion on the cross-wind aerodynamic input can be neglected for rectangular-sectioned buildings.

Dalglish and Marshall (1972) made the research relevant to the prediction of tall building behaviour in response to wind is reviewed under the development of wind tunnel techniques for building aerodynamics. A distinct phase of wind tunnel testing to assist in
the design process involved a rigid, pressure-tapped model. This model is used to
determine the envelope of maximum positive and negative pressures over the building
surfaces for the whole range of possible wind directions for use in the design of glass
and cladding. It appears that modelling rules may need further refinement, and that
scaling effects may occur in relation to flows along a building surface. The interaction of
turbulence in the oncoming flow with the turbulence and flow distortion produced on the
building surface at separation and reattachment lines is yet to be explored, but there are
indications of significant increases in the severity of surface pressure fluctuations.

2.5 NEW TECHNIQUE FOR EVALUATING THE FLUCTUATING LIFT AND DRAG
FORCE DISTRIBUTION ON BUILDING STRUCTURE

Ellis (1975) reported a new approach to the problem of finding the distribution of the
fluctuating lift and drag forces and their cross correlations with height on a building
structure. The technique is based on the experimental measurement of dynamic strains
and accelerations at various node points on a model with a specially calibrated
transducer, and using these to evaluate the unsteady aerodynamic forces. The
calibrated core therefore acts as a multi-force transducer. To check the computer
programs used in the evaluation, known pseudo random loads were applied to the model
using vibrators and their spectra predicted using the measured response of the structure.
REFERENCES

1. Dalgliesh and Schriever, 1962: Canadian Building Digest: Wind Pressures on Building, National Research Council Canada

JOURNAL

INTERNET REFERENCES

2. www.eng.fsu.edu/~shih/succeed/flow-vis.htm