A PARAMETRIC STUDY ON REPRODUCTIVE COMPETENCE IN AUTO-CONSTRUCTIVE ARTIFICIAL LIFE

ADZNI BTE ABDUL RAHIM

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY
UNIVERSITI MALAYSIA SABAH
2008
Saya Adzni bte abdul Rahim membenarkan thesis sarjana ini disimpan di perpustakaan universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis ini adalah hak milik Universiti Malaysia Sabah (UMS).
2. Perpustakaan Universiti Malaysia Sabah (UMS) dibenarkan untuk membuat salinan untuk pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Tidak Terhad.

Disahkan Oleh:

Penulis: ADZNI BTE ABDUL RAHIM
Kampung Bubul Batu 3,
Peti Surat 162, 91308
Semporna, Sabah

TANDATANGAN PERPUSTAKAAN

Penyelia Utama: Dr. Jason Teo
Tarikh: 21 APRIL 2009

CATATAN: Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan sarjana secara penyelidikan atau disertasi bagi pengajian secara kursus dan penyelidikan atau laporan Projek Sarjana Muda (LPSM).
DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

11 July 2008

Adzni bt Abdul Rahim
PS04-08-038
<table>
<thead>
<tr>
<th>NAME</th>
<th>ADZNI BTE ABDUL RAHIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIC NO.</td>
<td>PS04-08-038</td>
</tr>
<tr>
<td>TITLE</td>
<td>A PARAMETRIC STUDY ON REPRODUCTIVE COMPETENCE IN AUTO-CONSTRUCTIVE ARTIFICIAL LIFE.</td>
</tr>
<tr>
<td>DEGREE</td>
<td>MASTER OF SCIENCE</td>
</tr>
<tr>
<td>VIVA DATE</td>
<td>11 JULY 2008</td>
</tr>
</tbody>
</table>

DECLARED BY

MAIN SUPERVISOR

DR. JASON TEO
ACKNOWLEDGEMENTS

Alhamdulillah, thanks to GOD for giving me strength during my research work.

I would like to express my sincere gratitude to the Vice-Chancellor of Universiti Malaysia Sabah, Prof. Datuk Mohd. Dalimin for his permission to carry out this research in Universiti Malaysia Sabah.

I would like to express my sincere gratitude to the Dean of SEIT, Dr. Rosalam Sarbatly for providing support during my research work.

I would like to take this opportunity to thank to my supervisor, Dr. Jason Teo and my co-supervisor Mr. Azali Saudi. During this period, they gave me a lot advice and guidance. Thank you very much.

I am also particularly grateful to Lee Spector and Jon Klein for the many interesting discussions about the implementation of the “Breve application” and “Push programming language” that we had through email.

This thesis could not be finalized without the help in detecting the typical errors of my English writing. Therefore, I thank David Low, Kogila Vanny, Bada Hakeem, Marjorie Chagat, Thanggamani Uthirapathi, Chin Kim On and Natasha Joseph.

I want to thank also to lab assistants of SEIT, Damme, Riz Faisal, Saidin and Irwan for assisting me in the lab for the experiments.

I wish to thank to Nooraemi Dawalih, Kogila Vanny and all members of the Centre for Artificial Intelligence who helped and supported me during my research work.

This thesis, all my studies and everything I have done in my life would have been impossible without the constant support from my parents, both of my elder brothers and my younger sister during my study. Thank you!!

ADZNI BTE ABDUL RAHIM
PS04-08-038
ABSTRACT

A PARAMETRIC STUDY ON REPRODUCTIVE COMPETENCE IN AUTO-CONSTRUCTIVE ARTIFICIAL LIFE

Auto-constructive artificial life is the study of biological phenomena in silico using computer simulations of digital organisms that are capable of self-reproduction. Although a number of advanced artificial life simulators have been developed recently, very little is known about how reproductive competence may be affected by parametric changes of evolutionary settings in auto-constructive artificial life. This thesis presents a systematic investigation of how different parametric changes can affect the self-reproduction capabilities of a collectively-intelligent flying swarm of simulated organisms. To achieve this objective, an auto-constructive artificial life simulation was developed based on the Breve system. This system contains various parameters whose values can be changed to control the characters of the swarm at the Genetic, Organism and Environment levels. Observations are then made on how the collective swarm evolves and is affected by different parameter settings in terms of reproductive competence. Each level has four individual parameters and is simulated for 50 runs with 50 different seeds which were terminated at 6000 generations each. The reproductive competence was measured at the start of a particular point of evaluation where no new organism is injected by the system within 5500 generations continuously and all new offspring were autonomously produced through the swarm's reproductively capabilities itself. A total of 6000 evolutionary simulation runs were conducted. From the results, it was found that the individual parameters at the Environment level were most sensitive to parametric changes compared to parameters at the Organism and Genetic levels. Overall, the three individual parameters that had the greatest impact on the swarm's reproduction competence were Number of Feeders at the Environment level (58%), followed by Lifetime at the Organism level (42%) and Maximum Random Code Size at the Genetic level (38%).
ABSTRAK

Kehidupan buatan berasaskan penghasilan semulajadi adalah kajian berdasarkan prinsip biologi yang dilaksanakan dalam pensimulasian komputer dengan mengaplikasikan organisma yang reproduktif secara semulajadi. Sungguhpun model menarik tentang kehidupan buatan menerusi pensimulasian telah lama diperkenalkan, namun penyelidikan tentang kesan penggunaan beberapa jenis parameter terhadap kompetensi reproduktif di dalam kehidupan buatan masih lagi tidak dikaji. Permasalahan ini telah mendorong untuk mengkaji bagaimana penggunaan pelbagai jenis parameter boleh memberi impak ke atas keupayaan reproduktif semulajadi terhadap kelompok organisma yang dilaksanakan dalam kajian ini. Untuk mencapai matlamat tersebut, kehidupan buatan reproduktif semulajadi dilaksanakan menerusi penggunaan sistem Breve. Sistem ini mengandungi beberapa parameter dengan nilai yang berasingan bertujuan untuk mengawal tingkah laku kelompok organisma pada tahap Genetik, Organisma dan Persekitaran. Tinjauan dilaksanakan ke atas evolusi kelompok organisma dan kesan daripada parameter yang telah digunakan terhadap kompetensi reproduktif. Setiap tahap mempunyai 4 parameter yang mana setiap satunya mengandungi 11 nilai yang berbeza ditentukan oleh pengguna. Nilai tersebut akan dilaksanakan sebanyak 50 kali pengujian dengan 50 nilai permulaan yang berbeza dan setiap satunya akan terhapus pada generasi ke 6000. Kompetensi reproduktif diukur pada titik permulaan generasi di mana organisma dapat menghasilkan sendiri organisma baru yang dikenali sebagai "anak" secara berterusan sepanjang 5500 generasi. Hasil kajian mendapati parameter di tahap Persekitaran menunjukkan kelompok organisma sangat sensitif dalam mencapai kompetensi berbanding daripada tahap Genetik dan Organisma. Pada keseluruhannya, tiga parameter telah menunjukkan kesan ke atas keupayaan reproduktif semulajadi terhadap kelompok organisma iaitu Kuantiti Makanan pada peringkat Persekitaran (58%), diikuti dengan Jangka Hayat pada peringkat Organisma (42%) dan Saiz Kod Rawak Maksimum pada peringkat Genetik (38%).
TABLE OF CONTENTS

TITLE i
DECLARATION ii
CERTIFICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF APPENDIX xv
LIST OF ABBREVIATION xvi

CHAPTER 1: INTRODUCTION
1.1 Overview 1
1.2 Motivation 2
1.3 Research Question 5
1.4 Objectives 5
1.5 Thesis Overview 6
1.6 Contributions 7

CHAPTER 2: LITERATURE REVIEW
2.1 A-Life 9
2.2 Soft A-Life 12
2.3 Collective A-Life Models 13
2.4 Intelligent Agents 13
2.5 Auto-constructive 14
2.6 BREVE Auto-Constructive A-Life system 16
2.7 Critical Summary of Literature Review 17

CHAPTER 3: METHODOLOGY
3.1 Introduction 18
3.2 Experimental Approach 18
3.2.1 BREVE 18
3.2.2 Types of BREVE Applications 19
(a) BREVE with Command Line 19
(b) BREVE Integrated Development Environment 20
CHAPTER 4: PARAMETRIC CHANGES AT THE GENETIC LEVEL

4.1 Introduction 39
4.2 Motivation 39
4.3 Processes of Genetic Expressions in Push Programs 40
4.4 Evolutionary Parameters at the Genetic Level 45
 4.4.1 Maximum Random Code Size 45
 4.4.2 Push Execute Limit 46
 4.4.3 Maximum Mutation New Code Size 47
 4.4.4 Maximum Code Size 48
4.5 Experimental Approach 49
4.6 Results and Discussion 50
 4.6.1 Analyzing the Reproductive Competence within Individual Parameters at the Genetic Level 51
 (a) Maximum Random Code Size 51
 (b) Push Execute Limit 54
 (c) Maximum Mutation New Code Size 57
 (d) Maximum Code Size 60
 4.6.1 Analyzing the Reproductive Competence across the Different Genetic Level Parameters 63
4.7 Conclusion 64

CHAPTER 5: PARAMETRIC CHANGES AT THE ORGANISM LEVEL

5.1 Introduction 66
5.2 Motivation 66
5.3 Evolutionary Parameters at the Organism Level 67
 5.3.1 Coloration 67
 5.3.2 Mobility 67
 5.3.3 Lifetime 69
 5.3.4 Corpse 70
5.4 Experimental Approach 70
5.5 Results and Discussion 71
CHAPTER 6: PARAMETRIC CHANGES AT THE ENVIRONMENT LEVEL

6.1 Introduction 85
6.2 Motivation 85
6.3 Evolutionary Parameters at the Environment Level 86
 6.3.1 Population Size 86
 6.3.2 Neighborhood Distance 87
 6.3.3 Number of Feeders 88
 6.3.4 Stability of Feeders 89
6.4 Experimental Approach 89
6.5 Results and Discussion 90
 6.5.1 Analyzing the Reproductive Competence within Individual Parameters at the Environment Level 90
 (a) Population Size 90
 (b) Neighborhood Distance 95
 (c) Number of Feeders 97
 (d) Stability of Feeders 100
 6.5.2 Analyzing the Reproductive Competence across the Different Environment Level Parameters 103
6.6 Conclusion 104

CHAPTER 7: CONCLUSION

7.1 Introduction 105
7.2 Analyzing All Levels 105
7.3 Across All Levels 106
7.4 Summary of Main Findings 107
7.5 Future Work 108

REFERENCES 110
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Road map to the literature on the classification of A-Life</td>
<td>11</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Options in Breve integrated development environment</td>
<td>21</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The Push instructions available for use in organism programs</td>
<td>25</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>List of all current types of Push stacks</td>
<td>29</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Tree structures</td>
<td>31</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Descriptions of each individual parameter at the Genetic level</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Parameter settings for each individual parameter at the Genetic level</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Descriptions of each individual parameter at the Organism level</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Parameter settings for each individual parameter at the Organism level</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Descriptions of each individual parameter at the Environment Level</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Parameter settings for each individual parameter at the Environment level</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Default values for each individual parameter at the Genetic level</td>
<td>41</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Parameter settings investigated at the Genetic level</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Percentage and mean value of reproductive competence for Maximum Random Code Size</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Percentage and mean value of reproductive competence for Push Execute Limit</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Percentage and mean value of reproductive competence for Maximum Mutation New Code Size</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Percentage and mean value of reproductive competence for Maximum Code Size</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Percentage of successful runs achieving the reproductive competence within 50 runs for all Genetic level parameters</td>
<td>64</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Parameter settings investigated at the Organism level</td>
<td>71</td>
</tr>
</tbody>
</table>
Table 5.2 Percentage and mean value of reproductive competence for Coloration

Table 5.3 Percentage and mean value of reproductive competence for Mobility

Table 5.4 Percentage and mean value of reproductive competence for Lifetime

Table 5.5 Percentage and mean value of reproductive competence for Corpse

Table 5.6 Percentage of successful runs achieving reproductive competence for all Organism level parameters

Table 6.1 Features of feeders

Table 6.2 Parameter settings investigated at the Environment level

Table 6.3 Percentage and mean value of reproductive competence for Population Size

Table 6.4 Percentage and mean value of reproductive competence for Neighborhood Distance

Table 6.5 Percentage and mean value of reproductive competence for Number of Feeders

Table 6.6 Percentage and mean value of reproductive competence for Stability of Feeders

Table 6.7 Percentage of successful runs achieving reproductive competence for all Environment level parameters

Table 7.1 Percentage of successful runs over 50 seeds of 50 runs
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Classification of A-Life</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Framework for using Breve with command line package</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Framework of the Breve integrated development environment</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Breve integrated development environment package showing the features for simulation</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Example of “Steve” programming language</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Example of “Push program” written in programming language</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Recursive routines in the Execution stack</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Example of genetically-evolved Push program</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Genetically-evolved Push programs and stacks</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Structure of each stack in Breve</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Implementation of a genetically-evolved Push program by taking arguments from an appropriate stacks</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Successful runs in achieving reproductive competence</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Unsuccessful runs in achieving reproductive competence</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>A flying organism represented by a genetically-evolved Push program</td>
<td>40</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Flowchart for a genetically-evolved Push program</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The schematic view of the Execution stack</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Example on how the instructions are executed</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Structure of Maximum Random Code Size</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Structure of Push Execute Limit</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Structure of Maximum Mutation New Code Size</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Structure of Maximum Code Size</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Reproductive competence achieved within 50 runs for Maximum Random Code Size</td>
<td>51</td>
</tr>
</tbody>
</table>
Figure 4.10 Swarm’s behavior observed when the most successful setting of Maximum Random Code Size was used

Figure 4.11 Swarm’s behavior observed when the least successful setting of Maximum Random Code Size was used

Figure 4.12 Reproductive competence achieved within 50 runs for Push Execute Limit

Figure 4.13 Swarm’s behavior observed when the most successful setting of Push Execute Limit was used

Figure 4.14 Swarm’s behavior observed when the least successful setting of Push Execute Limit was used

Figure 4.15 Reproductive competence achieved within 50 runs for Maximum Mutation New Code Size

Figure 4.16 Swarm’s behavior observed when the most successful setting of Maximum Mutation New Code Size was used

Figure 4.17 Swarm’s behavior observed when the least successful setting of Maximum Mutation New Code Size was used

Figure 4.18 Reproductive competence achieved within 50 runs for Maximum Code Size

Figure 4.19 Swarm’s behavior observed when the most successful setting of Maximum Code Size was used

Figure 4.20 Swarm’s behavior observed when the least successful setting of Maximum Code Size was used

Figure 5.1 Scale of coloration

Figure 5.2 Different colorations of organisms for different species

Figure 5.3 Corpse existing on the floor

Figure 5.4 Reproductive competence achieved within 50 runs for Coloration

Figure 5.5 Organisms with different Coloration

Figure 5.6 Organisms with similar Coloration

Figure 5.7 Reproductive competence achieved within 50 runs for Mobility

Figure 5.8 Organisms do not detect an exact location of food

Figure 5.9 Organisms missing the food

Figure 5.10 Reproductive competence achieved within 50 runs for Lifetime
Figure 5.11 Swarm’s behavior observed when the most successful setting of Lifetime was used

Figure 5.12 Swarm’s behavior observed when the least successful setting of Lifetime was used

Figure 5.13 Reproductive competence achieved within 50 runs for Corpse

Figure 5.14 Distribution of corpses relative to living organisms

Figure 6.1 Population size of the collective swarm

Figure 6.2 Feeders in the collective swarm

Figure 6.3 Movement of Feeder

Figure 6.4 Reproductive competence achieved within 50 runs for Population Size

Figure 6.5 Swarm’s behavior observed when the most successful setting of Population Size was used

Figure 6.6 Large number of population sizes led organisms to a high level of competition for food

Figure 6.7 Different species of organisms competing for food

Figure 6.8 Organisms that were not active in flying

Figure 6.9 Reproductive competence achieved within 50 runs for Neighborhood Distance

Figure 6.10 Swarm’s behavior observed when the most successful setting of Neighborhood Distance was used

Figure 6.11 Swarm’s behavior observed when the least successful setting of Neighborhood Distance was used

Figure 6.12 Reproductive competence achieved within 50 runs for Number of Feeders

Figure 6.13 High competition when feeders were few

Figure 6.14 Low competition with abundant feeders

Figure 6.15 Reproductive competence achieved within 50 runs for Stability of Feeders

Figure 6.16 Movement of Feeders in unstable environment

Figure 6.17 Swarm’s behavior observed when the least successful setting of Stability of Feeders was used
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Example of gp-program</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>List of publications</td>
<td>xxi</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>A-Life</td>
<td>Artificial Life</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Cellular Automata</td>
<td></td>
</tr>
<tr>
<td>EXEC</td>
<td>Execution</td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>Genetic Programming</td>
<td></td>
</tr>
<tr>
<td>MCS</td>
<td>Maximum Code Size</td>
<td></td>
</tr>
<tr>
<td>MMNCS</td>
<td>Maximum Mutation New Code Size</td>
<td></td>
</tr>
<tr>
<td>MRCS</td>
<td>Maximum Random Code Size</td>
<td></td>
</tr>
<tr>
<td>PEL</td>
<td>Push Execution Limit</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Artificial Life (A-Life) is an attempt to understand the essential general properties of biological organism possess such as self-reproduction, homeostasis, adaptability, mutational variation and optimization of external states by synthesizing life-like behavior in software, hardware and other human-made systems (Langton, 1984). A-Life provides a synthetic perspective where it begins with simple rules in a computer simulation to achieve complex life-like results for observation of unexpected phenomena in silico.

A-Life was first studied by the mathematician John Von Neumann in late 1940. Neumann delivered a paper entitled "The General and Logical Theory of Automata," in which the concept of a machine that follows simple rules and reacts to information in its environment was discussed and proposed that living organisms are just such machines (Johnston, 1994). Neumann also studied the concept of machine self-replication, and conceived the idea that a self-replicating machine or organism, must contain within itself a list of instructions for producing a copy of itself (Neumann, 1966). In the 1960s, a professor named John Conway devised a simple cellular automaton (CA) that was called the Game of Life. This is the first exposure of A-Life concepts to the general public which came through the "Mathematical Games" column in Scientific American magazine (Gardner, 1970).

Up to this point, there was no discipline for these concepts that was readily recognizable as being related to A-Life. It was not until the late 1970s and early 1980s that an unconventional programmer named Christopher Langton organized the first conference and defined it as "the study of artificial systems that exhibit behavior characteristic of natural living systems", at the International Conference on the Synthesis and Simulation of Living Systems at the Los Alamos National Laboratory (Langton, 1984).
Since 1980s, the study of A-Life in computer has become very significant, generally simulating the behavior of life systems categorized into three categories that are Hard A-Life, Soft A-life and Wet A-Life, which would be described in detail in Chapter two.

1.2 Motivation
The studies of artificial self-reproducing structures have been taking place since the early half of the previous century (Perrier et al., 1996). It is motivated by the needs of biologists and computer scientists to understand biological mechanisms of reproduction by identifying and studying the conditions that any self-reproducing system must satisfy, thereby providing alternative explanations for empirically observed phenomena. The self-reproducing structures are divided into two major classes, according to the model in which they are based either by using Cellular Automata (CA) or computer program.

The concept of artificial self-replicating systems was originated by John von Neumann in the 1950's in his theory of Cellular Automata (CA). Cellular automata is a state machine that consist of an array of cells that behave according to an identical set of rules of its own state and the state of the neighboring cells and whether either it is occupied or free is represented using one and zero, respectively. Self-reproducing automata are an organized collection of small rectangular of automata (cell) and linked to each of their four nearest neighbors into a copy of itself. Over the years, a number of researchers had worked toward simplifying self-reproducing structures by using CA such Codd (1960), Smith and Tumey (2003), Langton (1984) and Reggia and Lohn (2000).

However in the early 1970s, Bratley and Millo (1972) and Burger et al., (1980) respectively formalized a new structure of self-reproducing programs that is a computer program that when executed, would create copies their own source code. Core War is an example of a computer game developed by Dewdney which was a major advance in the use of self-replicating computer code in 1980. This computer game was written in an abstract assembly language called Redcode that attempted to copy themselves elsewhere in memory and then run the extra copies. Meanwhile, in early 1990, Tom Ray had started to study the evolution process in the real world and wanted to observe the effects of evolution on thousands of generations of organisms. Ray's major development was to design an instruction set for his self-replicators in a virtual computer program called "Tierra" system which was robust to mutations and therefore evolvable, while at
the same time retaining the property of computational universality (Ray, 1990, 1994). Following from these contributions, a number of similar systems have been produced, these include "Avida" by Chris Adami and Titus Brown (Adami and Brown, 1994) and ‘Computer Zoo’ written by Jakob Skipper (Skipper, 1992), Koza’s system (1994), Ofria and Wilke (2004), Hutton (2007) and Teuscher (2007).

However, although numerous self-reproduce manually A-Life systems have been studied, generally the new organism need to be injected into the environment system based on a hand-designed and not self-evolved genotype (Ray, 1994; Adami and Brown, 1994). As such, this new organism is not a very accurate analogy of real biology. Recently however, the Breve application succeeded to implement a more biologically-plausible framework of “auto-constructive” A-Life (Klein, 2002), where the simulated digital organisms were able to achieve self-reproduction through their own capabilities.

In this work, the Breve application is used as a simulation tool to simulate a collective swarm of flying organism in a realistic 3D environment. In the collective swarm system, an initial number of flying organisms are injected into the system. Each of flying organism is programmed to fly towards the food and eat the food for their energy and longevity. The successful organisms that are able to eat the food would re-grow their energy and can live longer in the system. As mentioned earlier, the framework of “auto-constructive” A-Life in Breve would evolve flying organisms that are capable to reproduce their own children during the simulation.

Besides developing the collective swarm system, this work presents a number of different parameter settings to determine how these settings would affect the behavior of collective swarm in terms of reproductive competence. An organism’s behavior is characterized by parameters that determine the rules of interaction of the flying organism in the simulated environment. Changing any of the parameter settings may greatly alter the behavior of the collective swarm. Thus, this study includes investigating the effects of different parameter settings on the emergence of collective behavior in terms of reproductive competence.

The parameter settings are categorized into three levels, which are the Genetic, Organism and Environment levels, where each level consists of four different individual parameters and involves 11 different parameter settings for each individual parameter.
Within these 11 different settings of each individual parameter, the default value is referred based on the Spector's work (2005).

The first 11 different parameter settings at each individual parameter at the Genetic level are used to determine the limitation of instructions (genes) of the computer program (code) such as the parameters of Maximum Random Code Size: the settings are used to control the maximum length of the code size for an initial population in the simulated environment, the parameter of Push Execute Limit: the settings are applied to control the limitation of instructions to be evaluated; the parameter of Maximum Mutation New Code Size: to control the size of a new code size that are used for the addition of instruction in the mutation process, and finally; the parameter of Maximum Code Size to specify the limit of the complete list of instructions constructed in the program code. Generally, the quantity of the instructions that are being applied for the certain task would lead to the behavior of the flying organism in the simulated environment.

Meanwhile, the other 11 different settings of each individual parameter at the Organism level are used to control the features of the flying organism such as the parameters of Coloration: the settings are used to control of their color during the simulation representing speciation; the parameter of Mobility: the settings are used to control how fast an organism can fly in the simulated environment; the parameter of Lifetime: the settings are used to control the longevity of an organism being alive in the environment, and finally the parameter of Corpse: to control the longevity of a dead body of an organism before disappearing from the environment.

Finally, the 11 different parameter settings at the Environment level are used to control the changes of different environmental features such as the parameters of Population Size: this parameter is used to control the quantity of flying organisms at the start of simulation; the parameter of Neighborhood Distance: the settings are used to control the distance of each organism in a group where the sharing energy process of similar species of organisms that are co-located within the range of the Neighborhood Distance; the parameter of Number of Feeders: the settings are used to control the quantity of food in the environment; and finally the parameter of Stability of Feeders: the settings are used to control the frequency with which the feeders begin to drift to
new random locations representing the difficulty of organisms tracking and obtaining their food.

Each setting would be conducted for 50 run times which were terminated at 6000 generations. The parameter change process is implemented when the first setting has been completely conducted, the second setting would be conducted through the same process until the whole 11 settings have been completely executed. Thus during the implementation of each setting, the reproductive competence is measured at the point in time where the collective swarm is capable of reproducing their own children with no new organism being randomly injected from the system for 5500 generations; continuously out of the permissible 6000 generations; this measurement process would be explained in more detail in Chapter three.

In investigating the parameter changes in the collective swarm system systematically to determine how the different parameter settings would affect the organism in achieving the reproductive competence or otherwise. Meanwhile, it also gives a big picture on the interactions of the different parameter settings in the context of the evolving population in terms of achieving the reproductive competence. Currently, there has been no study yet which systematically explores the affect of various parameter changes on the emergence of reproductive competence in collective swarms.

1.3 Research Question
In this research, the focus is on investigating how different evolutionary parameter values can affect a collectively intelligent swarm of flying organisms in terms of reproductive competence in an auto-constructive A-Life simulation.

1.4 Objectives
As mentioned in section 1.2, various parameter settings are going to investigate categorized at Genetic, Organism and Environment levels. Thus, based on the above research question, there are three main objectives to be investigated:

a) To investigate parametric changes at the Genetic level
 - The individual parameters at the Genetic level of Maximum Random Code Size, Push Execute Limit, Maximum Mutation New Code Size and Maximum Code Size were investigated. Each individual parameter has 11 different
settings that will be explained in Chapter four. The objective of this first set of experiments is to elucidate how changes at the Genetic level can affect the evolution self-reproducing capabilities of auto-constructive digital organisms.

b) To investigate parametric changes at the Organism level

- The individual parameters at the Organism level of Coloration, Mobility, Lifetime and Corpse were investigated. Similar to the Genetic level, each individual parameter has 11 different settings that will be discussed in further in Chapter five. The objective of this second set of experiments is to elucidate how changes at the Organism level can affect the self-reproducing capabilities in auto-constructive digital organisms.

c) To investigate parametric changes at the Environment level

- Finally, the other four individual parameters at the Environment level of Population Size, Neighborhood Distance, Number of Feeders and Stability of Feeders were investigated. There are again 11 different settings for each parameter that will be elaborated in Chapter six. The objective of this third and last set of experiments is to elucidate how changes at the Environment level can affect the evolution of self-reproducing capabilities in auto-constructive digital organisms.

1.5 Thesis Overview

This dissertation has seven chapters and is organized as follows:

Chapter one includes the introduction of the research work, overview, motivation, research question addressed, the objectives, thesis overview and the contributions.

Chapter two consists of the literature review which provides the fundamentals and background of A-Life and the previous work that are relevant to this study. In this section, the previous work also includes simulation models through computer-based A-Life, those that utilize genetic programming as the artificial evolution engine, soft A-Life, collective A-Life models, intelligent agents, auto-constructive systems, the Breve auto-constructive A-Life system and finally the critical summary of the literature review.
Chapter three details the methodology and elaborates the Breve auto-constructive system as an A-Life simulator, Push3 Implementation, the implementation of stacks in the auto-constructive system, genetic programming as the evolutionary engine. Meanwhile, all evolutionary settings from each individual parameter and how the reproductive competence is measured using a worked example are also explained.

Chapter four observes the reproductive competence through an auto-constructive evolution of A-Life at the Genetic level. There are four individual parameters that will be investigated at this level, which are Maximum Random Code Size, Push Executed Limit, Maximum Mutation New Code Size and Maximum Code Size.

Chapter five investigates the reproductive competence through an auto-constructive evolution of A-Life at the Organism level. Four individual parameters will be investigated at this level which is Coloration, Mobility, Lifetime, and Corpse.

Chapter six studies the reproductive competence through an auto-constructive evolution of A-Life at the Environment level. The Population Size of organisms, Neighborhood Distance, Number of Feeders and Stability of Feeders will be investigated. A comparison across all three evolutionary levels investigated is also summarized here.

Chapter seven summarizes the conclusion of the twelve different evolutionary parameters in achieving reproductive competence. The most and least sensitive set parameters from each level is analyzed. This chapter also includes the suggestions and proposals for future research.

1.6 Contributions
The contributions from the results carried out in this research are as follows:

b) Analysis of reproductive competence achievements for individual parameters at the Genetic, Organism and Environment levels of the A-Life simulation environment.
REFERENCES

