THE EFFECTS OF MIXTURE COMPONENTS ON THE PHYSICAL PROPERTIES AND CONSUMER ACCEPTANCE OF THE NATURAL INGREDIENT BASED LIPSTICK FORMULATION

MARAINI BINTI RAJIN

PERPUSTAJAAN
UNIVERSITI MALAYSIA SABAH

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

2006
THE EFFECTS OF MIXTURE COMPONENTS ON THE PHYSICAL PROPERTIES AND CONSUMER ACCEPTANCE OF THE NATURAL INGREDIENT BASED LIPSTICK FORMULATION

MARAINI BINTI RAJIN

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF SCIENCE

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY
UNIVERSITI MALAYSIA SABAH

2006
BORANG PENGESAHAN STATUS TESIS

JUDUL : THE EFFECT OF MIXTURE COMPONENTS ON THE PHYSICAL PROPERTIES AND CONSUMER ACCEPTANCE OF THE NATURAL INGREDIENT BASED LIPSTICK FORMULATION

IJAZAH : SARJANA SAINS
SESI PENGAJIAN : 2003-2006

Saya MARAINI BINTI RAJIN mengaku membenarkan tesis Sarjana Sains ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. TIDAK TERHAD

Disahkan oleh:

(Penulis : MARAINI BINTI RAJIN) (TANDATANGAN PUSTAKAWAN)

Alamat tetap: Peti Surat 167, Jalan Kem Paradise, 89157 Kota Belud, Sabah, Malaysia.

(Penyelia : PROF. MADYA DR. AWANG BONO DR. HO CHONG MUN)

Tarikh: 19/6/2006

CATATAN : @ Tesis dimaksudkan sebagai tesis ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM)
DECLARATION

The materials in this thesis are original except for quotations, accepts, summaries and references, which have been duly acknowledged.

MARAINI BINTI RAJIN
PS03-008-002
20 MARCH 2006
ACKNOWLEDGEMENTS

Alhamdulillah, I am grateful towards ALLAH for giving me strength and guidance throughout my study.

I would like to express my deepest gratitude to Assoc. Prof. Dr. Awang Bono and Dr. Ho Chong Mun for their expert advice, technical guidance, and reviews on my research.

The financial assistance granted by UMS Fundamental Grant is highly acknowledged. Highly appreciation also goes to SKTM, and the university for providing the facilities for the convenient of my research.

I am deeply appreciates Koster Keunen, Inc. Australia and FPG Oleochemicals Sdn. Bhd., Pahang for providing raw materials for this research.

I would also like to thank Assoc. Prof. Dr. Amran Ahmed for his expertise in statistical analysis, and Mrs. Ramlah Rosli for her guidance in consumer evaluation for this research. Special thanks for Miss Noridah Abas, Miss Noor Aemi Dawalih, Mr Abdullah Tarikim, Mr Panjiman Saidin and Mr Osman for their assistance in providing all the necessary materials for my research, and in assistance for instruments operation.

Finally, I would like to thank my family and friends for their support and encouragement.
ABSTRACT

The cosmetic industry in Malaysia is proven to be one of the important economy sources. Lipstick is one of the decorative cosmetic products that command a unique market. The quality of lipstick is directly linked to the basic material used in the formulation. A common problem in pre-formulation of the cosmetic product including lipstick is the optimisation of the mixture composition aimed to obtain a product with the required characteristics. In previous researches, statistical mixture design has been proven to be effective tool to investigate the relationship between variables in formulation work. Therefore, in this work, statistical mixture design has been applied in order to investigate the effects of mixture components on the physical properties and consumer acceptance of the formulated lipstick. Statistical mixture design has been applied for experimental setting for five components system, which are castor oil, beeswax, candelilla wax, carnauba wax and solvent. Twenty-five natural ingredients based lipstick formulations have been prepared based on O-optimal mixture design criterion. The effects of the castor oil, beeswax, candelilla wax, carnauba wax and solvent compositions on the melting point, hardness and viscosity of the lipstick have been studied. The results indicate that the physical properties of the lipstick can be manipulated by changing the composition of the castor oil, beeswax, candelilla wax, carnauba wax and solvent in the formulation. Linear model has been suggested for all physical properties studied for lipstick formulation. The results shows that the melting point and viscosity of the lipstick are affected most by candelilla wax, carnauba wax and beeswax. Whereas, the hardness of the lipstick is affected most by castor oil, beeswax and solvent composition. Furthermore, the consumer acceptance of the lipstick has been measured by using nine-point hedonic scale method, with 150 respondents. Quadratic model has been suggested for consumer response on lipstick's hardness, stickiness, consistency and overall acceptability. The compositions of candelilla wax and carnauba wax have the strong effect to consumer acceptance for all attributes studied including the overall acceptance. On the other hand, solvent composition has the strong effect only on hardness, stickiness and overall acceptability of the lipstick. Meanwhile, beeswax composition has the strong effect only on consistency acceptability. Finally, the numerical optimisation has been performed in order to obtain the formulation with desired characteristics at the minimum cost. The optimisation goal is based on the instrumental measurement and consumer evaluation data. The formulation, which has the acceptable physical characteristic and gained the maximum score in consumer evaluation at the minimum cost, is desirable. It is found that the optimum formulation suggested consist of 39.40% castor oil, 20.00% beeswax, 5.00% candelilla wax, 5.00% carnauba wax and 17.60% solvent, with the highest desirability of 0.84. Comparing to another two commercial formulation, the optimum formulation found to be harder and more viscous at room temperature. However the melting point of the optimum formulation is lower compared to commercial formulation.
Industri kosmetik di Malaysia telah dikenal pasti sebagai salah satu sumber ekonomi negara yang penting. Gincu merupakan salah satu produk kecantikan yang mendapat permintaan yang menarik di pasaran. Kualiti gincu sangat berhubung kait dengan bahan-bahan asas yang digunakan dalam formulasi. Masalah yang lazimnya dihadapi dalam proses formulasi produk kosmetik termasuk gincu adalah untuk mendapatkan formulasi yang optima, dimana ia memenuhi ciri-ciri yang dikesihati. Dalam kajian terdahulu, statistical mixture design telah dibuktikan dapat menyelesaikan masalah tersebut selain dari mampu mengenal pasti hubungan antara pembolehubah yang terlibat dalam proses formulasi sesuatu produk. Oleh yang demikian, dalam kajian ini, statistical mixture design telah digunakan untuk mengkaji kesan komponen campuran terhadap ciri-ciri fizikal produk dan penerimaan pengguna terhadap produk gincu yang terhasil. Statistical mixture design telah digunakan untuk rekabentuk eksperimen bagi sistem lima komponen iaitu minyak kastor, lilin lebah, lilin candelilla, lilin carnauba dan pelarut. Dua puluh lima formulasi telah terhasil berdasarkan kepada rekabentuk D-optimal. Keset minyak kastor, lilin lebah, lilin candelilla, lilin carnauba dan pelarut ke atas takat didih, kekerasan dan kelikatan gincu telah dikesihati. Keputusan menunjukkan bahawa ketiga-tiga ciri-ciri fizikal tersebut boleh diubah suai dengan mengubah komposisi minyak kastor, lilin lebah, lilin candelilla, lilin carnauba dan pelarut dalam formulasi. Model linear dicadangkan untuk menerangkan keputusan untuk ciri-ciri fizikal. Keputusan menunjukkan bahawa takat didih and kelikatan gincu banyak dipengaruhi oleh lilin candelilla, lilin carnauba dan lilin lebah manakala kekerasan pula banyak dipengaruhi oleh komposisi minyak kastor, lilin lebah dan pelarut. Seterusnya, penerimaan pengguna terhadap gincu yang terhasil daripada kajian ini telah dikaji menggunakan skala hedonik 9 titik oleh 150 respondan. Model kuadratik dicadangkan untuk menerangkan kesan komposisi campuran terhadap penerimaan pengguna dari segi kekerasan, kelekitan, keseragaman dan penerimaan keseluruhan gincu yang diformulasikan dalam kajian ini. Akhir sekali, pengoptimaan berangka telah dijalankan untuk mendapatkan formulasi yang memenuhi semua ciri-ciri yang dikesihati dengan kos yang minimum. Sasaran untuk pengoptimaan adalah berdasarkan data dari pengukuran peralatan dan penilaian pengguna. Formulasi yang mempunyai ciri-ciri fizikal yang diterima serta mendapat skor penilaian pengguna yang tertinggi pada kos yang minimum adalah dikesihati. Keputusan menunjukkan bahawa formulasi optimum mengandungi 39.40% minyak kastor, 20.00% lilin lebah, 5.00% lilin candelilla, 5.00% lilin carnauba dan 17.60% pelarut, dengan desirability 0.84. Perbandingan dengan dua produk sedia ada dalam pasaran mendapat bahawa pada suhu bilik, formulasi optimum yang dihasilkan daripada kajian ini lebih keras dan lebih likat tetapi mempunyai takat didih yang lebih rendah.
TABLE OF CONTENTS

TITLE i
DECLARATION ii
ACKNOWLEDGEMENT iii
ABSTRACT iv
ABSTRAK v
TABLE OF CONTENTS vi
LIST OF TABLES xi
LIST OF FIGURES xiii
NOMENCLATURE xvii

CHAPTER 1: INTRODUCTION 1
1.1 OVERVIEW 1
1.2 RESEARCH OBJECTIVES 4
1.3 SCOPE OF RESEARCH 4
1.4 RESEARCH METHODOLOGY 4
 1.4.1 Literature Survey 5
 1.4.2 Experimental Design and Formulation of Natural
 Ingredient Based Lipstick 5
 1.4.3 Characterisation of Natural Ingredient Based Lipstick
 Formulation 5
 1.4.4 Consumer Evaluation Test on Natural Ingredient
 Based Lipstick 5
1.5 THESIS ORGANISATION 6
CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION

2.2 LIPSTICK TECHNOLOGY

2.2.1 Base Material for Lipstick Formulation

1. **2.2.1.1 Natural Waxes**
2. **2.2.1.2 Oils and Solvents**
3. **2.2.1.3 Additives**

2.2.2 Lipstick Manufacturing Process

1. **2.2.2.1 Preparation of Milled Pigment Suspensions**
2. **2.2.2.2 Preparation of the Lipstick Mass**
3. **2.2.2.3 Moulding and Finishing of the Lipstick**

2.2.3 Important Characterisation and Technical Requirement of Lipstick

1. **2.2.3.1 Stick Strength and Hardness**
2. **2.2.3.2 Melting Point**
3. **2.2.3.3 Physical Appearance**
4. **2.2.3.4 Rub-off Application**
5. **2.2.3.5 Stability Testing**

2.3 STATISTICAL EXPERIMENTAL DESIGN IN FORMULATION PROCESS

2.3.1 Mixture Experiment Design

2.3.2 Analysis of Mixture Data

1. **2.3.2.1 Analysis of Variance**

2.3.3 Model Adequacy Checking

1. **2.3.3.1 Residual Analysis**
2. **2.3.3.2 The PRESS Statistic**
2.4 CONSUMER EVALUATION TEST FOR COSMETIC PRODUCTS
 2.4.1 Method Used in Acceptance Test
 2.4.2 Panel Selection and Test Location for Acceptance Test
 2.4.3 Sensory Attributes In Cosmetic Consumer Test

2.5 SUMMARY

CHAPTER 3 : MATERIALS AND METHODS
 3.1 INTRODUCTION
 3.2 BASE MATERIALS AND CHEMICALS FOR LIPSTICK FORMULATION
 3.3 EXPERIMENTAL DESIGN
 3.4 LIPSTICK FORMULATION PROCESS
 3.5 PHYSICAL PROPERTIES CHARACTERISATION
 3.5.1 Melting Point
 3.5.2 Viscosity
 3.5.3 Hardness
 3.6 CONSUMER EVALUATION
 3.7 NUMERICAL OPTIMISATION PROCESS
 3.8 COMMERCIAL LIPSTICK FORMULATION COMPARISON
 3.9 SUMMARY

CHAPTER 4 : RESULTS AND DISCUSSIONS
 4.1 INTRODUCTION
 4.2 THE EFFECTS OF VARIOUS COMPOSITIONS ON PHYSICAL
 PROPERTIES OF THE LIPSTICK
 4.2.1 Analysing of Data (Modelling)
 4.2.2 Diagnostic of Data
 4.2.3 The Effects of Various Compositions on the Melting Point
 of the Lipstick
4.2.4 The Effects of Various Compositions on the Hardness of the Lipstick 73

4.2.5 The Effects of Various Compositions on the Viscosity of the Lipstick 78

4.3 THE EFFECTS OF VARIOUS COMPOSITIONS ON CONSUMER ACCEPTANCE OF THE LIPSTICK 82

4.3.1 Analysing of Data (Modelling) 82

4.3.2 Diagnostic of Data 90

4.3.3 The Effects of Various Compositions on the Consumer Acceptance of the Lipstick’s Hardness 98

4.3.4 The Effects of Various Compositions on the Consumer Acceptance of the Lipstick’s Stickiness 103

4.3.5 The Effects of Various Compositions on the Consumer Acceptance of the Lipstick’s Consistency 107

4.3.6 The Effects of Various Compositions on the Lipstick’s Overall Acceptance 112

4.4 THE EFFECTS OF VARIOUS COMPOSITIONS ON THE COST OF THE LIPSTICK 116

4.4.1 Analyzing of Data (Modeling) 116

4.4.2 Diagnostic of Data 118

4.4.3 Response Surface Plot 121

4.5 OPTIMISATION OF NATURAL INGREDIENT BASED LIPSTICK FORMULATION 125

4.6 COMPARISON WITH COMMERCIAL FORMULATION 127

4.7 SUMMARY 130
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table no</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Main Pigments and Lakes Used In Lipstick</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Staining Dyes Used In Lipstick</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>ANOVA Table</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>The Component of Mechanical Properties for Cosmetic and Skin Care Product</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>The Component of Geometrical Properties for Cosmetic and Skin Care Product</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>The Component of Moisture Properties for Cosmetic and Skin Care Product</td>
<td>41</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Raw Material Used in Lipstick Formulation</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Constraint of the Component Proportion</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Sequential Model Sum of Squares for Melting Point</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Sequential Model Sum of Squares for Penetration Depth</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Sequential Model Sum of Squares for Viscosity</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>ANOVA Summary Statistic of Model Fit for Melting Point Response</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>ANOVA Summary Statistic of Model Fit for Penetration Depth Response</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>ANOVA Summary Statistic of Model Fit for Viscosity Response</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Linear Mixture Model for Melting Point Response</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Linear Mixture Model for Penetration Depth Response</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Linear Mixture Model for Viscosity Response</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Diagnostics Case Statistics of Lipstick’s Melting Point</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Diagnostics Case Statistics of Lipstick’s Penetration Depth</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Diagnostics Case Statistics of Lipstick’s Viscosity</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Sequential Model Sum of Squares for the Consumer Acceptance of Lipstick’s Hardness</td>
<td>83</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Sequential Model Sum of Squares for the Consumer Acceptance of Lipstick’s Stickiness</td>
<td>83</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Sequential Model Sum of Squares for the Consumer Acceptance of Lipstick’s Consistency</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Sequential Model Sum of Squares for the Overall Acceptance of Lipstick</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>ANOVA Summary Statistic of Model Fit Consumer Acceptance of Lipstick’s Hardness</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>ANOVA Summary Statistic of Model Fit Consumer Acceptance of Lipstick’s Stickiness</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.19</td>
<td>ANOVA Summary Statistic of Model Fit Consumer Acceptance of Lipstick’s Consistency</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.20</td>
<td>ANOVA Summary Statistic of Model Fit Overall Acceptance of Lipstick</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Quadratic Mixture Model for Consumer Acceptance on Lipstick’s Hardness</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Quadratic Mixture Model for Consumer Acceptance on Lipstick’s Stickiness</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.23</td>
<td>Quadratic Mixture Model for Consumer Acceptance on Lipstick’s Consistency</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.24</td>
<td>Quadratic Mixture Model for Consumer Acceptance on Lipstick’s Overall Acceptance</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.25</td>
<td>Diagnostics Case Statistics of Consumer Acceptance on Lipstick’s Hardness</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.26</td>
<td>Diagnostics Case Statistics of Consumer Acceptance on Lipstick’s Stickiness</td>
<td>91</td>
</tr>
<tr>
<td>Table 4.27</td>
<td>Diagnostics Case Statistics of Consumer Acceptance on Lipstick’s Consistency</td>
<td>92</td>
</tr>
<tr>
<td>Table 4.28</td>
<td>Diagnostics Case Statistics of Consumer Acceptance on Lipstick’s Overall Acceptance</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.29</td>
<td>Sequential Model Sum of Squares for Cost</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.30</td>
<td>ANOVA Summary Statistic of Model Fit for Cost Response</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.31</td>
<td>Linear Mixture Model for Cost Response (ANOVA for Linear Model)</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.32</td>
<td>Diagnostics Case Statistics of Lipstick’s Cost</td>
<td>119</td>
</tr>
<tr>
<td>Table 4.33</td>
<td>Optimisation Target for the Response</td>
<td>126</td>
</tr>
<tr>
<td>Table 4.34</td>
<td>Physical Properties of Optimum Formulation and Commercial Formulation</td>
<td>128</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure no</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Vertical Split Mould</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Flaming Process</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Experimental Region for Three Components Mixture</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>High Speed Homogeniser for Pigment Dispersion</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Preparation of Lipstick Mass</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Lipstick Sample</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Stuart Scientific SMPI Melting Point Apparatus</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Brookfield HA DV III Rheometer and Thermo Haake K10 Circulating Bath</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Hounsfield Texture Analyser for Hardness Determination</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The Normal Probability plot of Studentized Residual for Melting Point</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Plot of Melting Point Residuals Versus Predicted Values</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The Normal Probability Plot of Studentized Residual for Penetration Depth</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Plot of Penetration Depth Residuals Versus Predicted Values</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>The Normal Probability Plot of Studentized Residual for Viscosity</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Plot of Viscosity Residuals versus Predicted Values</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Response Trace Plot of Melting Point</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Contour Plot of Melting Point Response</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Contour Plot of Melting Point Response (Expanded)</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Three Dimensional Response Surface Plot of Melting Point</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Three Dimensional Response Surface Plot of Melting Point (expanded)</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Response Trace Plot of Penetration Depth Response</td>
<td>74</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Contour Plot of Penetration Depth Response</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Contour Plot of Penetration Depth Response (Expanded)</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Three Dimensional Response Surface Plot of Penetration Depth</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Three Dimensional Response Surface Plot of Penetration Depth (expanded)</td>
<td>77</td>
</tr>
</tbody>
</table>
Figure 4.17 Response Trace Plot of Viscosity
Figure 4.18 Contour Plot of Viscosity Response
Figure 4.19 Contour Plot of Viscosity Response (Expanded)
Figure 4.20 Three Dimensional Response Surface Plot of Viscosity
Figure 4.21 Three Dimensional Response Surface Plot of Viscosity (expanded)
Figure 4.22 The Normal Probability plot of Studentized Residual for Lipstick’s Hardness Acceptance
Figure 4.23 Plot of Consumer Acceptance on Hardness Residuals versus Predicted Values
Figure 4.24 The Normal Probability Plot of Studentized Residual Lipstick’s Stickiness Acceptance
Figure 4.25 Plot of Consumer Acceptance on Lipstick’s Stickiness Residuals Versus Predicted Values
Figure 4.26 The Normal Probability Plot of Studentized Residual Lipstick’s Consistency Acceptance
Figure 4.27 Plot of Consumer Acceptance on Lipstick’s Consistency Residuals Versus Predicted Values
Figure 4.28 The Normal Probability Plot of Studentized Residual Lipstick’s Overall Acceptance
Figure 4.29 Plot of Overall Acceptance Residuals Versus Predicted Values
Figure 4.30 Response Trace Plot of Lipstick’s Hardness Acceptance
Figure 4.31 Contour Plot of Consumer Acceptance on Lipstick’s Hardness
Figure 4.32 Contour Plot of Consumer Acceptance on Lipstick’s Hardness (Expanded)
Figure 4.33 Three Dimensional Response Surface Plot of Consumer Acceptance on Lipstick’s Hardness
Figure 4.34 Three Dimensional Response Surface Plot of Consumer Acceptance on Lipstick’s Hardness (expanded)
Figure 4.35 Response Trace Plot of Lipstick’s Stickiness Acceptance
Figure 4.36 Contour Plot of Consumer Acceptance on Lipstick’s Stickiness
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.37</td>
<td>Contour Plot of Consumer Acceptance on Lipstick's Stickiness (Expanded)</td>
<td>106</td>
</tr>
<tr>
<td>4.38</td>
<td>Three Dimensional Response Surface Plot of Consumer Acceptance on Lipstick's Stickiness</td>
<td>106</td>
</tr>
<tr>
<td>4.39</td>
<td>Three Dimensional Response Surface Plot of Consumer Acceptance on Lipstick's Stickiness (expanded)</td>
<td>107</td>
</tr>
<tr>
<td>4.40</td>
<td>Response Trace Plot of Lipstick's Consistency Acceptance Response</td>
<td>108</td>
</tr>
<tr>
<td>4.41</td>
<td>Contour Plot of Consumer Acceptance on Lipstick's Consistency</td>
<td>110</td>
</tr>
<tr>
<td>4.42</td>
<td>Contour Plot of Consumer Acceptance on Lipstick's Consistency (expanded)</td>
<td>110</td>
</tr>
<tr>
<td>4.43</td>
<td>Three Dimensional Response Surface Plot of Consumer Acceptance on Lipstick's Consistency</td>
<td>111</td>
</tr>
<tr>
<td>4.44</td>
<td>Three Dimensional Response Surface Plot of Consumer Acceptance on Lipstick's Consistency (expanded)</td>
<td>111</td>
</tr>
<tr>
<td>4.45</td>
<td>Response Trace Plot of Lipstick's Overall Acceptance Response</td>
<td>113</td>
</tr>
<tr>
<td>4.46</td>
<td>Contour Plot of Consumer Overall Acceptance Response</td>
<td>114</td>
</tr>
<tr>
<td>4.47</td>
<td>Contour Plot of Consumer Overall Acceptance Response (Expanded)</td>
<td>115</td>
</tr>
<tr>
<td>4.48</td>
<td>Three Dimensional Response Surface Plot of Consumer Overall Acceptance</td>
<td>115</td>
</tr>
<tr>
<td>4.49</td>
<td>Three Dimensional Response Surface Plot of Consumer Overall Acceptance (expanded)</td>
<td>116</td>
</tr>
<tr>
<td>4.50</td>
<td>The Normal Probability Plot of Studentized Residual for Cost Response</td>
<td>120</td>
</tr>
<tr>
<td>4.51</td>
<td>Plot of Cost residuals versus Predicted Values</td>
<td>120</td>
</tr>
<tr>
<td>4.52</td>
<td>Response Trace Plot of Lipstick Cost</td>
<td>121</td>
</tr>
<tr>
<td>4.53</td>
<td>Contour Plot of Lipstick's Cost Response</td>
<td>123</td>
</tr>
<tr>
<td>4.54</td>
<td>Contour Plot of Lipstick's Cost Response (Expanded)</td>
<td>123</td>
</tr>
<tr>
<td>4.55</td>
<td>Three Dimensional Response Surface Plot of Lipstick's Cost</td>
<td>124</td>
</tr>
<tr>
<td>4.56</td>
<td>Three Dimensional Response Surface Plot of Lipstick's Cost (expanded)</td>
<td>124</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>4.57</td>
<td>Overall and Individual Desirability</td>
<td>127</td>
</tr>
<tr>
<td>4.58</td>
<td>Melting Point Comparison</td>
<td>128</td>
</tr>
<tr>
<td>4.59</td>
<td>Penetration Depth Comparison</td>
<td>129</td>
</tr>
<tr>
<td>4.60</td>
<td>Viscosity Comparison</td>
<td>129</td>
</tr>
</tbody>
</table>
NOMENCLATURE

% Percent
\textit{g} Gram
L Litre
\textit{mm} Millimetre
s Second
\textit{rpm} Rotation per minute
\textdegree\text{C} Degree Celsius
\textit{cP} Centipoise
BIBD Balance Incomplete Block Design
RSM Response Surface Methodology
ANOVA Analysis of Variance
DF Degree of Freedom
SSR Sum of Square
SSE Residual Sum of Square
SST Total Sum of Square
PRESS Prediction Error Sum of Square
CHAPTER 1

INTRODUCTION

1.1 Overview

According to the Federal Food, Drug and Cosmetic Act of 1938 (sec 17.14), a cosmetic is anything intended to be applied directly to the human body for cleansing, beautifying, promoting attractiveness or altering the appearance (Synder, 1995; Whittam, 1987; Shai, Maibach and Baran, 1999).

The rise of the worldwide living standard has created a path for the increasing use of cosmetic products. This is supported by the research done by Mulhern et al. (2003) which found that the belief of cosmetics do improve female attractiveness, has led the cosmetic industry to be one of the most successful worldwide. Multinational companies and our own local companies are among the leading investors for cosmetic market, which provide a wider product range. The cosmetic industry in Malaysia is proven to be one of the most important economy sources. From the year of 1998 to 1999, Malaysian import for personal care products, which includes skin care, makeup, hair care and fragrance, was RM1255 million while export was RM 592 million (Afiza, 2000). Meanwhile, the total annual sale for cosmetic products in 2003 was RM 8.2 million. This market is expected to grow more than fifty percent for the year ahead (Beautycontrol, 2003).
In the last quarter of twentieth century, cosmetic industries exist with technology of their own. Every year, users were introduced with various new cosmetics products of the latest trend. The ingredients and basic material used in cosmetic formulations become the important criteria for costumers in choosing the cosmetic product, as their interest in health and safety issues grew. Recently, there has been a marked increase in consumer awareness towards the issue and importance of natural products. Natural products are felt to be safer and more environmentally friendly (Middleton, 1996; Joeston and Wood, 1996; Maccioni et al., 2002). Consequently, natural-ingredient based products are getting popular (Josten & Wood, 1996; Grievenon et al., 1992; Fridd, 1996). Cosmetic manufacturers have invested in technology and researches to offer a wide range of products that meet this requirement.

Generally, cosmetics can be grouped by product into seven categories namely skin care and maintenance, cleansing, odour improvement, hair removal, hair care, care and maintenance of mucous membranes and decorative cosmetics (Rieger, 1983). Lipstick is one of the decorative cosmetic products that command a unique market. Lipstick contains a variety of emollients, emulsifiers, preservatives, colorants and binders (Sackheim and Lehman, 1998). Williams and Schmitt (1992) stated that the quality of lipstick is directly linked to the basic material used in the formulation. Varying the ratio of the ingredient used in formulation determines the final product characteristics such as texture, viscosity, hardness and melting point of the lipstick (Awang et al., 2003).

A common problem in pre-formulation of the cosmetic product including lipstick is the optimisation of the mixture composition aimed to obtain a product with
the required characteristics. Statistical experimental design commonly used to overcome this problem. The primary goal of designing an experiment statistically is to obtain valid results at minimum of effort, time and resources (Myers and Montgomery, 2002; Allen, 1987). There were several experimental design technique used for formulation work such as factorial design, cross design and mixture design. However, it should be noted that factorial design could not be used to study such mixtures since the variables are not independent (Hinkelmann and Kempthorne, 1994). All fractions of the components must sum to unity. Mixture design represents an efficient approach for solving such optimisation problem.

Statistical mixture design is more satisfactory and effective than other methods such as classical one-at-a-time or mathematical methods because it can study many variables simultaneously with a low number of observations, saving time and costs. In previous researches, statistical mixture design has been proved to be effective tool to investigate the relationship between variables in formulation work (Kamaun et al., 2002; Sabir, Evans and Jain, 2001; Bodea and Leucuta, 1997; Campisi et al., 1998; Cafaggi et al., 2003; Brandvik and Daling, 1998; Gaspar, Laureano and Sousa, 1998; Ruohonen et al., 2003; Lee and Gilmore, 2004; Samet and Chaabouni, 2004). However, it has not been widely used in cosmetic science.

Therefore, in this work, statistical mixture design will be applied in order to investigate the relationship between variation composition, physical properties, and consumer overall acceptance. By relating consumer data to processing variable and instrumental analyses, the researchers and cosmetic chemists can discover the relationship between product attributes and also the consumer acceptability. These
kinds of information will lead to better understanding of the effect of different properties and identify the acceptable limit of the product.

1.2 Research Objectives

The main objective of this research is to produce a natural ingredient based lipstick formulation. This research also conducted to investigate the effects of various mixture components on the physical properties and consumer acceptance of the lipsticks by using statistical mixture design. Major work involves the formulation, evaluation and optimisation of lipstick that meets the technical requirement and consumer acceptability.

1.3 Scope of Research

Statistical mixture design will be applied for experimental setting and data analysis. Various formulation of natural ingredient based lipstick will be produced. The effect of mixture components or ingredients towards the physical properties and consumer acceptance of the product will be studied. Finally, the optimum formulation will be obtained by relating the physical properties and consumer acceptability of the lipstick.

1.4 Research Methodology

Systematic steps and iterations of work are carried out to accomplish the research objective. Thus, the research methodology is carefully laid out as follows:
1.4.1 Literature Survey

Literature and biography of natural ingredient based lipstick formulation including its raw material, formulation process technology and important characteristics are investigated. The application and analysis of statistical experimental design, and the techniques of consumer acceptance observation for cosmetic product are also studied.

1.4.2 Experimental Design and Formulation of Natural Ingredient Based Lipstick

The experimental setting is performed by mixture experimental design. Natural ingredient based lipstick formulations is prepared in laboratory scale according to the composition suggested by the D-optimal criterion. Various compositions of natural waxes, oils and solvents are used to prepare natural ingredient based lipstick formulation.

1.4.3 Characterisation of Natural Ingredient Based Lipstick Formulation

Once the lipstick has been properly formulated, its physical properties are studied. The most important properties to be studied are melting point, hardness and viscosity. Melting point is directly observed by using Stuart Scientific SMPI Melting Point Apparatus, whereas the viscosity of the lipstick is measured by using Brookfield Rheometer. Needle Penetration Method by using Hounsfield Texture analyser is used to measure the lipstick’s hardness.

1.4.4 Consumer Evaluation Test on Natural Ingredient Based Lipstick

The consumer acceptance of the lipstick is measured by using nine-point hedonic scale method. The Central Location Test is conducted by using 150 respondents.
REFERENCES

Aminah Abdullah, 2000, Prinsip Penilaian Sensori, Bangi: Universiti Kebangsaan Malaysia.

Aminah Abdullah, 2000, Panduan Makmal Penilaian Sensori, Bangi: Universiti Kebangsaan Malaysia.

Cafaggi, S., Leardi, R., Parodi, B., Caviglioli, G., and Bignardi, G., 2003, An example of application of a mixture design with constraints to a pharmaceutical formulation, Chemometrics and Intelligent Laboratory Systems, 65(1): 139-147.

DIN EN 1426, 1999, Bitumen and bituminous binders: Determination of needle Penetration, Brussels: European Committee of Standardization.

Shai, A., Maibach, H.I., and Baran, R., 1999, Handbook of Cosmetic Skin Care, New York: Martin Dunitz.

