CHARACTERISATION OF PULP AND PAPER OBTAINED FROM THREE DIFFERENT AGES OF *Acacia mangium* IN SIMILAR HABITAT

FASIL SAID MANZOOR

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

SCHOOL OF INTERNATIONAL TROPICAL FORESTRY
UNIVERSITI MALAYSIA SABAH 2006
CHARACTERISATION OF PULP AND PAPER OBTAINED FROM THREE DIFFERENT AGES OF *Acacia mangium* IN SIMILAR HABITAT

FASIL SAID MANZOOR

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN SCIENCE

SCHOOL OF INTERNATIONAL TROPICAL FORESTRY
UNIVERSITI MALAYSIA SABAH
2006
BORANG PENGESAHAN STATUS TESIS

JUDUL : CIRI-CIRI PULPA DAN KERTAS DARIPADA TIGA UMUR *Acacia mangium* DIDAPATI PADA HABITAT YANG SAMA

IIAZAH : SARJANA SAINS

SESI PENGAJIAN : 2004-2006

Saya FASIL SAID MANZOOR mengaku membenarkan tesis SARJANA SAINS ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hak milik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. TIDAK TERHAD

Disahkan oleh:

PERPUSTAKAAN
UNIVERSITI MALAYSIA SABAH

(Penulis : FASIL SAID MANZOOR)

Alamat tetap:
Sekolah Perhutanan Tropika Antarabangsa,
Universiti Malaysia Sabah,
Beg Berkunci 2073,
88999 Kota Kinabalu,
Sabah, Malaysia

(Penyelia : PROF.MADYA DR.RAZAK WAHAB)

Tandatangan Pustakawan

TARIKH: 1th August 2006
DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

FASIL SAID MANZOOR
PS04-010-003(A)
JULY 2006
ACKNOWLEDGMENT

Thank you GOD.

I would like to express my unlimited appreciation to my supervisor Associate Prof. Dr. Razak Wahab for his valuable supervision. I would like to thank Mr. Girijashankar Kumaran (SFI) and Awang Ahmad Mohd Yunus for their kind suggestions and guidance in the research and preparation of this thesis. They provided me with great opportunity and allowed me to go in depth in the areas of pulp and paper and extraction of cellulose. Their consistent motivation and encouragement allowed me to perform better and unleashed my capabilities in many areas, especially in the field related to this thesis.

I would like to express my gratitude to Sabah Forestry Industry Sdn. Bhd, Sipitang for providing me free samples for my research study.

I would like to express my gratitude to the Vice Chancellor of University Malaysia Sabah, for his permission to continue my master’s study in Universiti Malaysia Sabah.

I would like to express my thanks to the Dean of the School of International Tropical Forestry, Universiti Malaysia Sabah, Dr. Mahmud Sudin for providing me support during my research work.

I would also like to express my sincere thanks to my colleagues, lab assistants and others who are not mentioned here for their support and cooperation throughout this research work.

Finally, I am also grateful to my parents Mr. P.V.S Manzoor and Mdm. Zuhara Beegam, my siblings and my uncle for their love, continuous support and encouragement in completing this research work.
ABSTRACT

Woods samples of *Acacia mangium* tree of three age groups, viz. five, seven and nine years were tested for their alpha cellulose contents, pulp yield and papers quality. The woods were collected from Sabah Forest Industry (SFI) area in Ganui, Sipitang, Sabah. The woods were chipped, grinded into small sizes and turned into powder. The wood chips were treated at 170°C, 7-8 MPa for 2.5 hours. The Brendel et al method was used for the extraction of alpha cellulose. The pulp yields of the sample were studied. Later, papers were made using this pulp and the tested for strength qualities. All tests were conducted in accordance to the ISO standards. The results showed that the alpha cellulose contents of the tree increases slightly. The increments were however found not significant. Almost all the age trees gave nearly the same pulp yield with a same cooking condition. The ANOVA analysis was conducted to determine the relation between the age of the tree and alpha cellulose content, pulp yield and paper strength properties. There were no significant changes seen in the paper strength properties with respect to age. It was found that the 5 year old trees showed better characteristics with respect to the older age trees and it's economically suitable for the paper production. These works recommend for the plantation managers (pulp wood) to cut the *Acacia mangium* trees in the age of 5 rather waiting for 7 - 9 years.
ABSTRAK

CIRI-CIRI PULPA DAN KERTAS DARIPADA TIGA UMUR Acacia mangium
DIDAPATI PADA HABITAT YANG SAMA

UMS
UNIVERSITI MALAYSIA SABAH
CONTENTS

DECLARATION ii
ACKNOWLEDGEMENT iii
ABSTRACT iv
ABSTRAK v
CONTENTS vi-ix
LIST OF FIGURES x-xi
LIST OF TABLES xii-xiii
ABBREVIATION xiv-xv
SYMBOLS xvi-xvii

CHAPTER 1 INTRODUCTION
1.1. Distribution and Location of Paper Factory in Malaysia 2
1.2. Present Status of Pulp and Paper in Malaysia 3
1.3. Pulp and Paper Demand in Developing and Developed Countries 4
1.4. Demand of Pulp and Paper in World 5
1.5. Demand for Paper and Paper Products in ASEAN Countries 6
1.6. The Total World Population Increment 6
1.7. World Pulp Production 7
1.8. Objective of the Research 7
1.9. Need for the Project 7
1.10. Organization of Thesis 8
1.11. Flow chart on the organization of work 10
CHAPTER 2 LITERATURE REVIEW

2.1 History of Pulp and Paper Production 12
2.2 Pulping 13
 2.2.1. Mechanical pulping 14
 2.2.2. Chemical pulping 14
 2.2.3 Semi chemical pulping 16
2.3 Acacia mangium 16
2.4 Chemical Composition of wood 19
 2.4.1. Cellulose 20
 2.4.2. Hemicellulose 21
 2.4.3. Lignin 22
 2.4.4. Extractives 23
2.5 Alpha cellulose 23
2.6 Pulp yield 25
2.7 Studies on Paper Quality 25
 2.7.1. Basic weight or Grammage 26
 2.7.2. Bursting Strength 26
 2.7.3. Folding Endurance (Double Fold) 28
 2.7.4. Tearing Resistance 28
 2.7.5. Tensile Strength 29
2.8 ANOVA study 30

CHAPTER 3 MATERIALS AND METHODOLOGY

3.1 Description of instrument 31
 3.1.1. Digester 31
 3.1.2. Beater 31
3.1.3. Screener
3.1.4 Manual Sheet maker
3.1.5. Tearing Tester
3.1.6. Bursting Tester
3.1.7. Tensile Tester
3.1.8. Folding Tester
3.1.9. Fourier Transform Infrared Spectra (FTIR)

3.2 Description on Chemicals
3.3 Sampling
3.4 Methodology for pulping and paper making
3.5 Methodology for paper testing
3.6 Methodology for finding alpha cellulose
 3.6.1. Micro- Extraction of Cellulose
3.7 Methodology for soil test
3.8 Flow charts
 3.8.1. Schematic Representation of Methodology
 3.8.2. Schematic Representation of the method for Extraction of Alpha Cellulose

CHAPTER 4 RESULTS AND DISCUSSIONS
4.1 Soil Test
4.2 Alpha Cellulose Obtained in Different Ages
4.3 Fourier Transform Infrared Spectra Results
4.4 Pulp Yield
4.5 Paper Testing
4.6 ANOVA analysis
4.6.1. ANOVA for Alpha Cellulose
4.6.2. ANOVA for Pulp Yield
4.6.3. ANOVA for Burst
4.6.4. ANOVA for Foldness
4.6.5. ANOVA for Tear
4.6.6. ANOVA for Tensile

CHAPTER 5 CONCLUSION AND SUGGESTIONS

5.1 Research findings
5.2 Contributions
5.3 Future research
5.4 Weakness

REFERENCES

APPENDIX A: ISO Standards
APPENDIX B: Climatic and Soil conditions of Ganui, SFI
APPENDIX C: Raw Data
APPENDIX D: Relation between pH value and nutrients in soil
LIST OF FIGURES

Figure 1.1 Flow charts on organization of work 10
Figure 1.2 Flow chart for Soil Analysis 11
Figure 2.1 Fourdrinier Machine installed in the Klippan Mill, Sweden in 1821 13
Figure 2.2 Distinct Sapwood and Heartwood of Acacia mangium 17
Figure 2.3 Average Chemical Composition of Wood (Hardwood) 20
Figure 2.4 Structure of Cellulose 21
Figure 2.5 IR spectra in the different stages of chemical treatment using solvent extraction to isolate alpha cellulose of Scot pine (Pinus sylvestris L.). a, untreated whole wood sample; b, the sample after solvent extraction; c, after acidified NaClO₂ step; d, after NaOH step. Labelled bands: 1. hemicellulose; 2. resin; 3. linked water; 4. Liguin; 5. lignin 24
Figure 3.1 ZQS₁-C model Thermal Pulp Cooker (Digester) 32
Figure 3.2 ZQS₂ model Liters Refiner (Beater) 32
Figure 3.3 ZQS₂ model Screener 33
Figure 3.4 ZQJ₁ – B model Manual Sheet maker 34
Figure 3.5 DC-SLY model Tear Tester 34
Figure 3.6 DC-NPY model Bursting Tester (Mullen Tester) 35
Figure 3.7 DC-KZ100C model Tensile Tester 36
Figure 3.8 DC-MIT 135B Folding Tester 36
Figure 3.9 Fourier Transform Infrared Spectra (FTIR) used for analysis the alpha cellulose 37
Figure 3.10 Location map of Ganui, SFI, Sabah 39
LIST OF TABLES

Table 1.1 Paper Factories of Malaysia 3
Table 1.2 Rate of Increment of Pulp and Paper 4
Table 1.3 Demand of Pulp and Paper in World ('000 Tons) 5
Table 1.4 Demands for Paper and Paper Products in ASEAN Countries 6
Table 1.5 World Population (Millions) 6
Table 1.6 World Pulp Productions (Million Ton) 7
Table 2.1 Typical Grammage Values 26
Table 2.2 Typical Bursting Strength Values 27
Table 2.3 Typical Tear Resistance Values 29
Table 2.4 Typical Tensile Index Values 29
Table 3.1 Diameter Measurement of the trees in cm 41
Table 4.1 pH Content in Soil 52
Table 4.2 Water Content in the Soil 53
Table 4.3 Organic Compounds in the Soil 54
Table 4.4 Mean Alpha Cellulose content for 5 years old tree 54
Table 4.5 Mean Alpha Cellulose content for 7 years old tree 55
Table 4.6 Mean Alpha Cellulose content for 9 years old tree 55
Table 4.7 Pulp Yield 60
Table 4.8 Burst Index 61
Table 4.9 Tensile 61
Table 4.10 Folding Endurance 62
Table 4.11 Tearing 62
Table 4.12 Standard Deviation for Alpha cellulose 64
Table 4.13 Analysis of Variance for Alpha cellulose 65
Table 4.14 Means for Alpha cellulose by Age
Table 4.15 Standard Deviation for Pulp yield
Table 4.16 Analysis of Variance for Pulp yield
Table 4.17 Means for Pulp Yield by Age
Table 4.18 Least square Mean table for Burst
Table 4.19 Analysis of Variance for Burst
Table 4.20 Means for Burst by Age
Table 4.21 Least square Mean table for Foldness
Table 4.22 Analysis of Variance for Foldness
Table 4.23 Means for Foldness by Age
Table 4.24 Least square Mean table for Tear
Table 4.25 Analysis of Variance for Tear
Table 4.26 Means for Tear by Age
Table 4.27 Least square Mean table for Tensile
Table 4.28 Analysis of Variance for Tensile
Table 4.29 Means for Tensile by Age
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEAN</td>
<td>Association of Southeast Asian Nations</td>
</tr>
<tr>
<td>C₆H₁₀O₅</td>
<td>Cellulose</td>
</tr>
<tr>
<td>CD</td>
<td>Cross direction</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectra</td>
</tr>
<tr>
<td>GSM</td>
<td>Grams per square meter</td>
</tr>
<tr>
<td>H₂SO₃</td>
<td>Sulphurous acid</td>
</tr>
<tr>
<td>HSO₃</td>
<td>Bisulphite ions</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>MAI</td>
<td>Mean Annual Increment</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture content</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>MPPMA</td>
<td>Malaysia Pulp and Paper Manufacturers Association</td>
</tr>
<tr>
<td>MTC</td>
<td>Malaysian Timber Council</td>
</tr>
<tr>
<td>Na₂S</td>
<td>Sodium Sulfide</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit Malaysia</td>
</tr>
<tr>
<td>SCAN</td>
<td>Scandinavian pulp, paper and board testing committee</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sdn. Bhd.</td>
<td>Sendirian Berhad (Company Limited)</td>
</tr>
<tr>
<td>SFI</td>
<td>Sabah Forest Industry</td>
</tr>
<tr>
<td>SR</td>
<td>Schopper-Riegler</td>
</tr>
<tr>
<td>TAPPI</td>
<td>Technical Association of the Pulp and Paper Industry</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>m/min</td>
<td>meter per minute</td>
</tr>
<tr>
<td>gsm</td>
<td>Gram square meter</td>
</tr>
<tr>
<td>N/m²</td>
<td>Newton per meter square</td>
</tr>
<tr>
<td>um</td>
<td>Micro meter</td>
</tr>
<tr>
<td>sq.ft.</td>
<td>square feet</td>
</tr>
<tr>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>kN/m.</td>
<td>Kilo Newton per meter</td>
</tr>
<tr>
<td>V</td>
<td>volume</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>mm³</td>
<td>millimeter cube</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>m²</td>
<td>meter square</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>mPa</td>
<td>milipascal</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
</tbody>
</table>
mN milinewton

°SR Schopper-Riegle degree
CHAPTER 1

INTRODUCTION

In today’s world, paper plays a vital role in our daily life. Paper allows the expression of ideas and thoughts, and it also facilitates communication. The usage of paper is expected to increase with the increasing world population. In 1950, the world population was recorded as 2.5 billions and is expected to reach 9.9 billions by the 2050. According to the statistics (Rymsza, 1999), the world production of pulp and paper in the year of 1961 is recorded as 61,862 million metric ton and this value has increased to 102,840 million ton metric in 1970. In 1980 and 1990, there was an increase of 128,310 million ton metric to 165,873 million ton metric respectively. In 1997, the world pulp and paper production was recorded as 178,550 million ton metric (Rymsza, 1999)

In the context of Malaysia, the paper and paper board industry played an important role in its steady economic growth and development (Kevin, 1994). The country has a total capacity of slightly over 1 million tonnes of paper per annum, with self-sufficiency in the supply of paper and paper board growing at a slow rate. It is predicted that the demand for the paper in the region will grow with an annual average of 6 - 10 % (MTC, 2004). According to the records, Malaysia has 61% area covered with forest and 16% of the total area is under plantation (MTC, 2003) even though it could satisfy the local demands. According to MPPMA, Malaysia imported 1,189,120 metric tonnes of all types of paper and paper products worth RM2.7 billion in 2000 as compared to 1,353,515 metric tonnes valued at RM2.4 billion in 1999. In 2000 the country recorded a 50% self-sufficiency rate in contrast to 43% in 1999, and is striving to achieve the objective of being self-sufficient by the year 2005.
The pulp industry is facing the ever-increasing demands of quality paper and paperboard that is causing search for new and hitherto unexploited sources of cellulosic fibers (Jahan et al., 2005). The awareness of forest conservation has increased in recent years which had led to the decrease in supply of the wood from the natural forest to the industries and this also made the raw materials expensive. To meet the demand of wood, Malaysia is setting up more plantations specially the Acacia mangium plantations. Acacias have good biomass production potential and the wood is generally considered to be a good fuel with a high calorific value. Considerable work has been undertaken in recent years to explore this potential in overseas countries, to address pressing issues of fuel shortages, land degradation and pulp production.

This study aim on investigating the suitability of using young A. mangium trees for the pulp and paper industry in Malaysia. The outcomes of the study will be rely and pass on to the plantation managers (especially for the chips). If the study can prove that the early age trees can produce good paper with respect to the 9 year age trees it can help to cut down the rotation period of trees and also can help to supply the raw materials to the paper industry continuously without any problem.

1.1. Distribution and Location of Paper Factory in Malaysia

Malaysia has about 19 paper manufacturing mills (Table 1.1) in operation of which 15 paper mills are the members of Malaysian Paper Manufacturers Association. There are no mills in Negeri Sembilan, Terengganu and Kelantan. The imported pulp or regular paper or mixed together with pulp from tropical hardwood are used by many of the companies. Sabah Forest Industry (SFI) is the only integrated pulp and paper
mill in the country which use wood fibers from various tropical wood species (Kevin, 1994).

Table 1.1: Paper Factories of Malaysia

<table>
<thead>
<tr>
<th>State</th>
<th>Number of factories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedah</td>
<td>2</td>
</tr>
<tr>
<td>P.Pinang</td>
<td>3</td>
</tr>
<tr>
<td>Perak</td>
<td>2</td>
</tr>
<tr>
<td>Selangor</td>
<td>3</td>
</tr>
<tr>
<td>Melaka</td>
<td>1</td>
</tr>
<tr>
<td>Johor</td>
<td>2</td>
</tr>
<tr>
<td>Pahang</td>
<td>3</td>
</tr>
<tr>
<td>Sabah</td>
<td>1</td>
</tr>
<tr>
<td>Sarawak</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

The total Production capacity is approximately 1 million tonnes

1.2. Present Status of Pulp and Paper in Malaysia

Total import of paper in Malaysia exceeds 6 million tonnes/year. The Government is very keen interest in sustainable forest management system with replanting and creating forest plantations. Malaysia imports 762,359 tonnes of paper products in 1998 which is worth of RM 1.72 billion. This shows decrement compared to 1997 which total up to 1.05 tonnes worth 1.97 million. This was due to the economic crisis in 1997. During this period Malaysia was not able to export the paper (MTC, 1999).
By 2013 countries in Asia pacific region is estimated to become the largest paper purchaser of the world. This region is estimated to produce 86 million tonnes of paper and paper products that is 30.2% of world production. Factors such as recovery of the economic crisis, increment of population, development in the living standards and development of packaging industry will make the region become the largest buyers (MTC, 1999).

1.3. Pulp and Paper Demand in Developing and Developed Countries

Demand rate for pulp and paper increased from year 1961 to 1991 (Table 1.2), so it is estimated that there will be an increment from year 1991 to 2010. Developing countries has more rate of increment compared with developed country, even though 80 – 90 % of world paper market is controlled by developed country. After 1991 both developing and developed countries showed a decrease in the rate of demand. This is because of economic crisis in 1997 and development in computer technology which decrease the paper usage. The rate of increment for the demand of pulp and paper for developing country is higher compared with developed country because developed country has enough economy and modern technology to do so.

Table 1.2: Rate of Increment of Pulp and Paper

<table>
<thead>
<tr>
<th></th>
<th>Year 1961 (Tonnes)</th>
<th>Rate of Increment (%)</th>
<th>Year 1991 (Tonnes)</th>
<th>Rate of Increment (%)</th>
<th>Year 2010 (Tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Countries</td>
<td>70</td>
<td>3.5</td>
<td>194</td>
<td>2.3</td>
<td>310</td>
</tr>
<tr>
<td>Developing Countries</td>
<td>7</td>
<td>6.2</td>
<td>49</td>
<td>2.8</td>
<td>130</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>3.7</td>
<td>243</td>
<td>5.1</td>
<td>440</td>
</tr>
</tbody>
</table>

1.4. Demand of Pulp and Paper in the World

According to Table 1.3, it is forecasted that the world demand for the pulp and paper will increase from year 1991 to 2010. In 1991 the total world demand of paper was 242,939,000 tons. In 1991 the Wood fiber and non wood fibers are respectively 153,939,000 and 14,725,000 tons. In 2010 the paper demand is estimated to reach 443 million ton. For the wood pulp there will be an increment of 257 million ton and for non wood fibers there will an increment of 26 million tons. This shows the rate of pulp and paper demand in the world is always increasing.

Table 1.3: Demand of Pulp and Paper in World (’000 Tons)

<table>
<thead>
<tr>
<th>Countries</th>
<th>1991</th>
<th>2010</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Paper Products</td>
<td>Wood Pulp</td>
<td>Non Fiber Wood</td>
</tr>
<tr>
<td>Africa</td>
<td>2,684</td>
<td>1,967</td>
<td>236</td>
</tr>
<tr>
<td>North/Middle America</td>
<td>92,389</td>
<td>73,266</td>
<td>474</td>
</tr>
<tr>
<td>South America</td>
<td>8,039</td>
<td>4,947</td>
<td>488</td>
</tr>
<tr>
<td>Asia</td>
<td>60,146</td>
<td>22,957</td>
<td>12,880</td>
</tr>
<tr>
<td>Europe</td>
<td>67,258</td>
<td>40,689</td>
<td>379</td>
</tr>
<tr>
<td>Oceanic</td>
<td>2,833</td>
<td>1,901</td>
<td>13</td>
</tr>
<tr>
<td>USSR</td>
<td>9,590</td>
<td>8,212</td>
<td>255</td>
</tr>
<tr>
<td>Total</td>
<td>242,939</td>
<td>153,939</td>
<td>14,725</td>
</tr>
</tbody>
</table>

REFERENCES

