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A B S T R A C T

Technology has become inevitable in human life, especially the growth of Internet of Things (IoT), which
enables communication and interaction with various devices. However, IoT has been proven to be vulnerable
to security breaches. Therefore, it is necessary to develop fool proof solutions by creating new technologies or
combining existing technologies to address the security issues. Deep learning, a branch of machine learning
has shown promising results in previous studies for detection of security breaches. Additionally, IoT devices
generate large volumes, variety, and veracity of data. Thus, when big data technologies are incorporated,
higher performance and better data handling can be achieved. Hence, we have conducted a comprehensive
survey on state-of-the-art deep learning, IoT security, and big data technologies. Further, a comparative analysis
and the relationship among deep learning, IoT security, and big data technologies have also been discussed.
Further, we have derived a thematic taxonomy from the comparative analysis of technical studies of the
three aforementioned domains. Finally, we have identified and discussed the challenges in incorporating deep
learning for IoT security using big data technologies and have provided directions to future researchers on the
IoT security aspects.
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1. Introduction

The swift growth in emerging technologies such as, sensors, smart-
phones, 5G communication, and virtual reality leads to innovative
applications such as, connected industries, smart city, smart energy,
connected automobiles, smart agriculture, connected building com-
plexes, connected health care, smart retail outlets, and smart supply
chain, which adversely contribute to the accumulation of massive
amounts of data. A study conducted by the National Cable & Telecom-
munications Association (NCTA) predicts that by 2020, approximately
50.1 Billion Internet of Things (IoT) devices will be connected to the
Internet. The growth of IoT devices makes the security of these devices
debatable [1,2]

According to McAfee (2018), there has been a barrage of cyberat-
tacks and data breaches that has hit almost every industry since 1st
of January 2018. Further, many of these attacks were targeted on IoT
devices. The increasing use of IoT devices invites the cybercriminals
to target them. Additionally, the prospect of interconnectivity among
IoT devices makes them vulnerable [3]. Furthermore, VDC Research
Group Inc. have also conducted a study to determine the obstacles in
developing connected devices. The research has indicated that 60%
of the obstacles are related to security requirements in developing
connected devices [4]. In addition, based on Kaspersky Lab’s collection,
the number of malware samples for IoT devices has seen a rapid
increase from 3219 samples for the year 2016 to 121588 samples for
the year 2018. It is clearly evident that there are huge number of
vulnerabilities for the IoT devices [5].

According to [2], many organizations are exposed to greatest chal-
lenges in monitoring network based threats, prominently in the fol-
lowing sectors: government, energy, healthcare, banks, and research
centres. Moreover, these sectors invest in security monitoring tools in
order to protect and secure their infrastructure. As mentioned earlier,
generally, the IoT devices generate immense amounts of data that
flows through networks. Data that flows through a network is at the
possible risk for network attacks. Further, the study has argued that
the existing tools and techniques are insufficient to detect innovative

attacks triggered by cybercriminals due to the volume, velocity, variety,
and veracity of data. Moreover, when huge amounts of data are being
handled by the network, the security analytics report on a weekly or
monthly basis would not be sufficient enough to detect and mitigate the
attacks. Furthermore, the study has asserted that big data technologies
would be able to handle the challenges of the volume, velocity, variety
and veracity of the data.

Data is generally categorized as big data based on the properties
associated with it, commonly known as the V’s of big data [6]. Big data
technologies are the tools or technologies used to efficiently process
these data. Authors of [7], discuss that enterprises collect security
related data for regulatory compliance and post hoc forensic analysis.
Furthermore, these large enterprises generate approximately 10 to 100
billion events per day. The authors also assert that existing mecha-
nisms lack processing at large scales and big data analytics have been
used to analyse and correlate security-related data efficiently and at
unprecedented scales.

In this context, this present study proposes to employ deep learning
and big data technologies to strengthen the security of IoT devices. Off
late, deep learning has gained recognition due to its non-manual feature
engineering, unsupervised pre-training, and compression capabilities,
these features make the employability of deep learning feasible even in
resource constrained networks. Furthermore, deep learning has been
widely implemented because of its self-learning capability, potential
to yield highly accurate results, and faster processing time. This is
vital, as resource constrained system may run into other issues such as
out-of-memory access, unsafe programming languages, and so forth [8].

Most of the existing literature separately focuses on deep learning,
big data, and IoT security. Some studies have either focused on deep
learning [9,10] or big data [11,12] for IoT security. To the best of our
knowledge, none of the existing studies have comprehensively reviewed
the feasibility of employing both of these technologies in context of IoT
security.

Table 1 summarizes most of the existing recent relevant studies
and highlights the research gap. From Table 1, it is concludable that
many studies have failed to consider the impact of volume, velocity,
variety, and veracity of data generated by IoT devices, as against [2]
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who have highlighted the impacts in their study. Hence, inclusion of
big data technologies becomes mandatory to address the impact of
volume, velocity, variety, and veracity of data generated by IoT devices.
Additionally, it is clearly evident in Table 1 that not many studies have
focused on deep learning and big data technologies for IoT security.

This paper is intended to guide deep learning, big data, and IoT
researchers and developers, to whom IoT security would be of primary
concern. The contributions of this paper has been summarized below.

i We identified, and highlighted the key issues of IoT security.
ii We have picked five IoT security use cases where deep learning

and big data technologies could be of potential solution.
iii We have surveyed the state-of-the-art researches focused on

deep learning, big data technologies, and IoT security, to deter-
mine the technical applicability and limitations of these three
aforementioned domains.

iv We have developed a thematic taxonomy by extracting valuable
information from the state-of-the-art.

v We have analysed existing solutions based on the derived taxon-
omy.

vi We have highlighted the challenges and have proposed guide-
lines for future researchers to encourage the successful applica-
tion of deep learning, big data technologies, and IoT security.

However, this study limits its scope only to deep learning and does not
discuss on traditional machine learning algorithms with respect to big
data technologies and IoT security. Additionally, this survey also does
not go into detail about IoT security for each available smart appli-
cation area, rather discusses in the networking and communications
perspective.

This paper is structured as follows:
Section 2 details the motivation and use cases of, deep learning, big

data technologies, and IoT security. Section 3 introduces deep learning,
big data technologies, and IoT security. Section 4 provides the thematic
taxonomy and discusses its components in detail. Section 5 critically
analyses the state-of-the-art studies related to deep learning, big data
technologies, and IoT security. Section 6 discusses the challenges and
proposes future directions. Finally, Section 7 concludes this present
study.

2. Motivation and use cases

In this section we have detailed on the motivation for our study
and provided some use case scenarios that motivate the survey of deep
learning and big data technologies for IoT security.

IoT devices have seen rapid growth in recent years, which is of a
great concern in terms of the security risks associated with them. The
rapid growth of these devices and the availability of modern hacking
technologies have forced the necessity to ensure that IoT devices are not
vulnerable to security breaches. However, as of now, IoT devices have
been evidently proven to have security vulnerabilities, such as when
IoT devices were compromised with the Mirai malware and were used
to attack Dyn, a Domain Name System (DNS) provider. Therefore, it
is necessary to come up with new technologies or a combination of
existing technologies to secure IoT devices from the attackers.

The IoT security requirements such as confidentiality, integrity,
availability, authentication, and access control (see Section 3.3) makes
IoT devices unique and challenging especially for developers to come
up with sophisticated IoT systems that are resistant to IoT based attacks.
This study has been motivated by the fact that big data technologies
support these security requirements and deep learning algorithms have
been proven effective in security attack detection.

Over the years, deep learning has gained wide recognition among
researchers and organizations. Due to the capabilities of deep learning
it has been applied in a variety of security domains, such as, [20,21],
and [22] to identify security breaches. Furthermore, deep learning has

proven its success in IoT security, it has been proven by successful
implementation in studies [23,24] and [25].

Besides, big data technologies have also been proven to be effective
in processing of various types of data. Studies such as, [26,27] and
[28] have shown promising results. However, limited studies have been
conducted on processing of IoT security data with big data technologies
and deep learning algorithms. From our critical analysis, we were
able to identify that only two studies have incorporated deep learning
and big data technologies for IoT security, which are [29] and [30].
This scenario has motivated us to conduct this study and we believe
this study will motivate future researchers in incorporating the three
areas discussed. Fig. 1 illustrates the IoT security use cases with their
relationship to big data technologies and deep learning characteristics.
Additionally, the use cases have been discussed in the following sub
sections.

2.1. SirenJack

A vulnerability in emergency broadcast systems produced by Acous-
tic Technology Inc. (ATI) was identified by Balint Seeber nicknamed
SirenJack, a researcher of Bastille Security. The systems allowed com-
mand packet broadcast over the air to be captured, modified and re-
played. The flaw was discovered when Seeber was auditing emergency
alert systems deployed across San Francisco [31,32]. The SirenJack
use case is a type of intrusion detection which can be evaded using
deep learning and big data technologies as they have shown promising
results in detecting intrusions (see Section 4.2.1).

2.2. Turning Up the Freeze

Turning Up the Freeze was a Distributed Denial-of-Service (DDoS)
attack conducted on the environmental control systems in two apart-
ment building in eastern Finland. The DDoS attack disabled all envi-
ronmental control systems in the two apartments completely, which
left the people in the apartment cold. In order to rectify the issue,
the systems were rebooted. However, the systems got stuck in an
endless loop [33]. Environmental control systems that have processing
capabilities will be capable of identifying a DDoS attack effortlessly
using deep learning and big data technologies. Few fellow researchers
were capable of identifying DDoS attacks using deep learning and big
data technologies, as discussed in Section 5.

2.3. Attack on Dyn

A major attack was conducted on Dyn, a leading DNS provider on
21st October 2016. The attack was a major DDoS attack that made
approximately 85 major websites such as Netflix, Twitter, PayPal, and
Sony PlayStation unresponsive for users. This was a series of three
attacks, the first wave of attack affected the East coast, the second wave
affected California, the Midwest, and the Europe, the third wave was
mitigated by Dyn. The attacks are believed to be conducted by large
amounts of IoT botnets that were infected by the Mirai malware [34–
36]. This major attack could have been mitigated with the use of
deep learning and big data technologies. The DNS provider generally
stores log data. These log data could have been efficiently processed by
big data technologies and analysed using deep learning algorithms, to
identify any type of anomalous behaviour. A proven example would
be study [26], where the authors were able to analyse anomalous
behaviour using big data technologies and machine learning.

2.4. IoT fish tank

In North America, hackers have used Internet-connected fish tank
to hack a casino. The fish tank was equipped with sensors to regulate
temperatures, food monitoring, and cleanliness of the tank. Hackers
used the fish tank to get into the network. It was reported that 10
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Table 1
Summary of recent literature relevant to deep learning, big data technologies, and IoT security.

Study Objective/Focus of previous study Limitations Significance of our study Research gap

[9] To provide knowledge on IoT
security issues

The authors have not discussed
any big data technologies

Primarily discusses the usage of big
data technologies

Big data technologies

[13] To survey on technologies and
techniques for reliable and secure
data communications

The authors have not discussed
any big data technologies or
about big data in general

Provides a detailed explanation on
big data

Big data technologies

[14] To facilitate the analytics and
learning in IoT domain by
providing overview of deep
learning

An in-depth analysis has not been
conducted with respect to IoT
security. Further, IoT attack types
have not been detailed

Discusses in detail on IoT security
and its attack types

IoT security

[15] To investigate state-of-the-art
research in big IoT data analytics

Lacks in-depth study of IoT
security

Performs an in-depth analysis with
respect to IoT security

IoT security

[16] To provide a comprehensive
survey and taxonomy for existing
security solution in
vehicle-to-everything
communication technology

The authors have not discussed
big data technologies

The taxonomy details on big data
technologies has been presented

Big data technologies

[10] To discuss on major cybersecurity
challenges and opportunities for
cybersecurity + edge computing +
IoT + Artificial Intelligence (AI)

The authors have not performed
in-depth analysis of big data
technologies

In-depth analysis has been conducted
in the state-of-the-art big data
technologies

Big data technologies

[2] To address issues of real-time
anomaly detection

Lacks in depth analysis of deep
learning and attack types in the
IoT space

Details on deep learning and IoT
attack types

Deep Learning and IoT
security

[17] To provide comprehensive
security analysis of IoT

Minimal discussion about deep
learning and lacks discussion on
big data technologies

Performs an in-depth discussion of
deep learning and its algorithms, and
also discusses big data technologies

Deep learning and big data
technologies

[18] To discuss on the most prominent
attacks in IoT

The authors have not discussed
deep learning and big data
technologies

Discussion on deep learning and big
data technologies has been presented

Deep learning and big data
technologies

[19] To discuss on various security
challenges and threats with
respect to their possible sources
of occurrence

Lacks discussion on deep learning
and big data technologies

Discussed about deep learning and
big data technologies

Deep learning and big data
technologies

Fig. 1. IoT security use cases.

GB worth data was transmitted to a device located in Finland [37].
This use case provides us ample evidence that IoT devices can be used
to manipulate an entire network. Hence, stopping cyber criminals at
firewall is key to prevent any catastrophic incidents. Therefore, the
continuous monitoring of data flow using big data technologies and
deep learning would enable detection of IoT based security breaches
at an early stage.

2.5. Hacked baby monitor

A baby monitor of a family in Ohio was hacked by an unknown
hacker. When Adam and Heather Schreck and their 10-month old

daughter were asleep, they heard a man screaming ‘‘Wake up baby!
Wake up baby’’ from the baby monitor. When the baby monitor was
inspected, the family found the camera angle moving on its own and
the voice of the man screaming again. When Adam Schreck rushed
into his daughter’s room, the angle of the camera turned and pointed
to his face and the man started screaming obscenities. The parents
rushed to unplug the camera. Similarly, in Texas a family’s wireless
baby monitor was hacked and a similar wakeup call was heard from
the baby monitor [38]. For hackers to get into a baby monitor, they
have to use a network as the medium. This network can be secured
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by combining deep learning and big data technologies to detect any
anomalous data or intrusion in real-time.

The above discussed use cases are some of the sophisticated attacks
on IoT. Nevertheless, these types of attacks on IoT are growing continu-
ously and require modern day and most novel solutions. These complex
attacks can be handled by deep learning due to its distinguishing
features such as, capability of learning more abstract features, reduced
training complexity of the model, promising accuracy, capability to
handle large datasets, and support for transfer learning [39–42]. Ad-
ditionally, big data technologies can play a vital role in processing
of IoT data, especially due to the volume, velocity, and variety of
data generated by IoT devices. Existing methodologies are inefficient
in handling these types of data, thus big data technologies become
a necessity [43]. Furthermore, big data technologies have also seen
increased performance compared to traditional methods as illustrated
by [44] where the training time is much lesser compared to the regular
training method.

This section has discussed the motivation for this study and some
of the recent real world attacks on IoT as use cases. Further, we have
explained how deep learning and big data technologies can contribute
to IoT security.

3. Background

This section contains a comprehensive description of deep learning,
big data technologies, and IoT security. Additionally, the relationship
between these three domains have been discussed, to provide funda-
mental knowledge and relationship mapping on these leading edge
topics.

3.1. Deep learning

Deep Learning is a subset of machine learning which has three learn-
ing techniques, namely, supervised, semi-supervised and unsupervised
learning. It consists of many layers of artificial neural networks. Each
of the layer contains some neurons with activation functions that can
be utilized to produce non-linear outputs. This methodology is said to
be inspired by the neuron structure of the human brain [45,46].

In recent years, deep learning has attracted many researchers and
organizations, compared to traditional machine learning approaches.
The authors of [14] have compared deep learning against four ma-
chine learning algorithms, such as, Support Vector Machine (SVM),
Decision Trees, K means, and Logistic Regression using Google trends,
and the results indicate that deep learning is becoming more popular.
Furthermore, this technology has been applied in a variety of AI
applications such as, image recognition, image retrieval, search engines
and information retrieval, and natural language processing.

Machine learning and deep learning have four phases in building a
model. Fig. 2 illustrates the difference between machine learning and
deep learning.

As discussed in Section 2, deep learning has gained recognition due
to its characteristics of being capable of learning more abstract features,
reduced training complexity of the model, promising accuracy, capa-
bility to handle large datasets, and support for transfer learning [39–
42].

Deep learning in general has been explained in this subsection. Fol-
lowed by the discussion of the typical methodology and characteristics
of deep learning.

3.2. Big data technologies

Big data can be described as the high-volume, high-velocity, and
high-variety of information that demands innovative forms of informa-
tion processing to gain insights and for decision-making [47]. Typically,
big data is characterized with 6 traits, generally referred to as the 6V’s.

Fig. 3 illustrates the 6V’s, which are the basic characteristics of
big data, in general. However, data is classified as big data as long

as it fulfils the first 3V’s which are volume, velocity, variety [48].
Big data technologies can be described as the tools or technologies
that are used to efficiently process data that has been classified as big
data. Some of the big data technologies include, Apache Hadoop [49],
Apache Spark [50], Apache Storm [51], Apache Flink [52], Apache
Cassandra [53], and Apache HBase [54].

In the above section we had illustrated the characteristics of big
data, which are the 6V’s. Additionally, we had also listed some of the
commonly used big data technologies.

3.3. IoT security

IoT enables sensors and devices in a smart environment to com-
municate with each other and enables information sharing across plat-
forms. Recently IoT has been widely adopted into building intelligent
systems such as, smart city, smart home, smart office, smart retail out-
lets, smart agriculture, smart water management, smart transportation,
smart healthcare, and smart energy [15,55,56].

Due to the wide use of IoT in mobile devices, transportation facil-
ities, public facilities, and home appliances, these equipment can be
used for data acquisition in IoT. Furthermore, devices used in various
applications that are connected to the IoT network can be controlled
remotely. The devices can communicate with each other and also
with the central controlling devices. Additionally, when deployed in
various domains, variety of data can be collected such as, geographical,
astronomical, environmental, and logistical data [15].

IoT security is regarded as securing the entire deployment archi-
tecture of IoT from attacks [57]. There are various factors that needs
to be taken into consideration for developing IoT security solutions.
The following are the security requirements that needs to be met for
developing IoT security solutions. Due to the immense capabilities
made available by deep learning and big data technologies, they can
be utilized to identify a pool of security breaches related to the security
requirements.

3.3.1. Confidentiality
Confidentiality enables information to be transmitted securely dur-

ing all communications. When information is transmitted without au-
thentication or encryption, adversaries are given the chance to violate
the privacy of the owner [58,59]. Typically, big data technologies con-
sist of secure transmission of data by using encryption methodologies,
thus preventing data to be compromised by adversaries [60].

3.3.2. Integrity
The integrity of an IoT system may be compromised by an adver-

sary. Therefore, integrity guarantees that data received has not been
manipulated during transmission [59,61]. In addition, Apache Spark,
a big data technology enables the support for data quality checks in
the Spark DataFrame [62]. This enables users to perform data integrity
checks on the IoT system.

3.3.3. Availability
Availability in IoT systems refer to ensuring that legitimate users are

able to access the system and that unauthorized access is denied [59,
63]. One of primary goals of big data technologies is to ensure its
omnipresence to the user. Further, they can be run on multiple nodes
that ensures high availability of the application [64].

3.3.4. Authentication
Authentication refers to ensure the identity of the peer which IoT

devices communicate with. Furthermore, it is also concerned with valid
users gaining appropriate access for network tasks such as control of IoT
devices and networks [59,61]. Additionally, big data technologies such
as Apache Spark incorporate authentication mechanisms for Remote
Procedure Call (RPC) channels [60].
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Fig. 2. Machine learning vs. deep learning.

Fig. 3. 6V’s of big data.

3.3.5. Access control
Access control in IoT system should act as a means of ensuring that

the authenticated nodes are limited to access what they are privileged
to and nothing more [59,61]. Furthermore, it is known that big data
technologies provide access control support for its applications. A
filter is necessary for this to be achieved and each application can be
equipped with its own access control list [60]

Even though, deep learning is not directly related to the IoT security
requirements, the continuous monitoring of networking and commu-
nications between the IoT devices and system can aid in detecting
and mitigating security breaches at an early stage. As discussed in
Section 3.1, the characteristics of deep learning contribute to the
identification of security breaches, this is because deep learning is
capable of handling very large datasets, classifying legitimate data and
anomalous data at a higher accuracy rate, learning from complex data,
and learning from data at a much faster pace.

Fig. 4 illustrates the connection to benefits of IoT devices.
The above sections had discussed on deep learning, big data tech-

nologies and IoT security along with the relationship between them.
We have further elaborated the aforementioned topics in the following
sections.

4. Taxonomy

This section highlights and proposes a taxonomy for deep learning,
big data technologies, and IoT security. This taxonomy is classified
into different categories namely, Deep Learning, IoT Security, and
Big Data Technologies, and further sub categorized as Deep Learning
Architectures, Frameworks, Model Evaluation, IoT Security Application
Area, IoT Security Attacks, Datasets, Apache Hadoop, Apache Spark,
and Apache Storm. Due to the limited studies that have been conducted

by combining deep learning, big data technologies, and IoT security,
we have identified the relationship among these three domains based
on related experimental studies that have used deep learning with a
combination of either IoT security, or big data technologies, and IoT
security or big data technologies with security attack detection, which
consists of identical attacks as of that in the IoT space. The taxonomy
derived has been illustrated in Fig. 5.

4.1. Deep learning

In this subsection, we have detailed the common deep learning
architectures, popular deep learning frameworks, and the evaluation
methods used to evaluate deep learning based models.

4.1.1. Deep learning architectures
Deep learning architectures generally have three types of learn-

ing models, supervised learning, unsupervised learning, and semi-
supervised learning. In a supervised learning the data used to train
the architecture is fully labelled, whereas in the unsupervised learning,
the data is not labelled and the architecture tries to come up with a
structure by extracting useful information. In semi-supervised learning
model a training dataset contains a mixture of labelled and unlabelled
data, this type of learning is futile when extracting relevant features
from the data is tedious [65]. Further, deep learning architectures
can be categorized into two types, discriminative and generative. The
discriminative model generally supports supervised learning meth-
ods, whereas the generative model supports unsupervised learning
methods [14].

i. Autoencoder (AE): AE is a type of Artificial Neural Network
(ANN) that learns efficient data coding in an unsupervised fash-
ion [66,67]. AEs comprise of an input and an output layer that
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Fig. 4. Device connection to human value in IoT.

Fig. 5. Taxonomy of deep learning, big data technologies and IoT security.

are connected using one or more hidden layers. Generally, AEs
consist of the same number of input and output layers. It aims
in transforming inputs to outputs in the simplest way possible,
by ensuring the input is not distorted very much [14].

ii. Recurrent Neural Network (RNN): RNN are said to be an
extension of Feed Forward Neural Network (FFNN), which takes
advantage of sequential information. RNNs get the name re-
current as they perform the same task for each element of a
sequence, where the output is dependent on previous computa-
tions [68].

iii. Restricted Boltzmann Machine (RBM): RBM is a kind of ANN
with the capability of representing and solving difficult prob-
lems. The RBM comprises of two process types, learning and
testing. In the learning phase, vast amount of input examples
and desired outputs are presented to generate the RBM structure
where a general rule of mapping inputs to outputs is learned. In
the testing phase, outputs are produced for new inputs by the
RBM, abiding the general rule that was obtained in the learning
phase [69].

iv. Deep Belief Network (DBN): DBN is a type of Deep Neural Net-
work (DNN) that comprises of multiple layers of hidden units,

where there are connections between the layers but not with the
units of each layer. Further, DBNs can learn to probabilistically
reconstruct its inputs when trained with examples in unsuper-
vised learning. Additionally, on the post learning phase a DBN
can be trained further with supervised learning for classification
problems [70–72].

v. Long Short-Term Memory (LSTM): LSTM consists of special
units often referred to as memory blocks in the recurrent hidden
layer. Further, the memory blocks comprise of memory cells
with self-connections storing the temporal state of the network
in addition to the special multiplicative units referred to as
gates, which controls the flow of information. Each memory
block consists of input and output gates, where the input gate
is responsible for the flow of input activations into the memory
cell, and the output gate is responsible for output flow of cell
activations into the rest of the network [73].

vi. Convolutional Neural Network (CNN): CNN is a type of deep
ANN which was first proposed by the authors of [74,75]. The
CNN incorporates the back propagation algorithm for learning
the receptive fields of simple units. Furthermore, the CNN is
characterized by local connections, weight sharing and local
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pooling properties. The local connections and weight sharing en-
able the model to discover local informative visual patterns with
few adjustable parameters. The local pooling property equips the
network with some translation invariance [76].

Table 2 classifies the architectures discussed above based on the
category, learning model, and the studies that have utilized these
architectures. Furthermore, the relationship and applicability of these
architectures with big data technologies and IoT security have been
proved by substantiating the success of the implementation.

4.1.2. Frameworks
The popular frameworks that are typically used for implementing

deep learning architectures (see Section 4.1.1) are as follows.

i. TensorFlow: TensorFlow is an innovative framework developed
by Google, which offers a variety of deep learning computa-
tion. TensorFlow was officially released in the late 2015. It
includes Java, C++, Go and Python Application Programming
Interface (API)s, and is primarily designed for computation on
data flow graphs. Furthermore, TensorFlow supports multi-CPU
and multi-GPU computations with CUDA and SYCL extensions.
Additionally, TensorFlow Lite has been developed to provide
support for mobile and embedded machine learning. Further,
TensorFlow Lite provides an Android Neural Network API [90].

ii. Theano: Theano is an open source Python library, used for
developing complex algorithms through mathematical expres-
sions. It is typically utilized for machine learning researches.
Furthermore, it has gained wide acceptance among the deep
learning community due to its support for automatic symbolic
differentiation and GPU accelerated computing. CUDA is used
by Theano as one of its main backend for GPU accelerated
computation [91].

iii. Caffe: Caffe is a widely used training infrastructure, developed
by Berkeley Vision and Learning Center (BVLC) for deep learning
based operations. DNNs are simulated as a network of computing
units in Caffe. The computing units are generally referred to
as ‘‘layers’’, these layers take data as input, perform a set of
operations, and pass the output to the following layer [92].

iv. PyTorch: PyTorch is a deep learning framework based on python
that acts as a replacement for NumPy to use the power of GPUs
and for deep learning research that provides maximum flexibility
and speed [93]. PyTorch is widely known for its two prominent
features, strong GPU acceleration support and building neural
networks dynamically [94].

v. Microsoft Cognitive Toolkit (CNTK): CNTK is an open source
deep learning framework for Windows and Linux. It is used
for training and evaluating powerful deep neural networks. Mi-
crosoft uses this toolkit for Cortana speech models and web
rankings. CNTK supports a variety of feed forward, convolu-
tional, and recurrent networks for speech, image, and text data,
and also a combination of these data. Furthermore, CNTK can
scale to multiple GPU servers and is designed in aiming for
efficiency [95].

vi. H2O: H2O is a fast, scalable, and open-source machine learning
and deep learning framework for developing smart applications.
The support for advanced algorithms such as deep learning,
boosting and bagging elements make H2O preferable for smart
applications. H2O is capable of handling billions of data row in-
memory even in a small cluster. H2O is typically designed to
start deploying within minutes and provides support for Apace
Hadoop and Apache Spark cluster [96].

vii. Deeplearning4j: Deeplearning4j is an open source framework
for deep learning computations developed by a team led by
Adam Gibson and supported by the organization SkyMind. This
framework was written in Java, Scala, CUDA, C, and C++ and is

distributed under the Apache license 2.0. Furthermore, it is com-
patible with Linux, OS X, Windows, and Android. Deeplearning4j
supports implementation of all deep nets such as, RBM, DBN,
Deep Autoencoder (DAE), and more [97].

Table 3 describes some frameworks commonly used for deep learn-
ing, the programming languages they were written in, the latest stable
release version, and the latest stable release date.

4.1.3. Model evaluation
The commonly used model evaluation techniques for deep learning

based models are as follows.

i. Confusion Matrix: Confusion matrix is a summary of the pre-
dicted results of the classification model. The confusion matrix
is derived by summarizing the total count of correctly and
incorrectly classified predictions based on each class [98]. It is
necessary to derive the following values before designing the
confusion matrix:

(a) True Positive (TP): The true positive values refer to the
number of instances that has been correctly classified by
the model [99].

(b) True Negative (TN): The true negative values are the
number of negative instances that were correctly classi-
fied by the model [99].

(c) False Positive (FP): False positive value is the num-
ber of negative instances labelled incorrectly as positive
instances [99].

(d) False Negative (FN): False negative value is the num-
ber of positive instances labelled incorrectly as negative
instances [99].

Table 4 explains the confusion matrix.
ii. Recall: Recall also referred to as sensitivity or true positive

rate refers to the proportion of real positive instances that have
been predicted positive [100]. Recall can be calculated using the
below formula.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(1)

iii. Specificity: Specificity describes the effectiveness of the classi-
fication model in identifying negative labels [101]. Specificity is
calculated using the below formula.

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(2)

iv. False Positive Rate (FPR): FPR also called the Fall-Out is the
proportion on negative instances classified incorrectly as positive
instances. In simpler terms, probability of false alarms to be
raised [102]. The FPR is calculated using the below formula.

𝐹𝑎𝑙𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

(3)

v. False Negative Rate (FNR): FNR refers to the proportion of
incorrectly classified samples to the number of positive sam-
ples [103]. The FNR is calculated using the below formula.

𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 = 𝐹𝑁
𝑇𝑃 + 𝐹𝑁

(4)

vi. Precision: Precision is the proportion of predicted positives
that are real positives. Precision is applied on a variety of
areas such as, machine learning, data mining, and information
retrieval [100]. Precision is calculated using the below formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(5)
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Table 2
Deep learning architectures.

Architectures Category Learning model Studies

AE Generative Unsupervised [23,77]
RNN Discriminative Supervised [78]
RBM Generative Unsupervised & Supervised [79–81]
DBN Generative Unsupervised & Supervised [82,83]
LSTM Discriminative Supervised [25,84–87]
CNN Discriminative Supervised [86–89]

Table 3
Deep learning framework.

Framework Written in Latest stable release version Latest stable release date

TensorFlow Python, C++, and CUDA 1.12.0 5th November 2018
Theano Python, and CUDA 1.0.4 16th January 2019
Caffe C++ 1 18th April 2017
PyTorch Python, C++, and CUDA 7th February 2019
CNTK C++ 2.7 4th January 2019
H2O Java 3.24.0.3 7th May 2019
Deeplearning4j Java, Scala, CUDA, C, C++, Python, and Clojure 0.9.1 13th August 2017

Table 4
Confusion matrix.

Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

vii. F-Measure: The f-measure is said to be the harmonic mean of
the precision and recall [82]. The f-measure is calculated using
the below mathematical equation.

𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(6)

viii. Accuracy: Accuracy can be described as the overall effectiveness
of the classification model [101]. The formula used for the
calculation of the accuracy is as follows:

𝐴𝐶 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(7)

ix. Matthew’s Correlation Coefficient (MCC): MCC is a technique
used for measuring the quality of binary and multiclass classifi-
cation. The MCC values ranges from −1 to +1, where −1 denotes
total disagreement, 0 indicates random predications and +1
indicates total agreement [104,105]. The MCC can be calculated
using the below formula:

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(8)

x. Kappa: Kappa also referred to as Cohen’s Kappa is a measure of
the inter-reliability. Kappa is said to be more robust compared to
the simple percent agreement method. Kappa values range from
0–1, the following list is the interpretation of Kappa [106]:

i. 0–0.20 No Agreement
ii. 0.21–0.39 Slight Agreement

iii. 0.40–0.59 Fair Agreement
iv. 0.60–0.79 Substantial Agreement
v. 0.80–0.90 Almost Perfect

Kappa is calculated using the below formula:

𝑘 ≡
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

= 1 −
1 − 𝑃𝑜
1 − 𝑃𝑒

(9)

Table 5 highlights some studies that have incorporated the discussed
model evaluation techniques to evaluate their models.

In this subsection, we detailed about common deep learning ar-
chitectures along with popular deep learning frameworks. Finally, we
discussed on the evaluation methods used for evaluating deep learning
based models.

4.2. IoT security

This subsection will discuss on IoT security application areas where
deep learning has prominently been applied with a focus on IoT, the
security attack types on the IoT space where deep learning can be
used to identify and mitigate those attacks, and finally the datasets that
contain IoT based attacks.

4.2.1. IoT security application areas
The common IoT security application areas where deep learning has

prominently been applied has been discussed below.

i. Anomaly Detection: Anomaly detection is the process of iden-
tifying anomalies. Anomalies are often referred to as patterns
that do not follow a standard pattern. These anomalies are
generated by abnormal activities such as, cyber-attacks, credit
card frauds, and more. An anomaly is generally categorized into
three categories, namely point anomalies, contextual anomalies,
and collective anomalies.

(a) Point anomalies: If a data instance differs from a normal
pattern in the dataset, it is said to be a point anomaly.

(b) Contextual anomalies: If in a particular context, the data
instance behaves anomalously then it is called contextual
anomalies.

(c) Collective anomalies: If a group of similar data instances
behaves anomalously compared with the entire dataset,
they are said to be collective anomalies [113].

ii. Host Intrusion Detection System (HIDS): HIDS are used to
monitor activities and characteristics of a single host in a net-
work for any abnormal activities. Generally, agents are de-
ployed onto target hosts in host-based intrusion detection sys-
tems. In some cases, the agents may be deployed on remote
devices. Sensors in host-based intrusion detection systems are
deployed as inline or passive. In inline sensors, the network
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Table 5
Deep learning model evaluation.

Study Confusion matrix Recall Specificity FPR FNR Precision F-Measure Acc. MCC Kappa
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traffic passes through the sensors and then reaches the target
hosts. The passive sensors monitor a replica of the real network
traffic [114].

iii. Network Intrusion Detection System (NIDS): A NIDS is used
to monitor network traffic flow. The different network layers are
analysed by NIDS to detect any possible security threats [114].

iv. Malware Detection: Malware detection is the process of iden-
tifying malware. Typically, there are two types of malware
detection, which are static or dynamic analysis. In the static
analysis, the malware is directly analysed in its binary form,
whereas, in the dynamic analysis, the binary files are executed
and the activities are monitored [115].

v. Ransomware Detection: A ransomware is a type of malware
which encrypts the affected computer and a ransom is demanded
for decryption [116]. Ransomware detection is the process of
identifying ransomware attacks.

vi. Intruder Detection: Intruder detection is the process of identi-
fying intruders with precise information. Intruders fall into the
following 3 categories:

(a) Masquerader: A person trying to gain unauthorized ac-
cess into a system

(b) Misfeasor: An authorized user who tries to access privi-
lege features which the users is prohibited from accessing.

(c) Clandestine user: A person who gains supervisory con-
trol of a system in order to evade auditing and access
control or to suppress audit collection [78].

vii. IoT Botnet Attack Detection: A bot is a device connected to a
common protocol infrastructure which is remotely controlled. A
device can be compromised and turned into at bot by attackers.
When an IoT device joins a botnet, the device can be utilized for
a variety of purposes, including DDoS attacks [117]. IoT botnet
attack detection is the act of detecting IoT botnet based attacks
such as, DDoS.

Table 6 denotes the IoT security application areas where deep learning,
mainly with big data technologies have been applied.

4.2.2. IoT security attacks
Various IoT security attack based on each layer are as follows.

4.2.2.1. Perception layer attacks. The perception layer consists of phys-
ical objects such as, sensors and actuators, nodes, and devices. A per-
ception layer attack affects the physical object in the IoT infrastructure.
Common perception layer attacks have been elaborated below.

i. Botnets: Botnets such as Mirai, comprises of four major com-
ponents: (i) a bot is the malware which infects devices. The
bot primarily aims in conducting two tasks, which is to infect
misconfigured devices and to attack a target server on receiving
the command from a botmaster, the person controlling the bot,
(ii) a centralized management interface monitors the condition
of botnet and orchestrates the attack provided to the botmaster
through a Command & Control (C&C) server, (iii) the loader
spreads the executables targeting various types of platforms such
as, Acorn RISC Machine (ARM), MIPS, and x86, through direct
communication with new targets, and (iv) the report server is
used to maintain a list of devices in the botnet [23,118].

ii. Sleep Deprivation Attack: Sleep deprivation attack is a type of
attack conducted on battery powered sensor nodes and devices.
Typically, battery powered devices follow a sleep routine in
order to extend its lifetime. The sleep deprivation attack aims
in keeping the nodes and devices awake for an extended period
of time, which results in more battery power consumption and
eventually shutting down of the nodes and devices [119].

iii. Node Tampering & Jamming: Node tampering attacks are
triggered when an entire node or part of the node’s hardware is
replaced physically. Electronically way node tampering can be
achieved by interrogating the nodes to gain access and manip-
ulate sensitive information, such as, routing tables, and shared
cryptographic keys. Whereas, a node jamming attack is when an
attacker interferes with the radio frequencies of wireless sensor
nodes, which jams the signal and delays communication to the
nodes. Provided that the attacker is able to jam key sensor nodes,
IoT services can be denied [120].

iv. Eavesdropping: Eavesdropping is an attack that threatens the
confidentiality of a message. An eavesdropping attack is when
the attacker overhears information that is passed via a private
communication channel. It is said that the Radio Frequency Iden-
tification (RFID) is the most susceptible device for eavesdropping
kind of attacks [61].

4.2.2.2. Network layer attacks. The network layer generally consists
of network components such as, routers, bridges, and other types
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Table 6
IoT security application areas.

IoT security application area Studies

Anomaly detection [81,82]
HIDS [30]
NIDS [25,29,30,44,45,80]
Malware detection [85,89,109]
Ransomware detection [87]
Intruder detection [78]
IoT botnet attack detection [23]

of networking components. A network layer attack is an attack di-
rected towards disrupting the network components in the IoT space.
Prominent network layer attacks in IoT have been discussed below.

i. Man-in-the-Middle (MIM): In the MIM attack an attacker has
total control over a communication channel between two legit-
imate entities. Further, the attacker is not limited to reading
messages, but to change, erase, and insert messages into the
communication channel [121].

(a) Address Resolution Protocol (ARP) Cache Poisoning:
The ARP protocol targets the resolution of MAC addresses
of a host given its IP. This is achieved by transmitting an
ARP packet request on the network. ARP cache poisoning
is also referred to as ARP spoofing, ARP poison routing
is the process of counterfeiting ARP packets that enables
impersonation of another host on the network [122].

(b) DNS Spoofing: A DNS maps symbolic names to the IP
address. A DNS spoofing sometimes referred to as DNS
cache poisoning, impacts the DNS resolver by storing
malicious mapping information between symbolic names
and IP addresses. The DNS server may be poisoned by an
attacker by compromising an authoritative DNS server or
forging a response to a recursive DNS query [123].

(c) Session Hijacking: A session hijacking attack is the mali-
cious act of the attacker who manages to secure the user’s
session identifier, allowing the attacker to transfer the
session to his/her own system [124].

ii. Denial of Service (DoS)/DDoS: DoS is a type of malicious attack
that aims in consuming resources or bandwidth of genuine users.
A DDoS is a variant of the DoS which is similar to the DoS attack
but involves various compromised nodes. [125].

(a) User Datagram Protocol (UDP) Flood: UDP flood is a
flooding attack where multiple UDP datagrams are gen-
erated typically by a bot. These UDP datagrams flood
through various parts of the network and congest the
entire network [126].

(b) Internet Control Message Protocol (ICMP) Flood: ICMP
flood referred to as ping floods where a continuous ICMP
Echo Request (ping) packets are sent to the host as fast as
possible without waiting for a reply. This will consume
incoming and outgoing communications resources as the
host tries to reply to the pings [125].

(c) SYN Flood: In a SYN flood attack an attacker sends
vast amount of Transmission Control Protocol (TCP) SYN
packets to a target. This forces the target to utilize con-
strained resources such as, CPU, bandwidth, and memory
in order to reply to the SYNs. High velocity of attack will
cause a DoS attack and eventually will be unable to serve
genuine users [127].

(d) Ping of Death: The ping of death is an attack, where
an attacker sends an extremely large sized ping to the
target with intention to collapsing the target. Many oper-
ating systems tend to crash when the ping size has been
exceeded [128].

(e) Slowloris: The Slowloris is a DDoS attack, where mul-
tiple HyperText Transfer Protocol (HTTP) requests are
opened and manipulated simultaneously between the at-
tacker and target. Slowloris are capable of collapsing an
application by using minimal traffic and attackers [129].

(f) Network Time Protocol (NTP) Amplification: NTP Am-
plification attack is a type of reflection-based volumetric
DDoS attack where the NTP is exploited by the attacker
to flood an amplified UDP traffic to a host. Hence, this
affects the host and surrounding infrastructure causing
regular traffic inaccessible to the resource [130].

iii. Routing Attacks: In routing attacks malicious nodes launch
routing types of attacks to disrupt routing operation or for
performing DoS attacks [131].

(a) Sybil Attack: During Sybil attack a malicious node breaks
the routing system, and accesses information blocked by
the node, or the network gets partitioned. This attack
is executed by a single attacker who creates multiple
false identities and pretends to be multiple in peer-to-peer
networks (P-2-P) [132].

(b) Sinkhole Attack: Sinkhole attack is conducted by com-
prising a node which attempts to draw traffic as much as
possible from a specific area, by making itself look appeal-
ing to the surrounding nodes based on the routing metric.
Hence, the malicious node attracts all traffic from the base
station. This then provides the attacker to conduct further
attacks on the system [133].

(c) Selective Forwarding Attack: A selective forwarding at-
tack is capable of conducting a DoS attack where mali-
cious nodes selectively forward packets. The goal of this
attack generally is to disrupt routing paths. Nevertheless,
it can be used to filter any protocol [134].

(d) Wormhole Attack: The aim of a wormhole attack is
to disrupt the network topology and traffic flow. The
wormhole attack takes place when a malicious node tun-
nels messages among two different parts of the network
through a high speed link [135,136].

(e) Hello Flood: The hello flood is one of the main attacks
in the network layer. The hello flood attack enables the
attacker to force conventional nodes to lose power by
forcing them to transmit large hello packets with very
high power [137].

iv. Middleware Attacks: In the IoT infrastructure the middleware
comprises of components such as cloud. A middleware attack
directly involves malicious activities on the middleware compo-
nents of the IoT infrastructure.

(a) Cloud Based: In cloud based attack, the attackers directly
attack a cloud platform for various reasons, such as infor-
mation theft, flooding attack, and so forth. Common cloud
based attacks include :

i. Cloud Malware Injection: During cloud malware
injection attack an attacker gains access to victim’s
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data in the cloud and uploads a malicious copy
of the victim’s service instance, therefore enabling
the victim’s service to be processed within the
malicious instance [138].

ii. Cloud Flooding Attack: The cloud flooding attack
enables the attacker send a huge number of pack-
ets from innocent host in the network in order
to flood the victim. These huge packets can be a
combination or multiple TCP, UDP, and ICMP. Fur-
thermore, this type of attack can affect the service’s
ability to serve the authorized users. Additionally,
the usage of the cloud may rise since it does not
have the capability of identifying legitimate and
attack traffic [139].

(b) Authentication Attacks: Authentication based attacks
are used to exploit the authentication process that is used
to verify a user, service, or application [140].

i. Brute Force: A brute-force attack makes an at-
tacker to gain access by entering a variety of login
credentials with the hope of guessing the creden-
tials correctly. The attacker enters a variety of
possible passwords until the correct password is
found [141].

ii. Dictionary Attack: The dictionary attack also re-
ferred to as the password-guessing attack is when
an attacker has built a database with possible pass-
words. The attacker executes this by eavesdropping
on the channel and records the transcript. After
that, passwords are attempted to be generated to
match the recorded ones. If a match has been
found, then the attacker has successfully managed
to acquire the password [142].

iii. Replay Attack: A replay attack enables an at-
tacker to intercept and capture a digital communi-
cation or action and use it at a later point of time.
This enables the attacker to use someone else’s
information to masquerade as that person [143].

(c) Signature Wrapping Attack: Signature wrapping attack
enables an attacker to appear as a legitimate user and
perform arbitrary web service request. This is achieved by
injecting a malicious element into the message structure,
this ensures a valid signature for the legitimate elements
and processing of the malicious element in the application
logic [144].

4.2.2.3. Application layer attacks. An application layer is the applica-
tion itself, such as smart homes, smart cities, and smart grids. An
application layer attack is related to the security breaches of IoT
applications. Prominent application layer attacks have been briefed
below.

(a) Malware: Malware is a type of attack, where executable codes
are used by attackers to disrupt the devices in the network.
This enables the attackers to gain unauthorized access or steal
sensitive information. In the IoT network, the attackers may take
advantage of firmware flaws and are capable of disrupting the
entire IoT architecture [145,146].

(b) Phishing Attack: Phishing is a type of attack which aims to
extract sensitive information such as, usernames, and passwords
from users by appearing to be a trustworthy entity. The sensitive
information can be used later by cyber criminals to cause harm
to the user or system [147].

i. Spear Phishing: Spear phishing is targeted specially at se-
lected individuals and organizations, rather than random

users. The attacker generally enhances his knowledge on
the target and settings. The attacker then may send a
message pretending to be of a legitimate entity [148].

ii. Clone Phishing: Clone phishing is when a legitimate
email that was sent previously is cloned into a malicious
email which generally contains a link to the phisher’s
website [148].

iii. Whaling: Whaling is similar to spear phishing except that
it is mainly targeted at senior corporate executives and
government officials [148].

(c) Code Injection Attack: A code injection attack focuses on de-
positing malicious executable code (machine code) into the ad-
dress space of the victim’s process, and then authorizes control
over to this code [149].

i. Structured Query Language (SQL) Injection: SQL in-
jection executes malicious SQL database statements by
taking advantage of the insufficient validation of data
flow from the user to the database [150].

ii. Script Injection: During script injection or Cross-Site
Scripting (XSS) a malicious script, generally written in
JavaScript is injected into the content of the website. The
malicious script is capable of leaking sensitive informa-
tion from the site [151].

iii. Shell Injection: Shell injection attacks sometimes re-
ferred to as command injection attacks inject malicious
commands into a system to perform malicious activi-
ties [152].

Table 7 details on some of the notable attacks on the IoT space for
each layer.

4.2.3. Datasets
The prominently used datasets for experimental analysis on deep

learning, big data technologies and/or for IoT security or network
security are as follows.

i. UNSW-NB15: The UNSW-NB15 dataset was developed in 2015,
which consists of a combination of real modern normal and con-
temporary synthesized attack data. This is a labelled dataset and
consists of a total of 47 features. Further, this dataset consists of
9 attack types, namely fuzzes, analysis, backdoors, DoS, exploits,
generic, reconnaissance shellcode, and worm attack types [157].

ii. NSL-KDD: This dataset is an extension of the KDDCUP99 dataset,
where selected records are extracted from the entire KDDCUP99
dataset. In study [158], the authors have asserted that the KDD-
CUP99 dataset highly affects performance of evaluated systems
and results in poor evaluation of anomaly detection techniques.
Therefore, they have proposed the NSL-KDD, which excludes
redundant records in the train set, the proposed test sets do not
contain duplicate records, on the hand in each difficulty level
the number of records selected are inversely proportional to the
percentage of records in the KDDCUP99 dataset, the train and
test sets records are reasonable. NSL-KDD dataset comprises of
four attack types, namely DoS, User to Root (U2R), Remote to
Local (R2L), and Probe attacks.

iii. KDDCUP99: The KDDCUP99 dataset was created by the au-
thors of study [159] based on the DARPA’98 IDS evaluation
program [160]. Additionally, this dataset is widely used among
researchers for the evaluation of anomaly detection approaches.
The DARPA’98 dataset is about 4 GB of tcpdump data of 7
weeks of network traffic. Further, the training data of the dataset
consists of approximately 4,900,000 single vector connections in
which each consists of 41 features, labelled as attack or normal
data. This dataset comprises of 4 types of attacks, DoS, U2R, R2L,
and Probe attacks [158].
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Table 7
Notable attacks on IoT.

Attack layer Attack type Year Title Description Results/Impact Citation

Physical Botnet 2012 Carna botnet Used to measure the extent of Internet Carna found total 1.3 billion internet
protocol version 4 (IPv4) addresses in
use, where 141 million were behind a
firewall and 729 million reverse DNS
records. Remaining 2.3 billion IPv4
address was not used

[153,154]

Network DNS
spoofing/DNS
hijacking

2017 – Used DNS hijacking to attack 40
government agencies, telecom
companies, and internet titans across 13
countries for 2 years

Update DNS records of organization so
information will be routed to hackers
defined servers

[155]

Application Malware 2016 Mirai Attack on Dyn DNS service provider.
Mirai malware installed on large number
of IoT devices

High-profile websites inaccessible such
as Twitter, The New York Times for
approximately 5 h in the United States

[156]

iv. WSN-DS: WSN-DS dataset was created by [161] based on net-
work traffic in wireless sensor nodes. This dataset consists of a
total of 26 labelled features. Additionally, the WSN-DS consists
of 4 types of DoS based attacks, namely black hole attacks,
grayhole attacks, flooding attacks, and scheduling attacks [161].

v. IoTPOT: IoTPOT dataset was developed by [162] which con-
sists of IoT network traffic. This dataset consists of normal and
malware based network traffic, primarily used in DDoS based
attacks. The dataset is classified based on 5 malware families,
namely ZORRO, GAYFGT, nttpd, KOS, and *.sh [162].

vi. Kyoto: Kyoto dataset was built in 2006 for Intrusion Detection
System (IDS) research. This dataset is built based on 3 years
of real network traffic data. Further, 14 features derived from
the KDDCUP99 and as well as additional 10 features have been
included in this dataset. Further, their honeypot data consists of
a total of 50,033,015 normal sessions and 43,043,255 attack ses-
sions. In addition, it is discussed on the 3 attack types, exploits,
shellcodes, and malware [163].

vii. CICIDS2017: The CICIDS2017 dataset was created by the Cana-
dian Institute for Cybersecurity (CIC) in 2017. It contains real
world benign and attack network traffic data. This dataset con-
sists of 225,746 records with a total of 80 features. Additionally,
this dataset consists of Brute Force, Web, DoS, Botnet, and DDoS
types of attacks [164].

viii. Coburg Intrusion Detection Data Sets (CIDDS)-001: CIDDS-
001 is a labelled flow based dataset developed for anomaly
based NIDS evaluation. The dataset consists of normal and attack
traffic data collected over the period of four weeks. Further, this
dataset consists of 14 features and 4 types of attacks such as ,
DoS, PortScan, Brute Force, and Ping Scan [165].

Table 8 describes the attack types that each dataset contains and
list the studies that have used the dataset for experimental analysis on
deep learning, big data technologies and/or for IoT security or network
security.

An in depth discussion of the IoT security application areas, security
based attacks on IoT on each layer, and datasets used for deep learning
based experimental analysis, has been presented in this subsection.

4.3. Big data technologies

This subsection discusses the existing noteworthy big data tech-
nologies implemented in the context of deep learning for IoT security
or network security. Furthermore, the big data technologies, their
development platform, their latest stable versions, their latest stable
release dates, and some studies that have applied big data technologies
with either deep learning and/or for IoT security or network security
have been tabulated in Table 9.

4.3.1. Apache Hadoop
Apache Hadoop is a batch processing tool that provides scalability

and fault-tolerance. Hadoop supports petabytes of data and enables
applications to be run on multiple nodes. Furthermore, the log data
is broken down into blocks and is sent to the nodes in the Hadoop
cluster. Additionally, Hadoop is popular due to its capability of quick
retrieval, searching log data, scalability, faster insertion of data, and
fault tolerance [167].

4.3.2. Apache Spark
Apache Spark was developed as a unified model for distributed data

processing by University of California, Berkely in 2009. Spark extends
the MapReduce model with data sharing abstraction called as Resilient
Distributed Dataset (RDD). Using this extension, the Spark can capture
and process workloads such as, SQL, streaming, machine learning, and
graph processing [50].

4.3.3. Apache Storm
Apache Storm is an open source real-time computation system.

Storm enables convenient processing of streams of data in real-time.
Further, it is capable of processing million tuples per second per node.
Storm is fast, scalable, fault-tolerant, and user friendly. Moreover,
storm provides capabilities to incorporate databases in the process-
ing [51].

Table 9 details the development platform of big data technolo-
gies, the latest stable release version,latest stable release date, and
some studies that have applied big data technologies with either deep
learning and IoT security or security attack detection.

Here, we discussed some of the prominently used big data technolo-
gies in the context of deep learning and IoT security.

5. State of the art deep learning for IoT security using big data
technologies

This section comprises of three subsections. The first subsection
presents insights of the state-of-the-art techniques in cases where deep
learning has been applied for IoT security. The second subsection
details on the application of deep learning along with big data tech-
nologies. Finally, a comprehensive review of deep learning, big data
technologies and IoT security has been presented.

5.1. Deep learning and IoT security

This sub section discusses the state-of-the-art techniques used for
IoT security using deep learning techniques. The IoT has gained so
much attention that even the military use IoT. Internet of Battlefield
Things (IoBT) is referred to as the usage of IoT for military operations
and defensive applications. The authors of study [89] have identified
that injection of malware is the most common attack. Further, they
have proposed a deep Eigenspace learning approach to detect IoBT
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Table 8
IoT based attack datasets.

Attacks UNSW-NB15 NSL-KDD KDD CUP99 WSN-DS IoTPOT Kyoto CICIDS 2017 CIDDS-001

Normal � � � � � � � �
DoS � � � � � �
Probe � �
R2L � �
U2R � �
Fuzzers �
Analysis �
Backdoors �
Exploits � �
Generic �
Reconnaissance �
Shell code � �
Worms �
Web �
Botnet �
DDoS �
Malware � �
PortScan �
BruteForce � �
Infilteration
PingScan �

Studies [25,30,45] [24,30,45] [30,80] [30] [23] [30] [30,86] [166]

Table 9
Commonly used big data technologies.

Big data technologies Development platform Latest stable release version Latest stable release date Studies

Apache Hadoop Java 3.1.1 August 8th 2018 [30,44,81,82,109,110]
Apache Spark Scala, Java, Python, and R 2.4 April 23rd 2019 [29,30,77,78,81,82,109,110]
Apache Storm Clojure and Java 1.2.2 May 17th 2018 [44]

malware through the device Operational Codes (OpCode) sequences.
The OpCodes are transmuted into the vector space and deep Eigenspace
learning approach is used to classify benign and malicious application.
Additionally, they have evaluated the sustainability of the proposed
approach against junk code insertion attacks. They have evaluated their
model based on four evaluation metrics, namely accuracy, precision, re-
call, and f-measure. In addition, they have compared two other similar
studies based on the metric. Comparatively, their proposed approach
has achieved better accuracy of 99.68%, precision of 98.59%, recall
of 98.37%, and f-measure of 98.48%. Further, the proposed model has
been able to mitigate junk code insertion attacks [89]. Nevertheless,
the datasets used in this study is a self-created dataset. The quality
and validity of the data is debatable. Furthermore, a limited number
of malware samples are included in the dataset.

IoT devices which are more easily compromised compared to desk-
top computers has led to a rise in IoT botnet attacks. In order to mitigate
this threat, the authors of [23] have proposed the use of DAE to
detect anomalous network traffic from compromised IoT devices. Deep
learning has been applied on the extracted behaviour snapshot of the
network. To evaluate their model, they have infected nine commercial
IoT devices with the Mirai and BASHLITE botnets. The model was
evaluated based on the True Positive Rate (TPR), False Positive Rate
(FPR), and attack detection time. The TPR results received was 100%,
while the mean of the FPR was 0.007 ± 0.01 for their proposed model.
Furthermore, their model took 174 ± 212 ms to detect the attacks.
However, the model has only been evaluated based on two botnets,
namely the Mirai botnet and the BASHLITE botnet. Additionally, the
proposed model has only been compared with three machine learning
models. Comparison of other deep learning models will further clarify
on the accuracy of the model.

Deep learning with its capabilities such as, high-level feature ex-
traction capability, self-taught, and compression capabilities makes it
an ideal hidden pattern discovery that aids in discriminating attacks
from benign traffic. Therefore, study [24] proposes a deep learning
approach based on Stochastic Gradient Descent (SGD), which enables
the detection of attacks in the social IoT. The model has been evaluated

based on accuracy, precision, recall, f1-measure, detection rate, and
False Alarm Rate (FAR). The result show that deep models have out-
performed shallow models in every evaluation aspect. Additionally, it is
discussed that deep learning exhibits better performance compared to
traditional machine learning models. In contrast, the attacks evaluated
has been limited, such as DoS, Probe, R2L, and U2R attacks. Likewise,
only a single dataset has been used to evaluate the model, the NSL-KDD
dataset.

Besides, the authors of study [25] have proposed a deep learning
technique that enables intrusion detection in IoT networks using the Bi-
directional LSTM Recurrent Neural Network (BLSTM RNN). The model
has been evaluated using seven metrics, namely accuracy, precision,
recall, f1-score, miscalculation rate, FAR, and detection time. The
proposed model was able to achieve a high accuracy of 95.7% . On
the other hand, the proposed model has been evaluated on a single
dataset. Also, the model was not compared with similar models in terms
of evaluation.

Furthermore, in study [85] the authors have proposed a deep learn-
ing model using LSTM to detect malware in IoT based on OpCodes
sequence. The model has been evaluated based on accuracy, TP, FP,
TN, and FN. The accuracy acquired was 98% on new malware, malware
not in the training data. On the contrary, the emulated dataset has
been used in this study. Additionally, there has been limited dataset
samples/files, with a total of 180 malwares and 271 benign files.

Additionally, authors of study [80] have introduced a framework
for IoT based on Software Defined Networking (SDN). They primarily
focused on IoT applications, where security is critical, like smart cities.
They have utilized the RBM to deploy an IDS to detect anomalies.
They have compared their proposed approach with machine learning
algorithms and have evaluated them based on eight metrics, TP, FP, TN,
FN, precision, recall, False Discovery Rate (FDR), and False Negative
Rate (FNR). They were able to achieve a precision rate of more than
94%. Nevertheless, they have opted for the KDD99 dataset, this is
an outdated dataset that contains attacks of the year 1999. Including
recent datasets that contain modern day attacks will enhance the reli-
ability of the model. Due to the fact that this dataset is outdated, they
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only contain limited attack types such as, DoS, Probe, Reconnaissance,
R2L, and U2R.

In study [45] the authors have discussed that IoT applications face
major security issues in confidentiality, integrity, privacy, and availabil-
ity. Therefore, they have proposed a model for cyberattack detection in
the IoT environment. A total of four evaluation metrics have been used
for model evaluation, which includes accuracy, precision, recall, and
detection time. Their results revealed the robustness of the accuracy
and significant time saving. However, the accuracy of the models have
been above 95% for the NSL-KDD dataset whereas for the UNSW-
NB15 all models have achieved an accuracy less than 95%. Further,
the time also increases in the UNSW-NB15 compared to the NSL-KDD
dataset. NSL-KDD is an extension of the KDD99 dataset with certain
modifications made. Whereas, UNSW-NB15 dataset is a more recent
dataset containing modern day attacks. It can be seen from the result
that the model performs better on older datasets and performance
decreases on recent datasets.

Additionally, the authors in study [86] have proposed and im-
plemented a four deep learning algorithms and compared it against
traditional machine learning algorithms. Further, they have identi-
fied that the hybrid LSTM + CNN algorithm have outperformed all
other algorithms compared to deep learning and machine learning
algorithms, with an astonishing accuracy of 97.16%. Comparatively,
all deep learning models have outperformed the machine learning
models. In contrast, the dataset was manipulated to balance the data
as it consists of highly unbalanced data. In addition, limited model
evaluation metrics were used such as, accuracy, precision, and recall.
Further, evaluation metrics such as, f-measure, MCC, and TPR, may be
of added value to the model.

Besides, the authors of study [107] have proposed a deep learning
approach with Dense Random Neural Network (DRNN) to predict the
probability of an ongoing network attack based on the packet capture.
Their methodology primarily focuses on online detection of network
attacks against IoT gateways. They have found that the results they
obtained are comparable to those of the results from the simple thresh-
old detector. Nevertheless, their study only focuses on limited types of
attacks in the IoT space such as, UDP flood, TCP SYN, sleep deprivation
attack, barrage attack, and broadcast attack. Further, the results have
not been compared with other algorithms or with similar studies.

Ransomware, is a fast growing malware that has affected various
industries in various countries. Therefore, study [87] proposes a model
that uses LSTM and CNN to distinguish ransomware and goodware in
networks. The evaluation metrics used for the model were f-measure,
TPR, FPR, and MCC. It is claimed that the model acquires an f-measure
of 99.6% with a TPR of 97.2% in the classification of ransomware. It is
also described that the model has been able to identify new ransomware
in a timely and accurate fashion. However, the study used an emulated
dataset. Additionally, the model only works in identifying ransomware,
not other types of network based attacks such as DoS attacks.

Table 10 discusses on the application area, deep learning algo-
rithms, limitation of the study and the citation of the discussed state
of the art for deep learning and IoT security.

The above discussed studies have implemented deep learning archi-
tectures for IoT security and have evidently proven that deep learning
can be applied for IoT security. However, these studies have their own
limitations that needs to be addressed in future studies.

5.2. Deep learning and big data technologies

This sub section discusses the state-of-the-art techniques used for
deep learning and big data technologies. With the vast amounts of data
generated by various industries, leads to the interest in developing big
data tools for analysis. Thus, authors of study [108] have proposed a
framework that incorporates Apache Spark and a Multi-Layer Percep-
tron (MLP) using cascade learning. There framework composes of three
stages, first stage is the input of dataset into Apache Spark, second stage

is the cascade learning method, and in the third stage deep learning
algorithm is applied. The framework has been evaluated based on two
metrics, f1 score and accuracy. They have claimed that they have been
able to obtain a model that conducts large scale big data analysis within
short periods of time, with lesser computational complexity and with
significant higher accuracy. Needless to say, the accuracy and f1 score
of the proposed model does not reach even 75% for all the stages.
Furthermore, limited big data technologies have been incorporated into
the proposed framework.

Besides, in study [82] the authors have strongly claimed that ma-
chine learning techniques are not robust enough to detect sophisticated
attacks in existing IDS. Therefore, they have proposed a distributed
approach for abnormal behaviour detection in large scale networks.
They have used the DBN, multi-layer ensemble SVM, and Apache Spark
to achieve their model. Their model has been evaluated using Area
under Receiver Operating Characteristic (ROC), precision, recall, f-
measure and training time. The model has shown high performance
in detection of abnormal behaviour in a distributed way. Further, this
model addresses the feature engineering step for ensemble learning,
especially with large datasets. However, the training time for their
proposed approach has been significantly higher compared to the other
models they have evaluated. Further, the number of features in the
dataset make an impact on the accuracy of the model.

Additionally, the authors in study [168] have designed and imple-
mented a framework that trains DNN using Apache Spark. Training of
deep learning models requires large amounts of data and is computa-
tional extensive. They have claimed that their proposed framework can
accelerate the training time by distributing the model replicas, through
the stochastic gradient descent, among nodes for data in Hadoop Dis-
tributed File System (HDFS). The framework was evaluated based on
run time, accuracy, and error rate. The proposed framework has shown
satisfactory performance of time and accuracy. In contrast, the run time
of the model shows an increase when there is lesser number of nodes.
Moreover, it is seen that the error rate decreases only as the number of
iterations increase.

Furthermore, study [78] has proposed a framework to perform
intruder detection and analysis using RNN and rule association mining.
The framework employs Apache Spark for training after the dataset
is normalized. The framework has been evaluated using the amount
of correctly classified instances, incorrectly classified instances, Kappa,
mean absolute error, root mean squared error, relative absolute error,
and root relative squared error. the study was able to achieve 199 cor-
rectly classified instances (100%) and 0 incorrectly classified instances
(0%). Further, a Kappa score of 1 has been achieved. On the other hand,
the study had limited the model for intruder detection only. In addition,
other evaluation metrics have not been considered for the model, such
as training time, precision, and recall.

Netflow, a protocol used for network auditing analysis, and moni-
toring can be a source of information for incident detection and forensic
purposes. Therefore, study [109] has proposed a method that incorpo-
rates NetFlows with Extreme Learning Machine (ELM) classifier, trained
in a distributed environment of Apache Spark for malware activity
detection. The model has been evaluated based on TPR, FPR, precision,
accuracy, error rate, and f-measure. The proposed model yields higher
accuracy, less error rate, and higher f-measure in most of the scenarios.
However, in certain scenarios the method is executed the accuracy is
deemed as the second highest compared to other models evaluated.
Further, various big data technologies have not been considered.

Besides, the authors of the study [110] have proposed a DDoS de-
tection method that uses neural networks, implemented on the Apache
Spark cluster. By applying the Hadoop HDFS for its capability of
creating fault-tolerant applications and efficiency in handling of large
datasets, combined with neural networks, they were able to achieve an
accuracy of 94%. They have affirmed that their system is capable of
handling high velocity, and high volume network flow in real-time and
is capable of distinguishing between genuine and attack data. Further,

509



M.A. Amanullah, R.A.A. Habeeb, F.H. Nasaruddin et al. Computer Communications 151 (2020) 495–517

Table 10
Deep learning and IoT security.

Application area Deep learning architecture/model Limitation of the study Citation

Malware detection Convolutional network ∙ Self-created dataset [89]
∙ Limited malware samples in dataset

IoT botnet attack detection DAE ∙ Model evaluated only on Mirai and BASHLITE botnet [23]
∙ Proposed model compared with 3 machine learning
algorithms

Attack detection SGD ∙ Limited to DoS, Probe, R2L, and U2R attacks [24]
∙ Evaluated on a single dataset, NSL-KDD

Intrusion detection LSTM + Bi-directional Recurrent Neural Network
(BRNN)

∙ Evaluated on a single dataset [25]

∙ Model not compared with similar models

Malware detection LSTM + Bidirectional Neural Networks (BNN) ∙ Emulated dataset [85]
∙ Limited dataset samples/files, 180 malwares and 271
benign files

Intrusion detection RBM ∙ Outdated dataset, KDD99 used [80]
∙ Limited attack types, DoS, Probe, Reconnaissance, R2L,
and U2R

Intrusion detection Deep Feed Forward Neural Network (DFNN) +
backpropagation

∙ NSL-KDD dataset accuracy above 95%, but accuracy
drops on the UNSW-NB15 dataset, all < 95%

[45]

∙ Time has a significant increase in the UNSW-NB15
dataset

IoT network cybersecurity CNN + LSTM ∙ Manipulated dataset to become a balanced dataset [86]
∙ Limited model evaluation metrics, Accuracy, precision,
and recall only

DDoS attack detection DRNN ∙ Limited network attacks discussed, UDP flood, TCP SYN,
sleep deprivation attack, barrage attack, and broadcast
attack

[107]

∙ No comparative analysis of similar studies for
evaluation of model

Ransomware detection LSTM + CNN ∙ Emulated dataset [87]
∙ Detection of ransomware only

they have claimed that Apache Spark is suitable for processing of
large volume network traffic. Nevertheless, the accuracy can be further
nourished using different deep learning algorithms or by incorporating
optimization methods. Also, the model is only applicable to detect a
single attack type.

Additionally, in study [77] the authors have proposed a system that
incorporates two approaches, namely the anomaly-based distributed
ANN, and signature-based approach. For the anomaly-based detector,
BigDL deep learning library was used over Apache Spark. For the
signature-based approach, Suricata an open source IDS was used. Their
models have been evaluated based on FPR, accuracy, and DR. Their hy-
brid model has outperformed the traditional signature-based detector,
and neural based anomaly-detector. On the contrary, limited metrics
have been used to evaluate the model. Likewise, the model is only
limited to detect a single type of attack.

Further, the authors of study [81] have proposed an anomaly de-
tection method that uses the RBM and RNN for anomaly detection
in power grids. The authors have primarily used Apache Hadoop and
Apache Spark for analysing the heterogeneous data sources in power
big data, and to apply their deep learning framework. Their model
has been evaluated based on accuracy, FPR, and FNR. They were able
to achieve high accuracy rates, low FPR, and low FNR. However, the
model has not been trained on the benchmark datasets. In addition,
limited evaluation metrics have been used for model evaluation.

Besides, in study [44] the authors have discussed on a framework
for real-time intrusion detection. They have used a CC4 neural network
which was proposed in study [169] and the MLP. Further, they have
used Apache Storm to stream the data for real-time processing. They
have asserted that the training time sees a significant reduction when
using Apache Storm compared to the regular methods. They have eval-
uated the model based on accuracy, FPR, training time, and FNR. They
have achieved 89% accuracy and 4.32% FPR. Nevertheless, the average
accuracy falls below 90%, which can be further improved by incor-
porating other deep learning algorithms. In addition, the experiments
have been conducted only on a single dataset.

Table 11 describes the big data technologies, deep learning archi-
tectures, application area, limitations, of the studies that have incorpo-
rated deep learning and big data technologies.

The discussed studies have utilized deep learning architectures and
big data technologies primarily for security and have shown implemen-
tation success. Nevertheless, these studies have some limitations that
can be overcome in future studies.

5.3. Deep learning and big data technologies for IoT security

This sub section discusses the relationship among the three promi-
nent areas of our study. Further, we have elaborated on the state-of-
the-art techniques for deep learning, big data technologies and IoT
security. Additionally, we have tabulated the combination of the studies
used in the state-of-the-art and identified the use of deep learning, big
data technologies, and IoT security in each of these studies. Finally, we
have discussed some of the prominently used cloud infrastructure that
supports deep learning, big data technologies, and IoT security.

Based on our critical analysis we have made effort to address the re-
lationship between deep learning, big data, and IoT security. However,
past studies have only incorporated either deep learning and IoT secu-
rity or deep learning and big data technologies. Furthermore, minimal
study has been conducted on deep learning, big data technologies, and
IoT security. This clearly makes it evident that there is a niche area for
future researchers to address. Moreover, with our maximum effort of
critically analysing a variety of studies, we have been able to identify
only two studies that have discussed on all the three components. The
advantages and shortcomings of the two studies have been described
below.

Due to the exponential growth of various interconnected devices,
innovative attacks have being conducted on these devices. Therefore,
it is necessary to come up with innovative and fool proof methodologies
to prevent catastrophic incidents. Hence, authors of [29] have de-
signed a big data framework for intrusion detection using classification
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Table 11
Deep learning and big data technologies.

Big data
technologies

Deep learning
architecture/Model

Application area Limitation of the study Citation

Apache Spark MLP Healthcare & tourism ∙ Accuracy and f1 score < 75% [108]
∙ Limited big data technologies used

Apache Spark DBN Network abnormal behaviour detection ∙ The training time is high compared to other models [82]
∙ Number of features in the dataset has an impact on
the accuracy

Apache Spark DNN Big data applications ∙ Lesser the nodes, increase of run time [168]
∙ The error rate decrease only as iterations increase

Apache Spark RNN Intruder detection ∙ Limited to intruder detection [78]
∙ Other metrics not considered such as training time,
precision, and recall

Apache Spark ELM Malware detection ∙ In scenario 1, the accuracy is second highest
compared to other algorithms

[109]

∙ Other big data technologies not explored

Apache Spark ANN DDoS attack detection ∙ Accuracy can be improved using other deep learning
models

[110]

∙ Limited to single attack

Apache Spark AE DDoS attack detection ∙ Other metrics not discussed such as training time [77]
∙ Limited to a single attack

Apache Hadoop DRBM Anomaly detection ∙ Model does not use benchmark datasets [81]
Apache Spark ∙ Other metrics not discussed such as training time

Apache Storm CC4 neural network + MLP Real-time intrusion detection ∙ Average accuracy falls below 90% [44]
∙ Experimented on a single dataset

methods such as, DNN, SVM, random forest, decision tress, and naïve
Bayes. The metrics used for evaluation are accuracy, recall, false rate,
specificity, and prediction time. Apache Spark has been used as a
platform for implementing intrusion detection in smart grids using big
data analytics. They have claimed that the DNN algorithm gets the
highest accuracy for the raw dataset. Nevertheless, the highest accuracy
gained was by the DNN model, but the accuracy is less than 80%.
Additionally, the DNN prediction time is higher compared to other
models.

Besides, the authors in this study [30] have discussed the advance-
ments in hardware, software, and network topologies, including the
IoT, pose security threats that require modern day approaches to be
implemented. Thus, they have proposed a DNN based IDS. The DNN
used is MLP along with FFNN. It has been discussed that the framework
has been developed based on big data technologies, Apache Spark
cluster computing platform. The Apache Spark cluster computing is set
up over the Apache Hadoop Yet Another Resource Negotiator (YARN).
They have evaluated their model based on accuracy, precision, recall,
f-score, TPR, and FPR. Moreover, their model has outperformed all
other traditional machine learning approaches in both HIDS and NIDS.
However, in the multi-class calcification the accuracy drops below 90%
for certain attacks in some of the datasets. Further, the DNN’s were not
trained on the benchmark IDS datasets

Table 12 compares studies based on the inclusion of deep learning,
big data technologies, and IoT security.

As seen from Table 12, only deep learning and IoT security or deep
learning and big data technologies have been incorporated in these
studies. Implementation success of studies [29] and [30], convinces re-
searchers that deep learning and big data technologies can be combined
for IoT security. Therefore, due to the limited study conducted on these
areas, we encourage future researchers to implement models based on
a variety of deep learning algorithms, and big data technologies for IoT
security.

5.4. Cloud infrastructure for deep learning, big data technologies, and IoT
security

This subsection details the cloud infrastructures that can be applied
to deep learning, big data technologies, and IoT security. Deep learning
has shown promising results in many domains, however deep learning

maybe quite computational extensive on large scale applications. This
in turn, forces the inclusion of additional computational resources.
When deep learning is applied on a massive scale application, existing
resource may be limited. Hence, cloud infrastructure can be utilized
to solve this challenge as they contain vast amounts of resources
such as, multi-core CPU, multi-core GPU, memory, and bandwidth.
Additionally, some cloud infrastructures even provide support for big
data technologies and IoT.

We have tabulated some of the popular cloud services and their
support for deep learning, big data technologies and IoT in Table 13.

The expanding possibilities of the cloud have contributed to the
growth of Crimeware-as-a-Service (CaaS), which enables cybercrimi-
nals with limited technical expertise to conduct organized and auto-
mated attacks [170]. There are many types of services provided by CaaS
such as, shadow broker services, Neutrino exploit kits, Mirai devices
for rent, DiamondFox modular malware services, Tox ransomware-as-
a-service, and phishing-as-a-service.

Fig. 6 illustrates the various types of CaaS available.
The above section of this paper had discussed on the state-of-the-art

of deep learning, big data technologies and IoT security. Moreover, the
support for the three aforementioned domains in the cloud has been
discussed. Finally, we introduce on CaaS and some of its types.

6. Open challenges and future directions

This section highlights the most significant research challenges in
terms of IoT security using deep learning and big data technologies.
The state of-the-art capabilities in IoT security, deep learning, and big
data technologies have been examined to determine the major research
challenges, suggestions, and future directions.

6.1. Security threat detection

Due to high velocity and variety in multiple domain IoT applica-
tions, the complex structure of data makes it more challenging to detect
security threats. Further, choosing the recognized set of features for
security analytics in deep learning algorithms can be interesting [171].
Existing mechanisms lack efficiency in finding the hidden correlation
between these features. Furthermore, emerging deep learning algo-
rithms can handle the hidden parameters from the IoT application.
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Table 12
Deep learning, big data technologies and IoT security.

Study Deep learning Big data technologies IoT security

[44] � �
[168] � �
[78] � �
[110] � �
[108] � �
[81] � �
[23] � �
[24] � �
[25] � �
[85] � �
[80] � �
[45] � �
[107] � �
[82] � �
[109] � �
[77] � �
[89] � �
[86] � �
[87] � �

Table 13
Cloud infrastructure for deep learning, big data technologies and IoT.

Cloud services Support for deep learning Support for big data technologies Support for IoT

Google Cloud � � �
AWS Sagemaker � � �
Deep Cognition � � –
IBM Watson � � �
Microsoft Azure � � �
Oracle Cloud � � �
Alibaba Cloud � � �
TensorPad � – –

Moreover, deep learning is capable of finding the correlation in the
variety of data. Additionally, it is possible to acquire high detection rate
to detect zero-day attacks more efficiently [172]. Lastly, compared to
traditional approaches, the distribution representation of deep learning
algorithm can handle multiple feature selection with tremendous data
to extract the information for multi-domain IoT applications [173].

6.2. Training duration

Existing techniques take longer time to train the model for ac-
curate detection. As well as, they require large datasets to train the
model [174]. These two conditions are major bottlenecks in the current
mechanism, however the capability of deep learning algorithms to use
less training duration and dataset enables to handle the model effi-
ciently. In addition, batch size might also impact the time consumed for
training due to the accumulation of network upon weight update [85].
These challenges should be handled by the option of multiple layering
in deep learning, which helps to weigh and recognize the set of specific
parameters from datasets. Lastly, the confined processing and storage
facilities further hinders the model’s training time. In contrast, the
big data technologies and cloud based architecture shall enhance the
efficacy of the model by curtailing the training duration [175].

6.3. Time complexity

Most of the existing detection techniques have been developed for
batch processing application and not for real-time detection. Time
complexity plays a vital role in detecting threats in IoT applications,
which contains more streaming data. Further, it helps to identify the
impact of several attributes involved in security threats. Another study
has highlighted that irrespective of using massive real time data the
most common existing approaches are ineffective in classifying in-
trusions as they employ shallow learning [25]. Moreover, these time
complexity issues can be resolved easily in deep learning approach by
implementing GPU component, as it aids in real time processing and is

Fig. 6. CaaS types.

highly efficient in analysis of the threat in real-time [39]. Furthermore,
the employment of Apache Spark or Apache Hadoop is effective in
minimizing the time complexity [108].

6.4. Computing-in-memory

In-memory processing is a trending development technology for
processing the data stored in the in-memory database. It plays a vital
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Table 14
Summary of recommendation for research challenges and future research directions.

Challenge Recommendation Future research direction Citation

Time complexity ∙ Employ optimal features for predicting the total
job execution time and for detecting attacks

∙ Big data technologies and GPU based architecture [25,39,108,176,
177]

∙ Control flow paths ∙ Detection parameter for real-time analysis

Training duration ∙ Small, medium and large batch size for training ∙ Adopting deep leaning based LSTM and DBN [30,82,85,175,
178]

∙ Large volumes of attack data ∙ Shorter training time
∙ Extreme and ensemble learning machine-based
classification

∙ Capable to handle large volume of data for
processing and storage

∙ AE to remove noise

Computing-in-memory ∙ Streaming analytics ∙ Real-time processing [2,179,180]
∙ Memory-centric architecture ∙ Big data technologies
∙ Data loading ∙ New analytics model

Security threat detection ∙ Distributed or service oriented model to handle
high velocity and variety of data

∙ Incorporating big data technologies and hybrid
deep learning algorithms

[171–173]

∙ Early detection
∙ Fault tolerance

Computational and energy constraint ∙ Low-dimensional domain ∙ Lightweight model [25,29,82,181]
∙ Dimensionality reduction ∙ MLLib library in Apache Spark
∙ Large scale big data analytics ∙ Edge or cloud computing
∙ Distributed algorithms ∙ Distributed system

∙ High-speed networks (5G)

Security at edge ∙ Device identification ∙ Performing data analytics at edge-modernized
framework

[45,176,180,
182]

∙ Access control
∙ Fault tolerance
∙ Hybrid algorithm for analytics

role in streaming analytics and memory-centric architecture. Conven-
tional techniques are based on disk storage and relational database
which face multiple challenges to handle the modern data volume from
IoT devices. Further, these techniques become inadequate to integrate
for security analytics which makes the organizations to be more vul-
nerable in terms of security. In a relational database, data are stored
in multiple tables and need to use SQL to do any query processing.
These existing approaches further pose difficultly in combining and
aggregating the data for processing and SQL is designed to fetch rows
of data before processing. The above mentioned issues will be easily
handled by in-memory processing for security analytics. The stored
data is rapidly accessed when it is saved in RAM or flash memory
compared to disk storage. Further, in-memory processing allows data
to be analysed in real-time. Real-time processing helps to make faster
reporting and decision making for a security threat. Modern big data
technologies like Apache Spark and Apache Flink process their data
in-memory. Incorporating these technologies to develop new security
analytics will enhance the performance and efficiency for security
analytics [2,179,180].

6.5. Computational and energy constraint

Computational complexity is one of the most important challenges
in the field of IoT device security, deep learning, and big data, research
areas. IoT devices are operated in the low power batteries and their
CPUs have lower clock rates. Performing any computations in the
IoT devices should be fast and shall minimize the straightforward
operations [61]. Instead, computation should be carried out in the
cloud or edge computing. Similarly, a study has highlighted that im-
plementing algorithmic based security system should focus more on
producing lightweight computation system for analysis [182]. On the
other hand, the growth of big data as well as increasing computation
power benefits the deep learning techniques to grow rapidly, which in
turn have been used in serval industries [25]. Further, computations
can be optimized using the properties of distributed computing and
distributed algorithms. The operations of these algorithm are performed
in the hybrid network, in which the jobs are distributed to various
machines to improve their efficiency [30]. Some of the above discussed
challenges have been easily handled by the Apache Spark streaming

big data technological framework, which is capable of utilizing the
RDD, Dstreams and parallel computing features to process the data with
feasible computation [108].

6.6. Security at edge

Edge computing platform enables more scalability for computa-
tional processes and storage power for IoT devices. Further, it provides
opportunities to the devices located near to the data sources, which
permit intelligent operation to be performed away from the centralized
point of infrastructure. Meanwhile, cloud edge infrastructure in the
network keeps the IoT data source, especially with regards to network
computing to furnish an intelligent edge services to detect any threat
in real-time. Moreover, IoT devices do not have sufficient resources to
store and analyse the data for any threat [175]. Thus, adopting edge
computing will facilitate to handle the above challenges by distributing
the process to multiple resource over cloud for analysis [176]. Lastly,
integrating deep learning and big data technologies for security analyt-
ics of IoT devices provide more efficient processing system to effectively
and accurately detect threats.
Table 14 summarizes the challenges, the recommendations, and future
research directions.

This section had highlighted on the major research challenges in
incorporating deep learning and big data technologies for IoT security.
Furthermore, the challenges have been tabulated and recommendation
and future research directions have been presented.

7. Conclusion

The expanding population of IoT devices has contributed to the
consideration of security risks associated with them. IoT devices are
proven to be vulnerable due to the recent increasing attacks such as,
the Carna and Mirai botnets. Additionally, IoT devices produce large
volume, velocity and variety of data. This makes existing solutions less
efficient and require modern day solutions. In this regard, deep learning
has been widely accepted amongst researchers and organizations due to
their high accuracy, ability to learn deep features, and minimal human
supervision. In addition, big data technologies have also been of an
interest due to their capability in processing large amounts of data,
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along with their capability to process data in a variety of environments
such as real-time, batch, and stream. Hence, this study had investigated
the possibilities of incorporating deep learning and big data technolo-
gies for IoT security. Our findings indicate that many studies have
incorporated deep learning with IoT security or deep learning with big
data technologies, however, there is a lack of research in incorporating
deep learning and big data technologies for IoT security, neverthe-
less, our investigations had revealed that two studies have proven
the efficiency and feasibility of incorporating deep learning and big
data technologies for IoT security over traditional models. Considering
the various IoT security requirements discussed (see Section 3.3) and
the challenges discussed (see Section 6) we have planned to propose
a novel framework for IoT security based on deep learning and big
data technologies and perform an experimental analysis to prove its
efficacy, in the near future. Furthermore, we will attempt to negate the
challenges in terms of solving the issues discussed in incorporating deep
learning and big data technologies for IoT security.
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