Two-Stage Robust-Stochastic Electricity Market Clearing Considering Mobile Energy Storage in Rail Transportation

Mohammad Amin Mirzaei and Mohammad Hemmati and Kazem Zarek and Behnam Mohammadi-Ivatloo and Mehdi Abapour and Mousa Marzband and Ali Farzamnia (2020) Two-Stage Robust-Stochastic Electricity Market Clearing Considering Mobile Energy Storage in Rail Transportation. IEEE Access, 8. pp. 121780-121794. ISSN 2169-3536

[img]
Preview
Text
Two-Stage Robust-Stochastic Electricity Market Clearing Considering Mobile Energy Storage in Rail Transportation.pdf

Download (45kB) | Preview
[img]
Preview
Text
Two-Stage Robust-Stochastic Electricity Market Clearing Considering Mobile Energy Storage in Rail Transportation1.pdf

Download (2MB) | Preview

Abstract

This paper proposes a two-stage robust-stochastic framework to evaluate the effect of the battery-based energy storage transport (BEST) system in a day-ahead market-clearing model. The model integrates the energy market-clearing process with a train routing problem, where a time-space network is used to describe the limitations of the rail transport network (RTN). Likewise, a price-sensitive shiftable (PSS) demand bidding approach is applied to increase the flexibility of the power grid operation and reduce carbon emissions in the system. The main objective of the proposed model is to determine the optimal hourly location, charge/discharge scheduling of the BEST system, power dispatch of thermal units, flexible loads scheduling as well as finding the locational marginal price (LMP) considering the daily carbon emission limit of thermal units. The proposed two-stage framework allows the market operator to differentiate between the risk level of all existing uncertainties and achieve a more flexible decision-making model. The operator can modify the conservatism degree of the market-clearing using a non-probabilistic method based on info-gap decision theory (IGDT), to reduce the effect of wind power fluctuations in realtime. In contrast, a risk-neutral-based stochastic technique is used to meet power demand uncertainty. The results of the proposed mixed-integer linear programming (MILP) problem, confirm the potential of BEST and PSS demand in decreasing the LMP, line congestion, carbon emission, and daily operation cost.

Item Type: Article
Keyword: Battery-based energy storage transport, demand side-management, rail transport network, day-ahead market clearing, hybrid optimization technique, wind energy.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Department: FACULTY > Faculty of Engineering
Depositing User: SITI AZIZAH BINTI IDRIS -
Date Deposited: 21 Oct 2020 17:07
Last Modified: 21 Oct 2020 17:07
URI: https://eprints.ums.edu.my/id/eprint/26171

Actions (login required)

View Item View Item