THE DEVELOPMENT OF A BIOSENSOR FOR THE DETECTION OF PS II HERBICIDES USING GREEN MICROALGAE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

MAIZATUL SURIZA MOHAMED

UNIVERSITI MALAYSIA SABAH

SEKOLAH SAINS DAN TEKNOLOGI UNIVERSITI MALAYSIA SABAH 2006

THE DEVELOPMENT OF A BIOSENSOR FOR THE DETECTION OF PS II HERBICIDES USING GREEN MICROALGAE

MAIZATUL SURIZA MOHAMED

TESIS INI DIKEMUKAKAN UNTUK MEMENUHI SYARAT MEMPEROLEHI IJAZAH SARJANA

SEKOLAH SAINS DAN TEKNOLOGI UNIVERSITI MALAYSIA SABAH 2006

atau Laporan Projek Sarjana Muda (LPSM)

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UMS or other institutions.

15 August 2006

Maizatul Suriza Mohamed PS2001-001-290 770703-02-5994

ACKNOWLEDGEMENTS

The author wishes to thank the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for the National Science Fellowship awarded to Maizatul Suriza Mohamed and for the IRPA grant awarded to Prof. Datuk Dr. Kamaruzaman Ampon. The author is grateful to Prof. Datuk Dr. Kamaruzaman Ampon and Prof. Datin Dr. Ann Anton for their support and help through out the research. The author would also like to thank Assoc. Prof. Dr. Amran Ahmed, Universiti Malaysia Sabah for his expertise and guidance in the statistical analysis and to all my family and friends, for understanding, support and motivations.

Abstrak

PEMBANGUNAN BIOSENSOR UNTUK MENGESAN HERBISID FOTOSISTEM II DENGAN MENGGUNAKAN ALGA HIJAU

Biosensor PS II telah dibangunkan menggunakan sel alga hijau dari filum Chlorophyta. Biosensor ini adalah berdasarkan keupayaan dan kecenderungan sesetengah residu herbisid (herbisid fotosistem II) merencat tapak pelekatan penerima/penderma elektron primer fotosistem П. plastokuinon pada protein heterodimer D1. Perencatan ini menyakibatkan kenaikan "fluorescence" klorofil. "Fluorescence" klorofil yang dijanakan dari perencatan ini, kemudiannya dikorelasikan dengan kepekatan herbisid yang digunakan untuk membina satu keluk kalibrasi piawai yang akan digunakan dalam penentuan kepekatan herbisid. Parameter yang digunakan untuk mewakili nilai "fluorescence" yang diperolehi adalah kadar kenaikan "fluorescence" yang dikira secara matematik daripada keluk kenaikan "fluorescence"-masa yang diperolehi daripada eksperimen. Bacaan fluorescence diambil menggunakan fluorometer TD-700, Turner design, USA. Enam alga air tawar diasingkan dari tasik berdekatan Teluk Likas, Kota Kinabalu, Sabah dan digunakan dalam kajian iaitu Chlorella sp., Pediastrum sp., Kirchneriella sp., Scenedesmus dimorphus, and Selenastrum sp. Coelastrum sp., Scenedesmus dimorphus. Daripada kajian yang dijalankan, Scencedesmus dimorphus didapati paling sesuai digunakan sebagai biosensor berdasarkan kritiria-kritiria berikut; (1) kadar pertumbuhan yang tinggi, (2) mudah dikultur dan mengekalkan ketulenan, dan (3) sensitif kepada kepekatan herbisid yang rendah. Kesan umur kultur sel, suhu kultur, pelarut organik, matrik sampel dan masa pra-eraman gelap sampel turut dikaji untuk menyelaraskan biosensor yang dibina. Dengan menggunakan kultur sel Scenedesmus dimorphus berusia 14 hari, hubungan linear di antara nilai log₁₀ fluoresence yield kepada nilai log₁₀ kepekatan herbisid diperolehi. Daripada keluk hubungan ini, didapati kepekatan terendah yang boleh dikesan menggunakan biosensor Scencedesmus dimorphus ini adalah 0. 001mM untuk diuron dan 0.01 mM untuk propanil dan bromacil. Biosensor ini boleh digunakan sebagai pengesan awal racun rumpai jenis PS II dan mempunyai potensi yang baik untuk menjadi kaedah pengesanan racun rumpai yang mudah, murah dan cepat pada masa akan datang.

Abstract

THE DEVELOPMENT OF A BIOSENSOR FOR THE DETECTION OF PS II HERBICIDES USING GREEN MICROALGAE

A PS II biosensor was developed using intact green algae of Chlorophyta. The biosensor was based on the ability of some herbicides (PS II herbicides) residue to inhibit the binding niche of primary electron donor/acceptor of Photosystem II, plastoquinone B (Q_B) at D1 heterodimer protein, causing an increase of the chlorophyll fluorescence. Herbicideinduced chlorophyll-a fluorescence was correlated with the corresponding herbicide concentration to obtain a standard calibration curve for herbicide detection. The fluorescence vield was expressed as a rate of the fluorescence increase calculated mathematically from fitted curve of herbicide-induced fluorescence data using SigmaPlot and CurveFit Expert software. The fluorescence was recorded using a TD-700 fluorometer from Turner Design, USA. Six freshwater microalgae isolated from a lake near Likas Bay, Kota Kinabalu, Sabah were examined; Chlorella sp., Pediastrum sp., Kirchneriella sp., Coelastrum sp., Scenedesmus dimorphus, and Selenastrum sp. Of all the species examined, Scenedesmus dimorphus was found to be the most suitable algae as a biosensor based on the following criteria; (1) highest growth rate, (2) easy to culture and maintain purity, and (3) sensitivity to low concentration of herbicide. Effects of culture age, temperature, solvents, sample matrix and pre-incubation of sample were examined to optimize the biosensor. Cell suspension at 14days was found to be the best algal age especially when using Scenedesmus dimorphus. The correlations between fluorescence yields (expressed as the rate of fluorescence, β) and concentration (α) of diuron, propanil and bromacil were $\alpha = 10^{\circ}$ ((log $\beta - 0.536$)/1.08), $\alpha = 10^{\circ}$ ((log $\beta -$ 0.3893/1.1119) and $\alpha = 10^{((\log \beta - 0.1678)/0.7084)}$, respectively. The detection range of diuron, propanil and bromacil were 1×10^{3} mM – 1mM, 1×10^{1} mM - 1 $\times 10^{1}$ mM and 1×10^{1} mM - 1 $\times 10^{2}$ mM, respectively. The lowest detectable concentration of the biosensor was approximately 1×10^3 mM (2.33x10² μ g/L), for diuron, 1x10¹ mM (2.18x10³ μ g/L) for propanil and 1×10^{-1} mM (2.61x10³ µg/L) bromacil. The biosensor can be used as an early warning system at present and offers a potential rapid, cheap and fast method for PS II herbicides detection in the future.

LIST OF ABBREVIATIONS

2, 4 -D	2,4-dichlorophenoxy acetic acid
ANOVA	Analysis of Variance
DCMU	3-(3,4-dicholorophenyl)-1,1 dimethylurea
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
ELISA	Enzyme-Linked Immunosorbent Assay
EPTC	S-ethyl dipropylthiocarbamate
GC	Gas Chromatography
GCMS	Gas Chromatography – Mass Spectrometry
HPLC	High Performance Liquid Chromatography
HRAC	Herbicide Resistance Action Committee
LED	light-emitting diode
МСРА	2-methyl-4-chlorophenoxyacetic acid.
MADA	Muda Agricultural Development Authority
NADP	nicotinamide adenine dinucleotide phosphate
NADPH	nicotinamide adenine dinucleotide phosphate, reduced form
P ₆₈₀	Chlorophyll pigment 680
P ₇₀₀	Chlorophyll pigment 700
PC	plastocyanin
ppb	part per billion
ppm	part per million
PQ	plastoquinone
PQH	quinone anion radical
PQH ₂	reduced plastoquinone
PS I	Photosystem I
PS II	Photosystem II
Q	quinone
Q _A	Plastoquinone A
Q _B	Plastoquinone B
rpm	rotation per minutes
SPSS	Statistical Package for the Social Sciences
Std. dev	standard deviation

Std. error	standard error
U.S. EPA	Environmental Protection Agency, United States of America
Yz	redox-active tyrosine
LHIIC	Light harvesting protein-chlorophyll complex

LIST OF SYMBOLS

% percentage > greater than ٥ degree °C degree Celsius microgram per liter µg/L µg/ml (or µg/mL) microgram per milliliter μI (or μL) microliter micrometer μm μM micro-molar Å Armstrong maximum fluorescence F max constant fluorescence (initial) Fo fluorescence unit fsu variable fluorescence F_v grams A SABAH g generation time g h hour (s) k growth rate constant kD kilo Dalton ml (or mL) milliliter millimeter mm millimolar mM nanomolar nM 2 correlation coefficient volume per volume v/v

CONTENTS

Decl	aration		PAGE
	nowledgme	nts	ii iii
Abst	ract		iv
	of Abbrevia		v
List (of Symbols		vii
	of Contents		viii
List o	of Tables		xi
List	of Figures		xii
СНА	PTER 1	INTRODUCTION	1 - 7
CHA	PTER 2	LITERATURE REVIEWS	8 – 56
2.1	Herbicide	es: In general	8
2.2		thetic herbicides - Photosystem II herbicides	9
	2.2.		13
	2.2		15
	2.2.		17
2.3	Photosyn	thes <mark>is of mi</mark> croalgae	17
	2.3.		17
	2.3.	2 Photosynthesis	18
	2.3.	3 Photosynthetic pigments – Chlorophylls SIA SABAH	20
	2.3.	4 Chlorophyll fluorescence	23
	2.3.	5 Mechanism of electron transfer from PS II to PS I	27
2.4		of the Photosystem II	31
	2.4.		31
	2.4.		32
	2.4.		37
2.5		yll fluorescence measurement	37
	2.5.		38
		2 Fluorometric instruments	39
2.6		s pollutions: The impact to the environments	41
2.7		g herbicides in the environment	48
2.8	Biosenso		51
	2.8.		52 54
2.9	Developn herbicide	nent of a biosensor for the detection of Photosystem II s.	54
CLI		MATERIALS AND METHODS	57 – 80
CHA	PTER 3		
3.1		ls, labwares and instrumentations	57
	3.1.1		57
	3.1.2		59 59
	3.1.3	3 Chlorophyll standards	29

Chlorophyll standards Culturing media Special lab wares and instruments 3.1.3 3.1.4

3.1.5

61

61

		est organisms: Microalgae	66
3.2	Methods		66
		assware preparation	66
		uorometer calibration and settings	66
		gal culturing	67
		gae morphology	67
		croalgae growth	67
		notoinhibition of the herbicides (preliminary assay)	71
		fect of the culture age (culture period of the icroalgae)	74
		fect of solvents on the fluorescence yield	74
		nlorophyll-a content determination	75
		elationship between cells density, chlorophyll-a	76
		ntent and fluorescence increase	
	3.2.11 Ef	fect of the cell density on diuron-induced	76
		lorophyll fluorescence: The estimation of cell	
	de	ensity range	
		notoinhibition of diuron, propanil and bromacil to	76
	14	days-old Scenedesmus dimorphus: A correlation	
	be	tween herbicides concentration and fluorescence	
	yie	eld	
	3.2.13 Ef	fect of the incubation time (dark-adapted)	77
	3.2.14 Inc	creasing the low detectable limit	77
	3.2.15 Ef	fect of matrix on the chlorophyll fluorescence	78
	3.2.16 Eff	fect of freezing on the photoinhibition of the	79
	mi	croalgae	
	3.2.17 Da	ata analysis	79
СН		ILTS AND DISCUSSIONS	81-156
4.1	Morphology and to	xonomy of studied microalgae VSIA SABAH	81
т. I		strum sp.	82
	4.1.2 Selen		82
	4.1.2 Selen 4.1.3 Chlore	ella sp.	82 82
	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene	ella sp. edesmus dimorphus	82 82 84
	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia	ella sp. edesmus dimorphus strum sp.	82 82 84 84
4 2	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr	ella sp. edesmus dimorphus strum sp. neriella sp.	82 82 84 84 84
	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt	ella sp. edesmus dimorphus strum sp. neriella sp. h	82 82 84 84 84 86
	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of	ella sp. edesmus dimorphus strum sp. neriella sp. h herbicides to on the microalgae - Preliminary test.	82 82 84 84 84 86 94
	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll	82 82 84 84 84 86
4.2 4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence.	82 84 84 84 86 94 94
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age	82 84 84 84 86 94 94 98
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol)	82 84 84 84 86 94 94 98 104
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity	82 84 84 84 86 94 94 98 104 105
	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on	82 84 84 84 86 94 94 98 104
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on potoinhibition of test microalgae.	82 84 84 84 86 94 94 98 104 105
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on notoinhibition of test microalgae. iment C: Diuron-DMSO interactions and	82 84 84 84 86 94 94 98 104 105 108
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on botoinhibition of test microalgae. iment C: Diuron-DMSO interactions and h-ethanol interaction on the photoinhibition of	82 84 84 84 86 94 94 98 104 105 108
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron Scene	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on notoinhibition of test microalgae. iment C: Diuron-DMSO interactions and h-ethanol interaction on the photoinhibition of edesmus dimorphus.	82 84 84 84 86 94 94 98 104 105 108
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron Scene 4.4.3.1 Effect	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on totoinhibition of test microalgae. iment C: Diuron-DMSO interactions and h-ethanol interaction on the photoinhibition of edesmus dimorphus. fect of different concentrations of DMSO and	82 84 84 84 86 94 94 98 104 105 108 110
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron Scene 4.4.3.1 Effect the ph	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on hotoinhibition of test microalgae. iment C: Diuron-DMSO interactions and heethanol interaction on the photoinhibition of edesmus dimorphus. fect of different concentrations of DMSO and hanol on the photoinhibition of <i>Scenedesmus</i>	82 84 84 84 86 94 94 98 104 105 108 110
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron Scene 4.4.3.1 Effect diuron	ella sp. edesmus dimorphus strum sp. neriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on notoinhibition of test microalgae. iment C: Diuron-DMSO interactions and n-ethanol interaction on the photoinhibition of edesmus dimorphus. fect of different concentrations of DMSO and nanol on the photoinhibition of <i>Scenedesmus</i> morphus	82 84 84 84 86 94 94 98 104 105 108 110
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron Scene 4.4.3.1 Effect diuron 4.4.3 Experi diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.2 Effect diuron Scene 4.4.3.2 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.2 Effect diuron Scene 4.4.3.2 Effect dir	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on notoinhibition of test microalgae. iment C: Diuron-DMSO interactions and h-ethanol interaction on the photoinhibition of edesmus dimorphus. fect of different concentrations of DMSO and hanol on the photoinhibition of <i>Scenedesmus</i> <i>morphus</i> fect of solvent-herbicide interaction on the	82 84 84 84 86 94 94 98 104 105 108 110
4.3	4.1.2 Selen 4.1.3 Chlore 4.1.4 Scene 4.1.5 Pedia 4.1.5 Pedia 4.1.6 Kirchr Microalgae growt Photoinhibition of 4.3.1 Effect fluores 4.3.2 Optim Effect of solvents 4.4.1 Experi 4.4.2 Experi the ph 4.4.3 Experi diuron Scene 4.4.3.1 Effect diuron 4.4.3 Experi diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.2 Effect diuron Scene 4.4.3.2 Effect diuron Scene 4.4.3.1 Effect diuron Scene 4.4.3.2 Effect diuron Scene 4.4.3.2 Effect dir	ella sp. edesmus dimorphus strum sp. heriella sp. h herbicides to on the microalgae - Preliminary test. of diuron and propanil on the algal chlorophyll scence. al algal culture age s (DMSO and ethanol) iment A: DMSO and ethanol toxicity iment B: The effect of solvent-diuron interaction on notoinhibition of test microalgae. iment C: Diuron-DMSO interactions and h-ethanol interaction on the photoinhibition of edesmus dimorphus. fect of different concentrations of DMSO and hanol on the photoinhibition of <i>Scenedesmus</i> <i>morphus</i> fect of solvent-herbicide interaction on the otoinhibition of <i>Scenedesmus dimorphus</i>	82 84 84 84 86 94 94 98 104 105 108 110

ix

4.7	Relationship between cell density, fluorescence and chlorophyll a content of <i>Scenedesmus dimorphus</i>	121
	4.7.1 Cell density (cells/ml) versus raw chlorophyll fluorescence (uninhibited)	12 1
	4.7.2 Cell density versus diuron-induced chlorophyll fluorescence (express as initial rate of increase) – The	123
	estimation of cell density range	
4.8	Correlation between herbicides concentration and fluorescence yield of <i>Scenedesmus dimorphus</i> (age of culture 14 days).	126
	4.8.1 Experiment with diuron	127
	4.8.2 Experiment with propanil	133
	4.8.3 Experiment with bromacil	139
4.9	Effect of the pre-dark incubation time on the fluorescence yield	139
4.10	Increasing the low detectable limit in the standard calibration curve.	145
	(modification of the method)	
4.11	Effect of matrix on the chlorophyll fluorescence yield	149
4.12	Effect of cell freezing on the fluorescence increase	153
4.13	Advantages and disadvantages	153

CHAPTER 5 CONCLUSIONS

References

Appendix

157-160

xvi xxx

х

LIST OF TABLES

Table		Page
1.1	Usage of pesticides according to its sub-category	2
1.2	Usage of herbicides in the Muda Irrigation Scheme, Malaysia (in metric tons)	3
2.1	Herbicide classification according to their mode of action	10
2.2	PS II herbicides according to their chemical group	14
2.3	Distribution of the chlorophyll pigments in the algae	26
3.1	Media for microalgae culturing (Bold Basal)	64
3.2	Microalgae used in the development of the biosensor.	66
3.3	Volume of algal culture and diuron used in the assay.	78
3.4	Sample us <mark>ed in the</mark> matrix effect assay	78
4.1	The growth rate constant of the microalgae	91
4.2	Toxic dose to Selenastrum capricornutum MALAYSIA SABAH	97
4.3	Statistical comparison of DMSO and ethanol to the control treatments (distilled water)	108
4.4	Chlorophyll fluorescence yield of <i>Scenedesmus dimorphus</i> treated with different concentrations of solvent	113
4.5	Chlorophyll fluorescence values of treatment with and without diuron of different concentrations.	113
4.6	Effect of solvent-diuron interaction on the chlorophyll fluorescence yield of <i>Scenedesmus dimorphus</i> with the various concentrations of solvent	115
4.7	Fluorescence yield obtained from the inhibition of 0.01mM diuron (10µl) on <i>Scenedesmus dimorphus</i> cells culture (14 days, 8 ml) at different dark-incubation time.	144
4.8	The correlation of herbicides and cell suspension volumes with the algal fluorescence yield.	145

LIST OF FIGURES

Figure		Page
2.1	Four different herbicidal actions to the photosynthesis apparatus	12
2.2	Chemical structure of diuron	13
2.3	Chemical structure of propanil	15
2.4	Example of commercial herbicides with propanil as the active ingredient used in paddy field in MADA areas	16
2.5	Chemical structure of bromacil	15
2.6	Schematic representation of chloroplast structure	19
2.7	Chlorophyll molecule on the interface between lipid and protein lamella of chloroplast.	21
2.8	Porphyrin structure consisting of four pyrrol rings	21
2.9	Molecul <mark>ar struct</mark> ure of chlorophyll-a	22
2.10	The absorption spectrum of chlorophyll-a	24
2.11	Molecular structure of chlorophyll-b	25
2.12	Schematic representation of the electron acceptor/donor chain of Hill Scheme	28
2.13	Pheophytin	29
2.14	Schematic representation of the redox cycle of plastoquinone	30
2.15	Schematic representation of PS II complexes	33
2.16	Schematic diagram of PS II globular structure	35
2.17	Schematic diagram of a basic filter fluorometer	42
2.18	How herbicides (and other pesticides) from land and atmosphere enter the aquatic environment	44
2.19	The process of herbicide bioaccumulation in the aquatic food chain	45
2.20	Schematic diagram of the biosensor principle	51
2.21	Bioreceptor used in the fabrication of biosensors	53
2.22	Schematic diagram representing a basic principle in the detection	55

of the PS II herbicides

3.1	PS II herbicides used in the assays	58
3.2	Non PS II herbicides, 2, 4-D (2,4-dichlorophenoxy acetic acid) and Silvex (2,4,5-trichlorophenoxypropionic acid)	58
3.3	The solid secondary standard of TD 700 fluorometer	60
3.4	Fluorometer TD 700	62
3.5	Centrifuge (EBA 12)	63
3.6	Versatile environmental test chamber	65
3.7	Algae culture in the blue-capped bottle	68
3.8	Microalgae culture in the test chamber	69
3.9	Haemocytometer used in the viable counting technique	70
3.10	Summary of the herbicide photoinhibition assay	72
3.11	Relative fluorescence (Fr) versus time (seconds) curve	73
4.1	Photomicrograph of Coelastrum sp.	83
4.2	Photomicrograph of Selenastrum sp.	83
4.3	Photomicrograph of <i>Chlorella</i> sp.	83
4.4	Photomicrograph of Scenedesmus dimorphus.	85
4.5	Photomicrograph of Pediastrum sp.	85
4.6	Photomicrograph of Kirchneriella sp.	85
4.7	Growth of the microalgae	87
4.8	Growth of Scenedesmus dimorphus	88
4.9	Growth of Chlorella sp.	88
4.10	Growth of Selenastrum sp.	88
4.11	Growth of Pediastrum sp.	88
4.12	Growth of Coelastrum sp.	88
4.13	Growth of Kirchneriella sp.	88
4.14	Growth curve of microorganisms	90
4.15	Growth rate of the microalgae express as generations time, g	93
4.16	Growth rate of the microalgae express as growth rate constant of	93

the batch culture, k.

4.17	Fluorescence yield of all algal species after 50 seconds inhibition by 1mM diuron and 1 mM	96
4.18	Fluorescence yield (fsu) at 50 sec inhibition with diuron (0.01mM) on <i>Chlorella</i> sp., <i>Kirchneriella</i> sp., <i>Scenedesmus dimorphus</i> and <i>Selenastrum</i> sp. at culture age of 7, 14, 21, and 28 days	100
4.19	Fluorescence yield (fsu) at 50 sec inhibition with diuron (1mM) on <i>Chlorella</i> sp., <i>Kirchneriella</i> sp., <i>Scenedesmus dimorphus</i> and <i>Selenastrum</i> sp. at culture age of 7, 14, 21, and 28 days	101
4.20	Fluorescence yield (fsu) at 50 sec inhibition with propanil (0.01mM) on <i>Chlorella</i> sp., <i>Kirchneriella</i> sp., <i>Scenedesmus</i> <i>dimorphus</i> and <i>Selenastrum</i> sp. at culture age of 7, 14, 21, and 28 days	102
4.21	Fluorescence yield (fsu) at 50 sec inhibition with propanil (1mM) on <i>Chlorella sp., Kirchneriella</i> sp., <i>Scenedesmus dimorphus</i> and <i>Selenastrum</i> sp. at culture age of 7, 14, 21, and 28 days	103
4.22	The effect of two organic solvents on the photoinhibition of microalgae	106
4.23	The effect of organic solvents-herbicides interaction (dimethyl sulfoxide-diuron and ethanol-diuron) on the photoinhibition of microalgae	109
4.24	Effect of different concentration of solvents (DMSO and ethanol) concentrations on the chlorophyll fluorescence yield of <i>Scenedesmus dimorphus</i>	111
4.25	Effect of different concentrations of DMSO and DMSO-diuron interactions on the photoinhibition of <i>Scenedesmus dimorphus</i>	114
4.26	Effect of different concentrations of ethanol and ethanol-diuron interactions on the photoinhibition of <i>Scenedesmus dimorphus</i>	116
4.27	Chlorophyll- <i>a</i> concentration (µg/ml) of different microalgae species at 9 days and 18 days	119
4.28	Approximate chlorophyll- <i>a</i> concentration in the algae cell (µg/cell) of different microalgae species at 9 days and 18 days	119
4.29	Relationship between cell density of <i>Scenedesmus dimorphus</i> and the chlorophyll fluorescence	122
4.30	The correlation between chlorophyll- <i>a</i> concentrations and fluorescence readings of the fluorometer	124
4.31	Relationship between cell density of algae and rate of fluorescence increase due to diuron	124
4.32	Effect of the various concentration of diuron on the chlorophyll fluorescence of <i>Scenedesmus dimorphus</i> , age 14 days	128

xiv

4.33	Fluorescence yields of various concentrations of diuron, expressed as rate of fluorescence and relative fluorescence	129
4.34a	Best curve describing the relationship between the rate of fluorescence and diuron concentrations (mM)	131
4.34b	Log-log scale graph describing the linear relationship between the rate of fluorescence and concentrations	132
4.34c	Log-log scale graph describing the linear relationship between the initial rate and diuron concentrations	134
4.35	Effect of the various concentration of propanil on the chlorophyll fluorescence of <i>Scenedesmus dimorphus</i> , age 14 days	135
4.36a	Fluorescence yield obtained from the treatment with various concentrations of propanil express as fluorescence rate and relative fluorescence	136
4.36b	Log-log scale graph describing the linear relationship between the rate of fluorescence and propanil concentrations	137
4.36c	Log-log scale graph describing the linear relationship between the rate of fluorescence and propanil concentrations	138
4.37	Effect of various concentration of bromacil on the chlorophyll fluorescence of <i>Scenedesmus dimorphus</i> , age 14 days	140
4.38a	Fluorescence yield of various concentrations of bromacil express as the rate of fluorescence and relative fluorescence	141
4.38b	Log-log scale graph describing linear relationship between rate of fluorescence and bromacil concentrations	142
4.38c	Log-log scale graph describing the linear relations between the rate of fluorescence and bromacil concentrations	143
4.39	Comparison between the standard method and modified method	146
4.40	The relationship between herbicides and cells (<i>Scenedesmus dimorphus</i>) volume on the chlorophyll fluorescence yield	148
4.41	Comparison of the fluorescence yield of various pesticides. 2, 4-D, Silvex and Paraquat are non-PS II herbicides	150
4.42	Effect of sample matrix collected in Kota Kinabalu area	152
4.43	Effect of storage on the relative fluorescence of Scenedesmus dimorphus	154
5.0	Test procedure of the biosensor for detection of PS II herbicide using green algae	159

x٧

CHAPTER 1

INTRODUCTION

Pesticides are toxic chemicals that are widely used today to help us deal with unwanted plants or animals in order to protect our interest. They include various types of chemicals: organic (mostly synthetic), inorganic and organometalic which can be further divided into sub-categories such as herbicides, insecticides, rodenticides, fungicides, nematocides and algaecides, depending on the organism they can kill. They cover a variety of pest-control strategies, as shown in Table 1.1. Indiscriminate usage of pesticides cause negative effect to human, environment and the whole ecosystem since pesticides accumulation in tissue in high concentrations can cause severe damage (Schmid *et al.* 1990).

A recent survey on pesticides usage and associated incidence of poisoning in the Muda area indicated that herbicides were most frequently used compared to insecticides, fungicides, and rodenticides (Ho, 1998). Most of the herbicides are very toxic and carcinogenic. Sales of pesticides in Malaysia in year 1980 amounted to RM160 million (Lee and Ong, 1983). Among these, herbicides usages were the highest. In 1995, in the Muda Irrigation Scheme, 646 metric ton of herbicides were used to control various weeds in the paddy field (Ho, 1998). Table 1.2 shows the usage of different types of herbicides from 1980 to 1995 in the Muda Irrigation Scheme. Massive usage of herbicides in agriculture has become serious

Type of		Year												
herbicide	Mode of action	1980	1983	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
2,4-D IBE	Synthetic auxin (growth regulator)	100	180	250	280	250	250	200	160	150	150	150	140	145
2,4-D Sodium Salt	Synthetic auxin (growth regulator)	50	20	NA	NA	NA	30	10	8	5	4	4	4	4
2,4-D Amine	Synthetic auxin (growth regulator)	5	20	150	150	140	130	60	50	40	30	30	30	30
МСРА	Synthetic auxin (growth regulator)	1	NA	1	1	1	-		-	-	-	-	-	-
Molinate	Inhibition of lipid synthesis - not ACCase inhibition	•	10	110	195	265	380	600	500	550	250	240	70	50
Molinate & Propanil	Inhibition of lipid synthesis - not ACCase inhibition and inhibition of photosynthesis at photosystem II		-		-		8	10	10	10	5	6	5	5
Oxadiazon	Inhibition of protoporphyrinogen oxidase (PPO)	-	-	10	10	6	6	6	2	2	-	-	-	-
Propanil	Inhibition of photosynthesis at photosystem II	-	-	-	2	14	20	22	26	25	20	25	20	15
Thiobencarb	Inhibition of lipid synthesis (not ACCase inhibition)	-	-	-	-	-	50	50	10	-		-	10	5
Thiobencarb & Propanil	Inhibition of lipid synthesis (not ACCase inhibition) and inhibition of photosynthesis at photosystem II			-	-	-	-		-	•	6	8	30	45
EPTC	Inhibition of lipid synthesis (not ACCase inhibition)	۰.		-	-		-	20	19	20	50	58	40	40
Pretilachlor	Inhibition of cell division (inhibition of VLCFAs)	-	UNT	VFF	(SE	•	1AI	5	6	5	5	7	8	8
Paraquat	Photosystem I electron diversion	10	80	300	320	320	320	330	300	270	250	225	250	240
Glyphosate	Inhibition of EPSP synthase	-	-	-	-		-	-		•	20	25	30	40
Fenoxaprop	Inhibition of acetyl Co A carboxylase (ACCase)	-			-		-		-	7	5	8	6	6
Sethoxydim	Inhibition of acetyl Co A carboxylase (ACCase)	-	-	-	-	-	-	-	-	-	8	3	2	-
Quinchlorac	Synthetic auxin (growth regulator)/ Inhibition of cell wall (cellulose) synthesis			-	-	-	-	-	•	-	2	2	1	1
Others		NA	NA	1	2	3	6	5	6	8	9	9	10	12
Total		166	310	822	960	999	1200	1318	1097	1092	814	800	656	646

Table 1.2 Estimated usages of herbicides in the Muda Irrigation Scheme, Malaysia (in metric tons) (modified from Ho, 1998)

NA = not available

 Table 1.1
 Usage and examples of pesticides according to its sub-category (according to Bohmont, 1990).

Pesticides	Functions	Chemical Example
Herbicides	Kill and control weeds in farms and golf courses, and for domestic use.	2,4-D , methiuron, butafenacil, monolinuron
Insecticides	Kill and control disease carrier insects and insects in farms and household usage, for example to control termites.	tricalcium arsenate, benfuracarb, pyrethrin II, alanycarb, butoxycarboxim
Rodenticides	Kill and control rodents in farms and for domestic use.	scilliroside, brodifacoum, potassium arsenite
Fungicides	Kill and control fungi that cause disease in crops.	butylamine, penthiopyrad, fluopicolide
Nematocides	Kill and control nematodes.	abamectin, benomyl, carbofuran, aldoxycarb

environmental problem, since it frequently leads to soil contamination and subsequent pollution of surface and ground water (Koblížek *et al.* 2002).

Currently, the Pesticides Act 1974 is the principal legislation for the control of pesticides in Malaysia. However, there is no guideline and regulation on how to use and handle (including disposal) pesticides and pesticides waste. A farmer can spray as much as he wishes as long as it is not a banned product. Pesticide waste can consist of the pesticide itself (such as old stocks, leftovers or spillage), packaging, diluted product, contaminated clothing or other materials and rinsing water. At present, the Environment Quality Act (Amendment) 1985 controls only pesticide wastes and effluents from factories. These scenarios have increased the concern over herbicides pollutions in our environments, especially in drinking water. In the European Union, a guideline has been introduced to control the content of toxic compound in the water source (Merz *et al.* 1996), which are $0.1\mu g/l$ for one component and $0.5 \mu g/l$ for total amount of the active ingredients. Water sources exceeding the maximum concentrations of pollutant were considered very toxic and hazardous to life. Similar guideline should also be introduced to the Environment Quality Act.

However, the guideline alone is ineffective if no monitoring program is conducted. If herbicides contamination is not regularly monitored, public health will be at risk since several herbicides such as atrazine are carcinogenic to human and animals. In addition, some mild toxic pesticides are converted to other compounds which are toxic to target organism (Barrett, 1996). The monitoring program must be carried out continuously, especially the water reservoirs. Thus, there is a need for a new detection method that is suitable for such monitoring program to provide earlywarning systems for effective monitor and control of the environment to minimize the risk associated with pesticides used (Hamada and Wintersteiger, 2002). Many methodologies have been adapted in research and field area to monitor and control pesticide in the environment. A practical monitoring method requires rapid, simple, and low cost screening and detection procedures for detection of herbicides residue.

Current methodologies for pesticide detection, especially herbicides are not suitable for large-scale monitoring program. Most of the techniques (for example, HPLC and GC-MS) require large and expensive equipment and materials. In addition, these methods were tedious and complicated (Giardi *et al.* 2001). Only highly trained personal would be able to conduct the tests, resulting in cost increase.

In this research, we have developed a method for herbicide detection that can be used in a continuous monitoring system or as a large-scale monitoring program to monitor the level of herbicide in water samples as well as other aqueous samples. In order to monitor the herbicide contamination regularly, the method being developed has to be fast, easy to be carried out, and does not involve expensive materials or equipments because we will need to regularly analyze samples collected from the areas monitored. A method or technique that involves expensive instruments and solvents is not suitable for continuous monitoring because the cost of running just one single test would be high and time consuming, even though the technique could be highly sensitive. An inexpensive operating cost will allowed us to screen and analyze many samples collected from many field areas. Moreover, an "easy-to-handle" technique does not involve tedious procedure, thus the number of samples that can be analyzed in a period can be increased. Larger areas can be monitored instead of a few limited areas, thus lowering the risk of herbicides contaminant poisoning of human and other organisms.

Fluorometry was used as a detection tool in this research. Fluorometric detection is less expensive than HPLC or GC-MS. The detection was based on the emission of the chlorophyll fluorescence by *in vivo* microalgae chlorophyll pigments. In plant leaves, it has been shown that the fluorescence induction kinetics under constant illumination of appropriate intensity, provides a simple and inexpensive tool for monitoring the translocation and detoxification of PS II herbicides *in vivo* (Ducruet

pesticide in the environment. A practical monitoring method requires rapid, simple, and low cost screening and detection procedures for detection of herbicides residue.

Current methodologies for pesticide detection, especially herbicides are not suitable for large-scale monitoring program. Most of the techniques (for example, HPLC and GC-MS) require large and expensive equipment and materials. In addition, these methods were tedious and complicated (Giardi *et al.* 2001). Only highly trained personal would be able to conduct the tests, resulting in cost increase.

In this research, we have developed a method for herbicide detection that can be used in a continuous monitoring system or as a large-scale monitoring program to monitor the level of herbicide in water samples as well as other aqueous samples. In order to monitor the herbicide contamination regularly, the method being developed has to be fast, easy to be carried out, and does not involve expensive materials or equipments because we will need to regularly analyze samples collected from the areas monitored. A method or technique that involves expensive instruments and solvents is not suitable for continuous monitoring because the cost of running just one single test would be high and time consuming, even though the technique could be highly sensitive. An inexpensive operating cost will allowed us to screen and analyze many samples collected from many field areas. Moreover, an "easy-to-handle" technique does not involve tedious procedure, thus the number of samples that can be analyzed in a period can be increased. Larger areas can be monitored instead of a few limited areas, thus lowering the risk of herbicides contaminant poisoning of human and other organisms.

Fluorometry was used as a detection tool in this research. Fluorometric detection is less expensive than HPLC or GC-MS. The detection was based on the emission of the chlorophyll fluorescence by *in vivo* microalgae chlorophyll pigments. In plant leaves, it has been shown that the fluorescence induction kinetics under constant illumination of appropriate intensity, provides a simple and inexpensive tool for monitoring the translocation and detoxification of PS II herbicides *in vivo* (Ducruet