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Abstrak 

PEMBANGUNAN BIOSENSOR UNTUK MENGESAN HERB/SID 

FOTOSISTEM II DENGAN MENGGUNAKAN

ALGA HIJAU 

Biosensor PS II telah dibangunkan menggunakan sel alga hijau dari filum 
Chlorophyta. Biosensor ini adalah berdasarkan keupayaan dan 
kecenderungan sesetengah residu herbisid (herbisid fotosistem II) 
merencat tapak pelekatan penerima/penderma elektron primer fotosistem 
II, plastokuinon pada protein heterodimer D1. Perencatan tnt 
menyakibatkan kenaikan "fluorescence" klorofil. "Fluorescence" klorofil 
yang dijanakan dari perencatan ini, kemudiannya dikorelasikan dengan 
kepekatan herbisid yang digunakan untuk membina satu keluk kalibrasi 
piawai yang akan digunakan dalam penentuan kepekatan herbisid. 
Parameter yang digunakan untuk mewakili nilai "fluorescence" yang 
diperolehi adalah kadar kenaikan "fluorescence" yang dikira secara 
matematik daripada keluk kenaikan "fluorescence" -masa yang diperolehi 
daripada eksperimen. Bacaan fluorescence diambil menggunakan 
fluorometer TD-700, Turner design, USA. Enam alga air tawar diasingkan 
dari tasik berdekatan Teluk Likas, Kota Kinabalu, Sabah dan digunakan 
dalam kajian iaitu Chlore/la sp., Pediastrum sp., Kirchneriella sp., 
Coe/astrum sp., Scenedesmus dimorphus, and Selenastrum sp. 
Scenedesmus dimorphus. Daripada kajian yang dijafankan, 
Scencedesmus dimorphus didapati paling sesuai digunakan sebagai 
biosensor berdasarkan kritiria-kritiria berikut: ( 1) kadar pertumbuhan yang 
tinggi, (2) mudah dikultur dan mengekalkan ketulenan, dan (3) sensitif 
kepada kepekatan herbisid yang rendah. Kesan umur kultur sel, suhu 
kultur, pelarut organik, matrik sampel dan masa pra-eraman gelap sampel 
turut dikaji untuk menyelaraskan biosensor yang dibina. Dengan 
menggunakan kultur sel Scenedesmus dimorphus berusia 14 hari, 
hubungan linear di antara nilai log10 fluoresence yield kepada nilai log 10 

kepekatan herbisid diperolehi. Daripada keluk hubungan ini, didapati 
kepekatan terendah yang boleh dikesan menggunakan biosensor 
Scencedesmus dimorphus ini adalah 0.001 mM untuk diuron dan 0.01 mM 
untuk propanil dan bromacil. Biosensor ini boleh digunakan sebagai 
pengesan awal racun rumpai jenis PS II dan mempunyai potensi yang baik 
untuk menjadi kaedah pengesanan racun rumpai yang mudah, murah dan 
cepat pada masa akan datang. 
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Abstract 

THE DEVELOPMENT OF A BIOSENSOR FOR 

THE DETECTION OF PS II HERBICIDES

USING GREEN MICROALGAE 

A PS II biosensor was developed using intact green algae of Chlorophyta. 
The biosensor was based on the ability of some herbicides (PS II 
herbicides) residue to inhibit the binding niche of primary electron 
donor/acceptor of Photosystem II, plastoquinone B (Os) at 01 heterodimer 
protein, causing an increase of the chlorophyll fluorescence. Herbicide
induced chlorophyll-a fluorescence was correlated with the corresponding 
herbicide concentration to obtain a standard calibration curve for herbicide 
detection. The fluorescence yield was expressed as a rate of the 
fluorescence increase calculated mathematically from fitted curve of 
herbicide-induced fluorescence data using SigmaPlot and CurveFit Expert 
software. The fluorescence was recorded using a TD-700 fluorometer from 
Turner Design, USA. Six freshwater microalgae isolated from a lake near 
Likas Bay, Kola Kinabalu, Sabah were examined; Chlorella sp., Pediastrum 
sp., Kirchneriel/a sp., Coe/astrum sp., Scenedesmus dimorphus, and 
Selenastrum sp. Of all the species examined, Scenedesmus dimorphus 
was found to be the most suitable algae as a biosensor based on the 
following criteria; (1) highest growth rate, (2) easy to culture and maintain 
purity, and (3) sensitivity to low concentration of herbicide. Effects of 
culture age, temperature, solvents, sample matrix and pre-incubation of 
sample were examined to optimize the biosensor. Cell suspension at 14-
days was found to be the best algal age especially when using 
Scenedesmus dimorphus. The correlations between fluorescence yields 
(expressed as the rate of fluorescence, {3) and concentration (a) of diuron, 
propanil and bromaci/ were a = 10A ((log {3- 0.536)/1.08), a = 10''-((log {3-
0. 3893 )/1. 1119) and a = 1 0"((log {3 - 0. 1678)/0. 7084), respectively. The
detection range of diuron, propanil and bromacil were 1x1U3 mM - 1mM,
1x10-1 mM - 1 x101 mM and 1x10-1 mM - 1 x1a2 mM, respectively. The
lowest detectable concentration of the biosensor was approximately 1 x 1 o-3
mM (2.33x1a2 µg/L), for diuron, 1x10-1 mM (2. 18x1a3 µg/L) for propanil and
1x1a1 mM (2.61x1d3 µg/L) bromacil. The biosensor can be used as an
early warning system at present and offers a potential rapid, cheap and fast
method for PS II herbicides detection in the future.
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CHAPTER 1 

INTRODUCTION 

Pesticides are toxic chemicals that are widely used today to help us deal with 

unwanted plants or animals in order to protect our interest. They include various types 

of chemicals: organic (mostly synthetic), inorganic and organometalic which can be 

further divided into sub-categories such as herbicides, insecticides, rodenticides, 

fungicides, nematocides and algaecides, depending on the organism they can kill. 

They cover a variety of pest-control strategies, as shown in Table 1.1. Indiscriminate 

usage of pesticides cause· negative effect to human, environment and the whole 

ecosystem since pesticides accumulation in tissue in high concentrations can cause 

severe damage (Schmid et al. 1990). 

A recent survey on pesticides usage and associated incidence of poisoning in 

the Muda area indicated that herbicides were most frequently used compared to 

insecticides, fungicides, and rodenticides (Ho, 1998). Most of the herbicides are very 

toxic and carcinogenic. Sales of pesticides in Malaysia in year 1980 amounted to 

RM 160 million (Lee and Ong, 1983). Among these, herbicides usages were the 

highest. In 1995, in the Muda Irrigation Scheme, 646 metric ton of herbicides were 

used to control various weeds in the paddy field (Ho, 1998). Table 1.2 shows the 

usage of different types of herbicides from 1980 to 1995 in the Muda Irrigation 

Scheme. Massive usage of herbicides in agriculture has become serious 



Table 1.2 Estimated usages of herbicides in the Muda Irrigation Scheme, Malaysia (in metric tons) (modified from Ho, 1998) 

Type of Year 
Mode of action 

herbicide 1980 1983 1986 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 

2,4-D IBE Synthetic auxin (growth regulator) 100 180 250 280 250 250 200 160 150 150 150 140 145 

2,4-D 
Synthetic auxin (growth regulator) 50 20 NA NA NA 30 10 8 5 4 4 4 4 

Sodium Salt 

2,4-D Amine Synthetic auxin (growth regulator) 5 20 150 150 140 130 60 50 40 30 30 30 30 

MCPA Synthetic auxin (growth regulator) 1 NA 1 1 1 - - - - - - - -

Molinate Inhibition of lipid synthesis - not ACCase 
inhibition 

- 10 110 195 265 380 600 500 550 250 240 70 50 

Molinate & 
Inhibition of lipid synthesis - not ACCase 

Propanil inhibition and inhibition of photosynthesis at - - - - - 8 10 10 10 5 6 5 5 
photosystem II 

Oxadiazon Inhibition of protoporphyrinogen oxidase 
- - 10 10 6 

(PPO) 6 6 2 2 - - - -

Propanil Inhibition of photosynthesis at photosystem II - - - 2 14 20 22 26 25 20 25 20 15 

Thiobencarb Inhibition of lipid synthesis (not ACCase 
- - - - - 50 50 10 - - - 10 5 

inhibition) 

Thiobencarb Inhibition of lipid synthesis (not ACCase 

& Propanil 
inhibition) and inhibition of photosynthesis at - - - - - - - - - 6 8 30 45 
photosvstem II 

EPTC 
Inhibition of lipid synthesis (not ACCase 
inhibition) 

- - - - - 20 19 20 50 58 40 40 

Pretilachlor Inhibition of cell division (inhibition of VLCFAs) - - - - - - 5 6 5 5 7 8 8 

Paraquat Photosystem I electron diversion 10 80 300 320 320 320 330 300 270 250 225 250 240 

Glyphosate Inhibition of EPSP synthase - - - - - - - - - 20 25 30 40 

Fenoxaprop Inhibition of acetyl Co A carboxylase (ACCase) - - - - - - . - 7 5 8 6 6 

Sethoxydim Inhibition of acetyl Co A carboxylase (ACCase) - - - - - - - - - 8 3 2 -

Quinchlorac 
Synthetic auxin (growth regulator)/ Inhibition of 

- - - - -

cell wall (cellulose) synthesis 
- - - - 2 2 1 1 

Others - NA NA 1 2 3 6 5 6 8 9 9 10 12 

Total - 166 310 822 960 999 1200 1318 1097 1092 814 800 656 646 

NA = not available 

N 



Table 1.1 Usage and examples of pesticides according to its sub-category (according to Bohmont, 1990). 

Pesticides Functions Chemical Example 

Herbicides Kill and control weeds in farms and golf courses, 2,4-D, methiuron, butafenacil, 
and for domestic use. monolinuron 

Insecticides Kill and control disease carrier insects and tricalcium arsenate, benfuracarb, 
insects in farms and household usage, for pyrethrin 11, alanycarb, 
example to control termites. butoxycarboxim 

Rodenticides Kill and control rodents in farms and for domestic scilliroside, brodifacoum, 
use. potassium arsenite 

Fungicides Kill and control fungi that cause disease in crops. butylamine, penthiopyrad, 
fluopicolide 

Nematocides Kill and control nematodes. abamectin, benomyl, carbofuran, 
aldoxycarb 

w 
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environmental problem, since it frequently leads to soil contamination and subsequent 

pollution of surface and ground water (Koblizek et al. 2002). 

Currently, the Pesticides Act 1974 is the principal legislation for the control of 

pesticides in Malaysia. However, there is no guideline and regulation on how to use 

and handle (including disposal) pesticides and pesticides waste. A farmer can spray 

as much as he wishes as long as it is not a banned product. Pesticide waste can 

consist of the pesticide itself (such as old stocks, leftovers or spillage), packaging, 

diluted product, contaminated clothing or other materials and rinsing water. At 

present, the Environment Quality Act (Amendment) 1985 controls only pesticide 

wastes and effluents from factories. These scenarios have increased the concern 

over herbicides pollutions in our environments, especially in drinking water. In the 

European Union, a guideline has been introduced to control the content of toxic 

compound in the water source (Merz et al. 1996), which are 0.1 µg/1 for one 

component and 0.5 µg/I for total amount of the active ingredients. Water sources 

exceeding the maximum concentrations of pollutant were considered very toxic and 

hazardous to life. Similar guideline should also be introduced to the Environment 

Quality Act. 

However, the guideline alone is ineffective if no monitoring program is 

conducted. If herbicides contamination is not regularly monitored, public health will be 

at risk since several herbicides such as atrazine are carcinogenic to human and 

animals. In addition, some mild toxic pesticides are converted to other compounds 

which are toxic to target organism (Barrett, 1996). The monitoring program must be 

carried out continuously, especially the water reservoirs. Thus, there is a need for a 

new detection method that is suitable for such monitoring program to provide early

warning systems for effective monitor and control of the environment to minimize the 

risk associated with pesticides used (Hamada and Wintersteiger, 2002). Many 

methodologies have been adapted in research and field area to monitor and control 
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pesticide in the environment. A practical monitoring method requires rapid, simple, 

and low cost screening and detection procedures for detection of herbicides residue. 

Current methodologies for pesticide detection, especially herbicides are not 

suitable for large-scale monitoring program. Most of the techniques (for example, 

HPLC and GC-MS) require large and expensive equipment and materials. In addition, 

these methods were tedious and complicated (Giardi et al. 2001 ). Only highly trained 

personal would be able to conduct the tests, resulting in cost increase. 

In this research, we have developed a method for herbicide detection that can 

be used in a continuous monitoring system or as a large-scale monitoring program to 

monitor the level of herbicide in water samples as well as other aqueous samples. In 

order to monitor the herbicide contamination regularly, the method being developed 

has to be fast, easy to be carried out, and does not involve expensive materials or 

equipments because we will need to regularly analyze samples collected from the 

areas monitored. A method or technique that involves expensive instruments and 

solvents is not suitable for continuous monitoring because the cost of running just one 

single test would be high and time consuming, even though the technique could be 

highly sensitive. An inexpensive operating cost will allowed us to screen and analyze 

many samples collected from many field areas. Moreover, an "easy-to-handle" 

technique does not involve tedious procedure, thus the number of samples that can 

be analyzed in a period can be increased. Larger areas can be monitored instead of a 

few limited areas, thus lowering the risk of herbicides contaminant poisoning of 

human and other organisms. 

Fluorometry was used as a detection tool in this research. Fluorometric 

detection is less expensive than HPLC or GC-MS. The detection was based on the 

emission of the chlorophyll fluorescence by in vivo microalgae chlorophyll pigments. 

In plant leaves, it has been shown that the fluorescence induction kinetics under 

constant illumination of appropriate intensity, provides a simple and inexpensive tool 

for monitoring the translocation and detoxification of PS II herbicides in vivo (Ducruet 
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