ACID MINE DRAINAGES AT MAMUT COPPER MINE, RANAU, SABAH

STELLA HO YEN LING

PERPUSTAKAAN

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2008

ACID MINE DRAINAGES AT MAMUT COPPER MINE, RANAU, SABAH

STELLA HO YEN LING

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2008

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS THESIS

TITLE: ACID MINE DRAINAGES AT MAMUT COPPER MINE, RANAU, SABAH

IJAZAH: SARJANA SAINS (KIMIA SEKITARAN)

SESI PENGAJIAN: 2005-2008

Saya, STELLA HO YEN LING mengaku membenarkan tesis sarjana ini disimpan di perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hak milik Universiti Malaysia
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran TIDAK TERHAD.

Disahkan oleh

UNIVERSITI MALAYSIA SABAH

Penulis: STELLA HO YEN LING

TANDATANGAN PUSTAKAWAN

Penyelia: Prof. Dr. Marcus Jopony

Tarikh: 2008

Catatan: [@] Tesis dimaksudkan SABAGAI TESIS Ijazah Doktor falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM)

DECLARATION

I hereby declare that the materials in this thesis is my own except for quotations, excerpts, equations, summaries and references, each of which have been duly acknowledged.

May 2008

STELLA HO YEN LING PS2005-001-016

VERIFICATION

- NAME : STELLA HO YEN LING
- MATRIC NO. **PS05-001-016**
- TITLE : ACID MINE DRAINAGES AT MAMUT COPPER MINE, RANAU, SABAH
- DEGREE : MASTER OF SCIENCE (ENVIRONMENTAL CHEMISTRY)
- VIVA DATE : 5 NOVEMBER 2008

DECLARED BY

ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude to my supervisor, Professor Dr. Marcus Jopony for his tireless efforts in giving valuable advice, motivation, guidance, support and help throughout this project and over the course of the Master programme. Additionally, I wish to acknowledge the support of the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) for providing research funding (IRPA 08-02-10-0001-EA0001) and Universiti Malaysia Sabah (UMS) for the postgraduate scholarship (PTPTP scheme), I am greatly indebted.

Mr. Sani Gorudin, senior lab assistant, is thanked for helping with the fieldwork. Many thanks too, to Lab assistants Mr. Samudi Surag and Mr. Yusry Jasli, for assisting and providing all the necessary apparatus for AAS analyses.

To my seniors, Ms. Newati Wid, Ms. Elnye Marinie Jummat, Mr. Kay Kian Hee and Ms. Amelia Mavis Lee Ting Ting, I owe thanks for their invaluable discussions, useful ideas, constructive criticisms and encouragement throughout the writing of this thesis.

The kind help from other members and personnel at the Kimia Industri Lab is much appreciated. Many thanks to all my supportive friends for their endless cooperation and help whenever I need them. I am also very grateful to all who are not mention but have help in making this research a successful one. Finally, not forgetting my sincere thanks to the School of Science and Technology for providing the opportunity and amenities enabling this research to be carried out successfully.

Last but not least, I could not have completed this thesis without the undivided support and encouragement from my family. My utmost appreciation to my family-Thank you.

Stella Ho Yen Ling PS 2005-001-016 May 2008

ABSTRACT

ACID MINE DRAINAGES AT MAMUT COPPER MINE, RANAU, SABAH

Acid mine drainage (AMD) is an environmental problem of serious concern in most mining areas, particularly those with abandoned or closed mines. The existence of a closed mine in Sabah, namely Mamut Copper Mine (MCM), thereby indicates the potential occurrence of local AMD pollution. Scientific information on the AMD at the mine area is crucial towards understanding the impacts as well as the development of appropriate treatment measures. AMD discharge points at the mine (MCM) area were identified and samples (S1 to S12) were taken periodically from up to 12 sites and analyzed for selected parameters namely pH, Ec, TDS, total acidity/alkalinity, sulfate and dissolved metals (Fe, Al, Mn, Cu, Zn, Cd and Cr) according to Standard Method. Water samples from selected river in the vicinity of the mine were also collected and analyzed for similar water quality parameters. The buffering characteristics of the AMD samples were also evaluated by potentiometric titration with NaOH solution. Additionally, the effect of neutralization on dissolved metal (Fe, Al, Mn, Cu and Zn) concentration of the AMD was investigated. The results showed that the AMDs at MCM have varying characteristics, with low pH(2.90-3.75), high total acidity(176-1697 mg CaCO₃/L), high TDS(302-2673 mg/L), high E_c(606-5370 µS/cm), sulfate(292-2808 mg/L) and elevated concentrations of dissolved Fe(0.12-7.13 mg/L), Al(12.24-192.14 mg/L), Mn(2.75-79.87 mg/L), Cu(2.02-47.03 mg/L), Zn(0.35-25.42 mg/L) and relatively low concentration of Cd(0.001-0.127 mg/L) and Cr(0.007-0.045 mg/L). The values of the selected parameters showed variation according to AMD sample and to some extent, sampling time. Amongst the various parameters, high correlations exist between total acidity and dissolved AI, TDS (or E_c) and sulfate, Al and Zn, Al and Cu, and Zn and Cu. The total acidity is dominated (67-93%) by mineral acidity while the rest is attributed to free acidity. Based on its total acidity, the AMDs comprised of high strength, medium strength and low strength AMD. Comparatively, the characteristics of river water samples are as follows: pH(4.57-8.12), alkalinity(1.0-58.0 mg CaCO₃/L), E_c(63.8-652.0 µS/cm), TDS(31.7-324.5 mg/L), dissolved sulfate(0.21-337.95 mg/L), dissolved metals Fe(<0.02 mg/L), Al(<0.1-3.43 mg/L), Mn(<0.01-4.07 mg/L), Cu(<0.1-1.11 mg/L), Zn(<0.1-0.6 mg/L), Cd(<0.01 mg/L) and Cr(<0.01 mg/L). Only one river, namely Mamut River, (R5) showed strong evidences of AMD pollution as shown by its acidic pH, low alkalinity, and relatively high TDS, Ec, sulfate, Mn, Al, Cu and Zn. The titration data clearly showed that the amount of base required to increase the pH of the AMD up to pH \geq 7.0 is strongly dependent $(R^2 = 0.9996)$ on the total acidity (or the strength) of the sample: S8>S7>S5>S4>S11>S6>S1~S2~S3>S10>S12>S9. The higher is the total acidity, the areater is the amount of base required for neutralization. The increase in pH during neutralization resulted in the decrease of dissolved Fe, Al, Mn, Cu and Zn concentrations. This trend was dependent on the type of metal but independent on the type of AMD. Fe was effectively removed from solution at pH~4.0 while Al at pH~5.0. By contrast, Cu, Zn and Mn were effectively removed at $pH\sim7.0$, $pH\sim8.0$ and $pH\sim10.0$, respectively. The removal of the metals is attributed to precipitation reaction and the amount of precipitate formed increases with increase in pH, and total acidity of the AMD. Overall, the physicochemical characteristics of AMDs at MCM are generally similar to AMDs elsewhere. Nevertheless, due to its strong ability to buffer pH and greater precipitate production, the high strength AMDs from two sites (S8 and S7) can potentially pose more severe impacts to the receiving surface water while its treatment can be more complicated compared to other AMDs in the area.

ABSTRAK

Saliran asid lombong (AMD) merupakan suatu masalah alam sekitar yang serius di kebanyakan kawasan perlombongan terutamanya bagi lombong yang telah ditutup atau ditinggalkan. Sehubungan itu, kewujudan lombong yang telah ditutup di Sabah, iaitu Lombong Tembaga Mamut (MCM) memberi petunjuk potensi pencemaran AMD setempat. Maklumat saintifik mengenai AMD di MCM adalah penting untuk memahami impaknya serta untuk penyediaan kaedah rawatan yang sesuai. Lokasi pelepasan AMD di MCM telah dikenalpasti dan sampel (S1-S12) telah diperoleh secara berkala dari 12 tapak. Setiap sampel telah dianalisis untuk parameter pH, E_c, TDS, keasidan jumlah/alkaliniti, sulfat and logam terlarut (Fe, Al, Mn, Cu, Zn, Cd dan Cr) mengikut kaedah piawai. Sampel air dari sungai terpilih berdekatan kawasan lombong juga diperoleh dan dianalisis untuk parameter kualiti air yang sama. Ciri penimbalan sampel AMD ditentukan secara titratan potensiometik dengan larutan NaOH. Kesan peneutralan terhadap kepekatan logam (Fe, Al, Mn, Cu dan Zn) dalam sampel AMD juga dikaji. Hasil kajian menunjukkan AMD di MCM mempunyai ciri yang berbeza, dengan pH yang rendah (2.90-3.75), keasidan jumlah yang tinggi (176-1697 mg CaCO₃/L), TDS tinggi (302-2673 mg/L), Ec tinggi (606-5370 µS/cm), sulfat tinggi (292-2808 mg/L) and kepekatan tinggi bagi Fe(0.12-7.13 mg/L), Al(12.24-192.14 mg/L), Mn(2.75-79.87 mg/L), Cu(2.02-47.03 mg/L), Zn(0.35-25.42 mg/L), dan kepekatan rendah bagi Cd(0.001-0.127 mg/L) dan Cr(0.007-0.045 mg/L). Nilai-nilai parameter ini menunjukkan variasi antara sampel AMD serta masa persampelan. Di antara parameter di atas, korelasi yang baik wujud di antara keasidan jumlah dan Al, TDS (atau E_c) dan sulfat, Al dan Zn, Al dan Cu, dan Zn dan Cu. Keasidan jumlah sampel AMD didominasikan oleh keasidan mineral (67-93%) dan selebihnya disumbangkan oleh keasidan bebas. Berdasarkan nilai keasidan jumlah, AMD di MCM mempunyai kekuatan berbeza jaitu AMD kuat, AMD sederhana, dan AMD lemah. Secara perbandingannya, ciri-ciri sampel air sungai adalah seperti berikut: pH(4.57-8.12), alkaliniti(1.0-58.0 mg CaCO₃/L), E_c(63.8-652 µS/cm), TDS(31.7-324.5 mg/L), sulfat(0.21-337.95 mg/L), Fe(<0.02 mg/L), Al(<0.1-3.43 mg/L), Mn(<0.01-4.07 mg/L), Cu(<0.1-1.11 mg/L), Zn(<0.1-0.6 mg/L), Cd(<0.01 mg/L) dan Cr(<0.01 mg/L). Hanya sebatang sungai, iaitu Sungai Mamut (R5) menunjukkan bukti kuat kewujudan pencemaran AMD iaitu pH asid, alkaliniti rendah dan TDS, E_c, sulfat, Mn, Al, Cu dan Zn yang tinggi. Data titratan menunjukkan dengan jelas bahawa amaun bahan bes yang diperlukan untuk meningkatkan pH sampel AMD ke pH≥7.0 bergantung kuat (R^2 =0.9996) kepada keasidan jumlah (atau kekuatan) sampel: S8>S7>S5>S4>S11>S6>S1~S2~S3>S10>S12>S9. Semakin tinggi nilai keasidan jumlah, semakin banyak amaun bes diperlukan untuk peneutralan. Peningkatan pH semasa proses peneutralan menghasilkan penurunan kepekatan logam Fe, Al, Mn, Cu dan Zn. Tren ini bergantung kepada jenis logam tetapi tidak bergantung kepada jenis atau kekuatan AMD. Logam Fe, Al, Cu, Zn dan masing-masing dapat disingkirkan dengan efektif dari larutan pada pH~4.0, pH~5.0, pH~7.0, pH~8.0 dan pH~10.0. Penyingkiran logam dari larutan dikaitkan dengan tindakbalas pemendakan, dan amaun mendakan yang terhasil meningkat dengan peningkatan pH serta nilai keasidan jumlah sampel AMD. Pada keseluruhannya, ciri-ciri fizikokimia AMD di MCM adalah lebih kurang sama dengan AMD di tempat lain. Namun demikian, atas sebab keupayaan tinggi untuk menimbal pH serta penghasilan mendakan yang lebih banyak, AMD kuat di dua lokasi di MCM (S8 dan S7) berpotensi untuk memberi impak negatif yang ketara kepada sungai yang menerima inputnya manakala rawatannya boleh lebih rumit berbanding dengan AMD lain di kawasan tersebut.

TABLE OF CONTENTS

Page

TITLE				I
DECLARAT	ION			ii
VERIFICAT	ION			iii
ACKNOWL	EDGEM	ENT		iv
ABSTRACT				V
ABSTRAK				vi
LIST OF TA	BLES			xi
LIST OF FI	GURES			xiii
ABBREVIA	TIONS	AND SY	MBOLS	xviii
LIST OF AP	PENDI	x		xxi
CHAPTER	1	INTR	ODUCTION	1
	1.1	Mining	g and the Environment	1
	1.2	Acid M	1ine Drainage Problems	2
	1.3	Mamu	t Copper Mine	5
	1.4	Object	tives of Study	10
	1.5	Scope	of Study	10
	1.6	Outlin	e of Thesis	11
CHAPTER	2	LITEF	ATURE REVIEWSITI MALAYSIA SABAH	12
	2.1	Acid M	1ine Drainage Formation	12
		2.1.1	Sulphide minerals in mine waste	12
		2.1.2	Oxidation of pyrite	13
		2.1.3	Oxidation of other sulphide minerals	14
		2.1.4	Dissolution of minerals matrices	14
		2.1.5	Acid mine drainage	15
	2.2	Factor	s Affecting Acid Generation During Pyrite Oxidation	16
		2.2.1	Effect of oxygen concentration	16
		2.2.2	Effect of Fe and pH	16
		2.2.3	Effect of bacteria	18
		2.2.4	Effect of the type of sulphide mineral	18
		2.2.5	Effect of particle size of pyrite	19
		2.2.6	Effect of <i>in-situ</i> alkaline minerals	20
	2.3	Physic	o-chemical Characteristics of AMD	22
		2.3.1	General water quality of AMD	22

		2.3.2 Total acidity of AMD	25
		2.3.3 Mineral acidity	26
		2.3.4 Heavy metals in mine drainages	30
	2.4	Neutralization of AMD	30
		2.4.1 pH buffering of AMD	30
		2.4.2 Heavy metal precipitation	34
	2.5	Treatment of AMD	37
		2.5.1 Active treatment	38
		2.5.2 Passive treatment	39
CHAPTER	3	METHODOLOGY	41
	3.1	Water Samples	41
		3.1.1 Acid mine drainage samples	43
		3.1.2 River water samples	43
	3.2	Determination of Physico-chemical Characteristics	46
		3.2.1 pH	46
		3.2.2 Conductivity and Total Dissolved Solids	46
		3.2.3 Total acidity	46
		a. Measured total acidity	46
		b. Calculated total acidity	47
		3.2.4 Alkalinity	47
		3.2.5 Sulfate	48
	A	a. Preparation of sulfate calibration curve	48
		b. Analysis of sample	48
		3.2.6 Dissolved metals (Fe, Mn, Cu, Zn, Cd and Cr)	49
		a. Preparation of standard solutions	49
		b. Preparation of calibration curve	50
		c. Analysis of sample	50
		3.2.7 Determination of dissolved Aluminium	50
		a. Preparation of calibration curve	50
		b. Analysis of sample	51
	3.3	Neutralization Experiments	51
		3.3.1 Buffering characteristics of AMD samples	51
		3.3.2 Effect of pH change on metal concentration of AMD	51
CHAPTER	4	RESULTS AND DISCUSSION	53
	4.1	AMD Discharge Points and Samples	53
	4.2	Physico-chemical Characteristics of AMD	57

	4.2.1	pH values of AMD samples	57
	4.2.2	Total acidity of AMD samples	59
	4.2.3	Conductivity (E _c) and Total Dissolved Solids (TDS)	62
	4.2.4	Sulfate (SO4 ²⁻)	67
	4.2.5	Dissolved Iron (Fe)	69
	4.2.6	Dissolved Aluminium (Al)	72
	4.2.7	Dissolved Manganese (Mn)	74
	4.2.8	Other dissolved metals	77
	4.2.9	Comparison between dissolved metals	77
4.3	Compa	arison Between AMD samples	85
4.4	Relatic	nships Between Physico-chemical Characteristics	
	of AME		88
	4.4.1	Total acidity versus pH	88
	4.4.2	Total acidity versus dissolved metals	88
	4.4.3	Total acidity versus sulfate	90
	4.4.4	Conductivity, (E _c) versus TDS	94
	4.4.5	Conductivity, (E_c) and TDS versus pH	94
	4.4.6	Conductivity, (E _c) and TDS versus sulfate	96
	4.4.7	Conductivity, (E_c) and TDS versus dissolved metals	97
	4.4.8	Sulfate versus pH	97
	4.4.9	Dissolved metals versus pH	97
4.5	Dissolv	ed Metal Versus Dissolved Metal	106
4.6	Physico	o-chemical Characteristics of River Water	109
	4.6.1	рН	109
	4.6.2	Alkalinity	110
	4.6.3	Conductivity (E_c) and Total Dissolved Solids (TDS)	112
	4.6.4	Sulfate (SO ₄ ²⁻)	113
	4.6.5	Concentration of dissolved metals	114
	а.	Iron (Fe)	114
	b.	Aluminium (Al)	114
	С.	Manganese (Mn)	116
	d.	Copper (Cu) and Zinc (Zn)	117
	e.	Cadmium (Cd) and Chromium (Cr)	117
	4.6.6	Overall impacts of AMD on Rivers	119
4.7	Acid Bu	uffering Characteristics of AMD	120
4.8	Effect of	of Neutralization on Dissolved Metals	
	(Fe, Al	. Mn. Cu and Zn)	122

CHAPTER	5	CONCLUSION	135
REFERENCE	S		137
APPENDIX			151

LIST OF TABLES

Ρ	а	a	e
	ч	ч	\sim

Table	1.1	Major effects of AMD	3
⊤able	1.2	Biological effects of metals on fish	5
Table	1.3	Biological effects of metals on human's health	6
Table	2.1	Examples of sulphide minerals present in mine wastes	13
Table	2.2	Solubility product K_{sp} of various minerals at 25° C	15
Table	2.3	Comparison of reaction rates of sulphide minerals oxidation with and without the presence of bacteria	18
⊤able	2.4	Acid production according to the type of sulphide minerals	19
Table	2.5	Effect of surface area of pyrite on Fe(II) oxidation rate	20
Table	2.6	Type of alkaline minerals in mine wastes and their respective neutralization capacity	21
Table	2.7	Solubility products of various carbonate minerals	22
Table	2.8	Characteristics of AMDs from various types of mine and locations	23
Table	2.9	Acidity values of mine waters reported in selected studies	26
Table	2.10	Ionic Potentials of selected metal ions	28
Table	2.11	Hydrolysis reactions of Fe^{3+} species and the associated protons (H ⁺) produced	28
Table	2.12	Heavy metals and its associated host rocks	31
Table	2.13	Chemical reactions during AMD neutralization by limestone	31
Table	2.14	pH range for the formation of metal hydroxides	35
Table	2.15	Examples of method for controlling AMD	37
Table	2.16	Typical chemical compounds used in AMD treatment	38
Table	2.17	Advantages and disadvantages of various chemical used for AMD treatment	39
Table	3.1	River water samples investigated	43

Table	3.2	Standard conditions and characteristic concentration checks for atomic absorption (Perkin-Elmer 4100)	49
Table	3.3	Concentration range of standard solutions prepared according to metal) 49
⊤able	4.1	Description of AMD samples	56
Table	4.2	Range of pH values of AMD samples	59
Table	4.3	Value range of total acidity of AMD samples	60
Table	4.4	Range of E_c values of AMD samples	66
Table	4.5	Range of TDS values of AMD samples	66
Table	4.6	Range of sulfate concentration of AMD samples	69
Table	4.7	Range of dissolved Fe concentration of AMD samples	70
Table	4.8	Range of dissolved Al concentration of AMD samples	74
Table	4.9	Range of dissolved Mn concentration of AMD samples	75
Table	4.10	Range of dissolved metals (Cu, Zn, Cd and Cr) concentration of AMD samples	84
Table	4.11	Concentration of dissolved metals in decreasing order	84
Table	4.12	Average values of pH, E_c , TDS, acidity and sulfate concentration according to AMD samples	86
Table	4.13	Dissolved metals concentration ^a according to AMD samples	87
Table	4.14	Categories of AMDs at MCM	88
Table	4.15	Correlation matrix among dissolved metals $(n=35)$	106
Table	4.16	Correlation matrix among dissolved metals $(n=12)$	108

LIST OF FIGURES

			Page
Figure	1.1	A general map of Mamut Copper Mine (MCM) and the surrounding areas	8
Figure	1.2	An aerial view of Mamut Copper Mine (MCM)	9
Figure	1.3	An aerial view of Lohan Tailing Dam	9
Figure	2.1	Rate of pyrite oxidation as a function of oxygen concentration	16
Figure	2.2	Oxidation rate of ferrous iron (Fe ²⁺) to ferric iron (Fe ³⁺) as a function pH	17
Figure	2.3	Acidic components of the AMD samples	27
Figure	2.4	Relationship between acidity of AMD with (A) Fe(III) (B) Al(III)	27
Figure	2.5	Calculated versus measured acidity of AMD samples	30
Figure	2.6	Comparison of neutralization reactions of oxide, hydroxide and ca <mark>rbonate</mark>	33
Figure	2.7	Titration curve obtained from titration of AMD sample with NaOF	1 34
Figure	2.8	Effect of pH on metals (Fe, Al, Mn, Cu, Zn and Cd) removal from AMD	35
Figure	2.9	Amount of precipitates formed as a function of pH for different samples of AMDs	36
Figure	3.1	Location map of Mamut Copper Mine area	42
Figure	3.2	River water sampling locations	44
Figure	3.3	Rivers investigated	45
Figure	4.1	General locations of AMD discharge points at MCM	53
Figure	4.2	AMD discharge points and sampling sites at the mine area	54
Figure	4.3	Average pH values of AMD samples	57
Figure	4.4	pH of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	58
Figure	4.5	Average values of total acidity of AMD samples	60

Figure	4.6	Total acidity of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	61
Figure	4.7	Proportion of free acidity and mineral acidity of the total acidity in AMD samples	62
Figure	4.8	Average E_c values of AMD samples	63
Figure	4.9	Average TDS values of AMD samples	63
Figure	4.10	E _c values of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	64
Figure	4.11	TDS values of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	65
Figure	4.12	Average sulfate concentrations of AMD samples	67
Figure	4.13	Sulphate concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	68
Figure	4.14	Average dissolved Fe concentrations of AMD samples	70
Figure	4.15	Dissolved Fe concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	71
Figure	4.16	Average dissolved Al concentrations of AMD samples	72
Figure	4.17	Dissolved Al concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	73
Figure	4.18	Average dissolved Mn concentrations of AMD samples	75
Figure	4.19	Dissolved Mn concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	, 76
Figure	4.20	Average dissolved Cu concentrations of AMD samples	78
Figure	4.21	Average dissolved Zn concentrations of AMD samples	78
Figure	4.22	Average dissolved Cd concentrations of AMD samples	79
Figure	4.23	Average dissolved Cr concentrations of AMD samples	79
Figure	4.24	Dissolved Cu concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	80

Figure	4.25	Dissolved Zn concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	81
Figure	4.26	Dissolved Cd concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	82
Figure	4.27	Dissolved Cr concentrations of AMD samples at different sampling time (a) Dec-05 (b) Mac-06 (c) Jul-06 and (d) Sept-06	83
Figure	4.28	Total acidity versus pH of AMD	89
Figure	4.29	Total acidity versus dissolved metal concentration (a) Fe (b) Al (c) Mn (d) Cu (e) Zn (f) Cd and (g) Cr (n=35)	91
Figure	4.30	Total acidity versus Dissolved metals (Fe, Al, Mn, Cu, Zn, Cd and C $(n=35)$	Cr) 92
Figure	4.31	Total acidity versus Dissolved metals (Fe, Al and Mn) $(n=35)$	92
Figure	4.32	Calculated Acidity versus Measured Acidity (n=35)	93
Figure	4.33	Total acidity versus sulfate (n=35)	93
Figure	4.34	E _c versus TDS of AMD samples (n=35)	94
Figure	4.35	E _c versus pH of AMD samples (n=35)	95
Figure	4.36	TDS versus pH of AMD samples (n=35)	95
Figure	4.37	E_c versus SO_4^{2-} of AMD samples (n=35)	96
Figure	4.38	TDS versus $SO_4^{2^2}$ of AMD samples (n=35)	96
Figure	4.39	E _c versus dissolved metal (a) Fe (b) Al (c) Mn (d) Cu (e) Zn (f) Cd and (g) Cr (n=35)	98
Figure	4.40	TDS versus dissolved metal (a) Fe (b) Al (c) Mn (d) Cu (e) Zn (f) Cd and (g) Cr (n=35)	99
Figure	4.41	E _c versus Dissolved metals 1	00
Figure	4.42	TDS versus Dissolved metals 1	01
Figure	4.43	SO ₄ ²⁻ versus pH of AMD samples 1	02
Figure	4.44	Dissolved metal (a) Fe (b) Al (c) Mn (d) Cu (e) Zn (f) Cd and (g) Cr versus pH 1	03
Figure	4.45	Dissolved metals versus pH 1	05

Figure	4.46	Dissolved Al versus dissolved Cu (n=35)	107
Figure	4.47	Dissolved Al versus dissolved Zn (n=35)	107
Figure	4.48	Dissolved Cu versus dissolved Zn (n=35)	107
Figure	4.49	Dissolved Al versus dissolved Cu $(n=12)$	108
Figure	4.50	Dissolved Al versus dissolved Zn $(n=12)$	108
Figure	4.51	Dissolved Cu versus dissolved Zn (n=12)	109
Figure	4.52	pH values of river water samples	110
Figure	4.53	Alkalinity of river water samples	111
Figure	4.54	E _c values of river water samples	112
Figure	4.55	TDS values of river water samples	113
Figure	4.56	Sulfate concentration of river water samples	114
Figure	4.57	Dissolved Fe concentration of river water samples	115
Figure	4.58	Dissolved Al concentration of river water samples	115
Figure	4.59	Visible whitish Al precipitates on streambed at R5	116
Figure	4.60	Dissolved Mn concentration of river water samples	117
Figure	4.61	Dissolved Cu concentration of river water samples	118
Figure	4.62	Dissolved Zn concentration of river water samples	118
Figure	4.63	Bambangan River	119
Figure	4.64	Titration curves of AMD samples	120
Figure	4.65	Relationship between total acidity and moles of NaOH used for titration of AMD to pH 7.0 $$	121
Figure	4.66	Decreasing trend of Fe, Al, Mn, Cu and Zn concentration with increasing pH for AMD sample S1	124
Figure	4.67	Decreasing trend of Fe, Al, Mn, Cu and Zn concentration with increasing pH for AMD sample S4	125
Figure	4.68	Decreasing trend of Fe, Al, Mn, Cu and Zn concentration with increasing pH for sample AMD S8	126

- Figure 4.69 Metal removal (Fe, Al, Mn, Cu and Zn) as a function of pH for (a) AMD sample S1 (b) AMD sample S4 and (c) AMD sample S8 128
- Figure 4.70 Cumulative amount of precipitate formed during neutralization of AMD S1, AMD S4 and AMD S8 129
- Figure 4.71Weight of precipitate formed versus total acidity in AMD S1,
AMD S4 and AMD S8 at pH 7.0129
- Figure 4.72 Precipitates formed from AMD sample S1 at various pH values 132
- Figure 4.73 Precipitates formed from AMD sample S4 at various pH values 133
- Figure 4.74 Precipitates formed from AMD sample S8 at various pH values 134

ABBREVIATIONS AND SYMBOLS

AAS	Atomic absorption spectrophotometer
AMD	Acid mine drainage
МСМ	Mamut Copper Mine
Ec	Electrical conductivity
Eq.	Equation
+	positive
-	negative
=	equal
~	nearly to/about
S M	less than
	more than
	more than or equal
S BAS UN	less than or equal YSIA SABAH
%	percent
0	degree
°C	degrees Celsius
K _{sp}	solubility product
λ	wavelength
М	molar
sec ⁻¹	per second
min ⁻¹	per minute
atm ⁻¹	per atmosphere
mL	milliliter

xviii

L	Litre
Ν	Normality
mg/L	milligram per liter
mg CaCO₃/L	milligram calcium carbonate per liter
nm	nanometer
µS/cm	microsiemens per centimeter
Fe	Iron
Al	Aluminium
AI(OH) ₂	Aluminium hydroxides
Mn	Manganese
Mn(OH) ₂	Manganese hydroxides
Cu	Copper
Cu(OH)2	Copper hydroxides
Zn	Zinc
Zn(OH)₂	Zinc hydroxides LAYSIA SABAH
Cd	Cadmium
Cr	Chromium
TDS	Total dissolved solids
SO4	sulfate
CO3 ²⁻	Carbonate
HCO3 ⁻	Bicarbonate
H ₂ CO ₃	Carbonic acid
H ⁺	proton
OH	Hydroxide
CaCO ₃	Calcium carbonate

H_2SO_4	Sulphuric acid
HCI	Hydrochloric acid
NaOH	Sodium hydroxide
H ₂ O ₂	Hydrogen peroxide

LIST OF APPENDIX

			Page
APPENDIX	А	Standard Solutions Preparation	151
APPENDIX	В	Preparation of solutions for determination of sulfate concentration	152
APPENDIX	С	Preparation of metal solutions	153
APPENDIX	D	Preparation of solutions for Aluminium determination	154
APPENDIX	E	Physico-chemical characteristics of AMDs and several rivers downstream of Mamut Copper Mine	155
APPENDIX	F	Physico-chemical characteristics of AMD samples and several rivers downstream of MCM according to sampling date	g 157
APPENDIX	G	Data for total acidity calculation	159
APPENDIX	HII	Data for alkalinity calculation	160
	I	Data for sulphate concentration	161
APPENDIX	J	Calculation for percentage of Acidity (Free and mineral acidity)	165
APPENDIX	K	Data for dissolved metals	166
		i. Iron (Fe)	166
		ii. Copper (Cu)	168
		iii. Zinc (Zn)	170
	iv. Cadmium (Cd)	172	
		v. Chromium (Cr)	174
		vi. Aluminium (Al)	176
		vii. Manganese (Mn)	179
APPENDIX	L	Calculated acidity	181

APPENDIXMNo. of moles of NaOH used in AMD potentiometric titration
to reach pH 7.0182APPENDIXNData for the effect of pH change on metal concentration

183

in AMD samples

