ANALYSIS OF THE SOUND AND VIBRATION OF SUNDATANG

PERPUSTAKAAN Universiti malaysia sabah

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITY MALAYSIA SABAH 2015

ANALYSIS OF THE SOUND AND VIBRATION OF SUNDATANG

RONALD YUSRI BATAHONG

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITY MALAYSIA SABAH 2015

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: ANALYSIS OF THE SOUND AND VIBRATION OF SUNDATANG

IJAZAH: DOKTOR FALSAFAH

Saya RONALD YUSRI BATAHONG, Sesi Pengajian 2007-2015, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Univesiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

(Tandatangan Penulis)

Tarikh: 3 Mac 2015

Disahkan oleh, NURULAIN BINTI ISMAIL LIBRARIAN UNIVERSITI MALAYSIA SABAH (Tandatangan Pustakawan)

(PROF. MADYA. DR. JEDOL DAYOU) Penyelia

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

16th July 2014

RONALD YUSRI BATAHONG PS2006-8218

CERTIFICATION

NAME : RONALD YUSRI BATAHONG

MATRIC NO : **PS2006-8218**

- TITLE : ANALYSIS OF THE SOUND AND VIBRATION OF SUNDATANG
- DEGREE : DOCTOR OF PHILOSOPHY (PHYSICS)
- VIVA DATE : 16th July 2014

DECLARED BY;

1. MAIN SUPERVISOR

Associate Professor Dr. Jedol Dayou

Signature

UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENT

I wish to express my deepest gratitude and appreciation to my supervisor, Associate Professor Dr. Jedol Dayou of the Faculty of Science and Natural Resources, Universiti Malaysia Sabah who has been patient enough to advise, guide and supervise me throughout the past few years. His continuous encouragement provided me the necessary impetus to complete the research and complete this thesis. In this opportunity also I want to thank to all parties that contribute to the completion of this thesis, especially to Mr David Joumi, Mr Johori Botohong and Mr. Boginda Mokilin (sundatang maker), and also to my wife Patricia Mongudal and my children Rachel, I'saac, Aa'ron and I'ry, thank you very much.

Ronald Yusri Batahong 16th July 2014

ABSTRACT

There are many traditional musical instruments available in Sabah, Malaysia. One of them is the sundatang. One of the pressing issues is that the assimilation of this musical instrument with the contemporary music is very limited. This could be associated to limited research on the instrument that may contribute to better understanding and also quality. In this view, the acoustical and vibrational studies of sundatang are really required. The objectives of this research are to study the construction technique, physical, acoustical and vibrational properties of sundatang. This research was carried out by observing the construction technique, measuring the physical, acoustical, and static and dynamic vibrational properties of sundatang. In this research, construction technique of sundatang is first documented and several equations that explaining the physical properties and calculating the fundamental frequency at each frets are formulated. On the other hand, effects of the sound hole, back plate, find tuner cord, string pad, plucking point and plucking force are explained. In the static vibrational measurement (without strings), it is found that fundamental frequency of the top plate and back plate of the acacia sundatang is greater than the vitex sundatang in free edge and in the range of 112 Hz to 230 Hz. However, their fundamental frequency was modified and become lower and closer to each other in the range of 55 Hz to 59 Hz in a clamped edge (attached to its ribs). In the dynamic vibrational measurement (in operating mode), the vibrational properties once again changed when the strings were fixed to the instrument. The natural frequencies of the top plate and back plate are closer to the natural frequencies of the vibrating string, which excites the soundboard to vibrate. The impressive finding in this research is the occurrence of the Different State of Mode (DSM) phenomenon on sundatang soundboard in free condition or fixed to its ribs (static). This DSM disappeared when the strings were fixed in operating mode. The strings modify the vibrational properties of sundatang soundboard. This research has successfully designed a protocol and procedures to study acoustical and vibrational properties of sundatang by the adaptation from the studies of the other modern musical instruments such the guitar and violin. It is hoped that the findings of this research could be used in future studies of the quality advancement of sundatang and also other stringed traditional musical instruments in Sabah.

ABSTRAK

ANALISIS BUNYI DAN GETARAN SUNDATANG

Terdapat berapa alat muzik tradisional di Sabah, Malavsia, Antaranva, ialah alat muzik sundatang. Salah satu isu yang menjadi perhatian berkaitan dengan alat muzik ini ialah asimilasi alat muzik ini dalam muzik komtemporari adalah amat terhad. Ini mungkin dapat dikaitkan dengan kurangnya kajian terhadap alat muzik ini yang boleh menyumbang kepada peningkatan pemahaman dan kualiti yang lebih baik. Dalam hal ini, kajian ciri-ciri akustik dan getaran alat muzik sundatang adalah amat diperlukan. Objektif penyelidikan ini adalah untuk mengkaji kaedah pembuatan, ciri-ciri fizikal, akustik, dan getaran alat muzik sundatang. Penyelidikan ini dijalankan dengan melaksanakan pemerhatian terhadap kaedah pembuatan, mengukur ciri-ciri fizikal, akustik serta getaran statik dan dinamik alat muzik sundatang. Dalam kajian ini, kaedah pembuatan sundatang telah didokumenkan dan beberapa formula untuk menerangkan ciri-ciri fizikal serta untuk mengira frekuensi asas pada setiap fret alat muzik ini telah diformulasikan. Di samping itu juga, kesan lubang bunyi, plat belakang, benang pelaras bunyi, alas tali, titik petikan dan daya petikan telah dijelaskan. Dalam pengukuran getaran statik (tanpa tali), didapati bahawa frekuensi asas bagi plat atas dan plat belakang sundatang acacia adalah lebih tinggi berbanding sundatang vitex, dalam keadaan hujung bebas iaitu pada julat 112 Hz hingga 230 Hz. Walau bagaimanapun, frekuensi asas ini mengalami ubahsuai dan menjadi lebih rendah dengan nilai yang lebih hampir iaitu pada julat 55 Hz hingga 59 Hz dalam keadaan hujung terkapit (dipasang pada tetulang). Dalam pengukuran getaran dinamik (dalam keadaan operasi), ciri-ciri detaran sekali lagi berubah apabila tali telah dipasang pada alat muzik tersebut. Frekuensi asli plat atas dan plat belakang (papan bunyi) adalah menghampiri frekuensi asli tali yang menguja papan bunyi tersebut bergetar. Satu dapatan yang menarik dalam kajian ini ialah penemuan Different State of Mode (DSM) pada papan bunyi sundatang dalam keadaan bebas dan dipasang pada tetulang (statik). DSM ini tidak lagi dikesan apabila apabila tali dipasang pada alat muzik serta dalam keadaan operasi. Tali telah mengubahsuai ciri-ciri getaran papan bunyi sundatang. Penyelidikan ini telah berjaya menghasilkan satu protokol dan prosedur kajian ciri-ciri akustik dan getaran sundatang dengan mengadaptasikan kajian terhadap alat muzik moden seperti gitar dan violin. Adalah diharapkan agar dapatan kajian ini dapat digunakan untuk kajian lanjutan peningkatan kualiti sundatang dan juga alat-alat muzik bertali tradisional yang lain di Sabah.

TABLE OF CONTENTS

		Page
DEC	LARATION	ii
CER	TIFICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	V
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	Х
LIST	OF FIGURES	xiv
LIST	OF ABREVIATIONS	XXV
LIST	OF SYMBOLS	xxvi
KEY	WORDS	xxix
СНА	PTER 1: INTRODUCTION	
1.1	Introduction	1
1.2	Objectives of Study	4
1.3	Scope of Study	4
1.4	Significant of Study	5
1.5	Thesis Layout	6
СНА	PTER 2: PREVIOUS RESEARCH ON STRINGED MUSICAL INSTRUMENTS	
2.1	Introduction	8
2.2	Guitar	8
	2.2.1 String Vibration of Guitar	10
	2.2.2 Vibrational Modes Measurement MALAYSIA SABAH	11
	2.2.3 Frequency Response Measurement	14
	2.2.4 Coupling of the Top Plate, Back Plate and Air Cavity	16
2.3	Violin	18
	2.3.1 Motion of Bowed String	18
	2.3.2 Violin Construction	20
	2.3.3 Violin Body Vibration	24
	2.3.4 Soundpost and Bridge	29
	2.3.5 Acoustical Properties of Violin	32
2.4	Acoustical Studies of Stringed Traditional Musical Instruments	34
2.5	Impact of Scientific Research to the Stringed Musical	37
2.6	Summary	40
	DTED 2. THEODETICAL DECEMBELL	
спА 3.1	Introduction	41
3.2	Introduction to Fourier Transformation and Fast Fourier	41
	Transformation	11
	3.2.1 Discrete Time Fourier Series and Discrete Fourier Transform	43
	3.2.2. East Fourier Transform	44

3.3 3.4	Transverse Vibration of Strings Vibration of Plate	45 49
	3.4.1 Rectangular Plates	49
2 5	3.4.2 Rectangular Wood Plates	50
3.5	Sound Padiation by Vibrating Structures	52
3.0	Modal Parameter	55
3.8	Operating Deflection Shapes	64
3.0	Software Packages for Vibration and Acoustics Analysis	66
3.10	Summary	67
СНАР	TER 4: METHODOLOGY OF RESEARCH	
4.1	Introduction	68
4.2	The Need of Vibroacoustics Studies on Sundatang	68
4.3	Study of Construction Technique and Physical Characteristics of sundatang	69
4.4	Study of Acoustical Characteristics of sundatang	72
4.5	Study of Vibrational Characteristics of sundatang	74
	4.5.1 Modal Testing Using CADA-X Impact Hammering	74
	System	
	4.5.2 Operating Deflection Shape Measurement Using SLDV	80
10	System	02
4.0	Summary	02
СНАР	TER 5: CONSTRUCTION TECHNIQUE AND PHYSICAL CHARACTERISTICS OF SUNDATANG	
5.1	Introduction	83
5.2	Traditional Construction Technique of Sundatang	83
5.3	Physical Characteristics of Sundatang MALAYSIA SABAH	96
5.4	Summary	103
СНАР	TER 6: ACOUSTICAL CHARACTERISTICS OF SUNDATANG	
6.1	Introduction	104
6.2	Background Analysis	104
6.3	Sound Frequency of Tuned Sundatang	106
6.4	Effects of Frets to the Sound Frequency of Sundatang	110
6.5	Effects of Sound Holes and Back Plate to the Sound Frequency of Sundatang	118
6.6	Effects of Plucking Force and Plucking Point to the Sound of	125
6.7	Effect of Fine Tuner Cord and String Pad to the Sound of	131
	Sundatang	
6.8	Study of Homogeneity of Sound and Vibration of Sundatang	136
6.9	Summary	138
СНАР	TER 7: VIBRATIONAL CHARACTERISTICS OF SUNDATANG	
7.1	Introduction	139

7.2 7.3	Modal Parameter Measurement of Sundatang Soundboards Operating Deflection Shape Measurement of Sundatang Soundboards	139 150
7.4	Summary	158
СНАР	TER 8: VIBROACOUSTICS ANALYSIS OF	
8.1	Introduction	159
8.2	Changes in Vibrational Properties of Sundatang Soundboards	159
8.3	Soundboards Modulation in Sundatang	168
8.4	Physical Modeling of Sundatang	175
8.5	Summary	179
CHAP	TER 9: CONCLUSIONS AND SUGGESTIONS	100
9.1		180
9.2		100
9.5	Suggestions	104
REFE	RENCES	186
APPE	NDICES	195
	UNIVERSITI MALAYSIA SABAH	

LIST OF TABLES

		Page
Table 2.1	An example of fundamental frequencies of a guitar.	11
Table 2.2	The average values of density, internal resistance and	22
	constructing violin (1 dyne = 10^{-5} N).	
Table 2.3	Modal parameter for the top plate modes A0, B(1-) and B(1+). Mode b(1-) for the oil varnished instrument had a damping value exceeding 10% of the critical damping	28
Table 2.4	Frequency shifts for the different mass loadings ($\Delta m/m=0.26/2.35$), and moment of inertia.	32
Table 2.5	Resulting frequency shifts from mass shifts in different positions and different steps.	32
Table 2.6	The fundamental frequency f_o (Hz), string lengths L_n and L_m (cm), relative length and tension change percentages, $L\%$ and $T\%$, respectively, of the normal (n) and modified (m) kantele. Note that the modified kantele has one extra string (S#2).	36
Table 2.7	String numbers, the note names, the measured fundamental frequencies, and string diameters for the guqin.	37
Table 4.1	Measured physical dimensions of the modified sundatangs.	76
Table 5.1	Measured physical dimensions of the sundatang A, B, C and D.	97
Table 5.2	Ratio of length of tail, body and neck to the total length of sundatang.	99
Table 5.3	Ratio of the distance between two nearest frets and the distance from the first fret to the sixth fret.	100
Table 5.4	Height difference of frets.	101
Table 5.5	Ratio of width of sundatang.	102
Table 5.6	Ratio of $\frac{w_1}{w_1}$.	102

Table 6.1	Comparison of the Background Sound Pressure Level in an Anechoic Chamber (Air Conditioner Switch On and Off).	108
Table 6.2	Frequency analysis of the 1^{st} string and the 2^{nd} string of sundatang C (vitex wood).	109
Table 6.3	Frequency analysis of the sound from different frets of sundatang A (acacia).	111
Table 6.4	Harmonic frequency equations for the sundatang A,B, C and D, when the 1 st string was plucked at different frets.	113
Table 6.5	Different of the gradient value (frequency versus fret number) of each fret and the fundamental frequency of the 1 st string of sundatang A.	114
Table 6.6	The recorded and calculated fundamental frequency values comparison of sundatang A.	115
Table 6.7	FF equation and GHF equation of the 1^{st} string of sundatang B, C and D.	115
Table 6.8	Correlation equation between the fundamental frequency and the length of fretted of the 1 st string of sundatang A, B, C and D.	117
Table 6.9	Frequency analysis of sound from the 1^{st} string of sundatang A (acacia wood) (sound holes opened and closed sound).	122
Table 6.10	Range of $(f_o - f_c)$ of sundatang A, B, C and D.	122
Table 6.11	Frequency and amplitude of sound recorded at 15 cm from the top plate and in the air cavity of sundatang A (acacia) with and without back plate (1 st string).	124
Table 6.12	Range of A_{tp} - A_{ac} in situation with and without back plate for sundatang A, B, C and D.	124
Table 6.13	Frequency analysis of effect of the plucking force amplitude to the sound of sundatang A(acacia, 1 st string was plucked).	128
Table 6.14	Frequency analysis of sound of the sundatang A (acacia) plucked at the point distance 4 cm, 8 cm and 12 cm from the bridge $(1^{st}$ string).	130

PERPESTANAAN

Table 6.15	Frequency analysis of sound of the sundatang A (acacia) plucked at the point distance 4 cm, 8 cm and 12 cm from the bridge (2^{nd} string) .	130
Table 6.16	Fundamental frequency analysis at different position of FTC of sundatang A, B, C and D.	132
Table 6.17	Frequency and amplitude analysis of sound recorded at 15 cm from the top plate and in the air cavity, and vibration recorded on the bridge and top plate (sundatang A, 1 st string, acacia).	137
Table 6.18	Frequency and amplitude analysis of sound recorded at 15 cm from the top plate and in the air cavity, and vibration recorded on the bridge and top plate (sundatang D, 1 st string, vitex).	137
Table 7.1	Fundamental resonance frequency of the both plates of sundatang.	148
Table 7.2	Different State of Modes (DSMs) of the top and back plates of acacia sundatang that consists of Fundamental State of Mode (FSM) and Higher State of Mode (HSM).	149
Table 7.3	The occurrences of DSMs for vitex sundatang.	149
Table 8.1	Natural frequencies of the top plate and back plate of acacia and vitex sundatang in free edge.	160
Table 8.2	Naturak frequencies of the top plate and the back plate of acacia and vitex sundatang in clamped edge.	161
Table 8.3:	ODSs of the soundboard and sound frequencies of the 1 st string of acacia sundatang.	163
Table 8.4	ODSs of the soundboard and sound frequencies of the 2 nd string of acacia sundatang.	163
Table 8.5	ODSs of the soundboard and sound frequencies of the 1^{st} string of vitex sundatang.	163
Table 8.6	ODSs of the soundboard and sound frequencies of the 2^{nd} string of vitex sundatang.	164
Table 8.7	Harmonic frequency equations of the top plate and back plate of acacia sundatang.	166
Table 8.8	Harmonic frequency equations of the plate and back plate of vitex sundatang.	166

- Table 8.9Equation of harmonic frequencies of f_{in} , (ii) $f_{out(tp)}$, (iii) ODS_{tp}' (iv) $f_{out(bp)}$, (v) ODS_{bp}' (vi) $f_{out(tpbp)}$, , (vii) ODS_{tp}'' ,and (viii) ODS_{bp}'' of acacia sundatang.
- Table 8.10Equation of harmonic frequencies of f_{in} , (ii) $f_{out(tp)}$, (iii)168 ODS_{tp}' (iv) $f_{out(bp)}$, (v) ODS_{bp}' (vi) $f_{out(tpbp)}$, (vii) ODS_{tp}'' ,
and (viii) ODS_{bp}'' of vitex sundatang.168

167

LIST OF FIGURES

		Page
Figure 1.1	Sundatang musical instrument.	2
Figure 1.2	Anatomy of sundatang.	2
Figure 1.3	Early researchers' illustration of sundatang.	3
Figure 2.1	An exploded view of a guitar, showing its construction.	9
Figure 2.2	Various designs for bracing a guitar soundboard.	9
Figure 2.3	Simple schematic of a guitar at low frequency, sound is radiated by the top plate and back plates and the sound hole, at the high frequency, most of the sound is radiated by the top plate.	10
Figure 2.4	Chaldni powder patterns of the top plate and back plate of guitar.	12
Figure 2.5	Time average interference holograms of modes of vibration of the top plate of a Levin LG 17 Guitar.	13
Figure 2.6	Mode shapes of two guitars obtained using Scanning Laser Vibrometer Doppler (SLDV). Mode notation is given in the lower left corner of each mode shape.	13
Figure 2.7	Frequency response guitar top plate. 0 dB-40 dB SL, M4, $z = 100$ cm, driving point D1.	14
Figure 2.8	Driving points and microphone places.	15
Figure 2.9	Magnitude spectrum of an open B string when the plucking point is 1/ 4.66 of the string length from the bridge.	15
Figure 2.10	Two-mass model and equivalent electrical circuit of guitar.	17
Figure 2.11	Three-mass model and equivalent circuit of guitar.	17
Figure 2.12	Anatomy of a violin.	18
Figure 2.13	Ideal motion of a bowed string.	19
Figure 2.14	Measurement of bowing parameters in violin.	20
Figure 2.15	Geometry and measures of "standard" violin blanks, L =	23

	385 mm, B = 215 mm, hm = 20 mm, and hh = 7.5 mm.	
Figure 2.16	Measurement of Chaldni patterns of the plate P for normal modes 1, 2 and 3. The supporting points are marked with squares, S and the loudspeaker positions with circles, L.	23
	The thick lines are nodal locations. The lower-half shows a block diagram of the measurement system.	
Figure 2.17	Diagram of optical sensor.	25
Figure 2.18	Standing-wave motion at 204 Hz. All data refer to vibrations normal to the surface of the violin. Lightly shaded regions above the axis represent vibrations of a certain phase; heavily shaded regions below the axis represent vibrations of the opposite phase.	25
Figure 2.19	Vertical bending modes of neck fingerboard of the violin. a designates the location of the sound post. The top plate is viewed from the above the violin represents upward motion, - represents downward motion.	26
Figure 2.20	Interferograms of wall vibrations of violin with soundpost at the first air mode (AO) at 275 Hz of (a) the top plate and (b) the back plate.	27
Figure 2.21	Top and back plate SP and no-SP nodal line patterns for 12 strong correlated corpus modes below 1 kHz for Hutchins violin coordinate axes are shown for reference (the origin falls at the neck corpus joint, +X is toward the SP side of the violin, +Y is along the neck fingerboard toward the scroll, and +Z is perpendicular to the corpus of the violin).	30
Figure 2.22	Sketch of bridge on test block with accelerometer A, magnet M, electric coil with iron core C and position of plucking P (screws, clamps and surfaces for fitting are not sketched).	31
Figure 2.23	Sketch of violin bridge.	31
Figure 2.24	Response curves detected when all ribs holes filled with corks (solid line), all rib holes filled with foam (dotted line), all rib holes open (dashed line).	34
Figure 2.25	The traditional 10-string kantele, top view and angled bottom view.	34
Figure 2.26	The modified 11-string kantele, top view and bottom view.	35

Figure 2.27	Side views of (a) the traditional and (b) the modified kantele.	35
Figure 2.28	Construction of guqin, (a) side view (b) top view.	37
Figure 2.29	The violin octet: the eight newly developed members of the violin family with their string tunings and body lengths (in inches, neck no included).	40
Figure 3.1	A periodic discrete waveform.	43
Figure 3.2	Force diagram for short segment of massive string in transverse vibration.	45
Figure 3.3	Chaldni patterns showing the vibrational modes fo rectangular plates of different shapes.	50
Figure 3.4	In passage of a plane wave of displacement, ξ , the fluid on plane AB is displaced to A'B' and that on CD and C'D'.	53
Figure 3.5	Sound field radiated by a pulsating spherical source.	57
Figure 3.6	Equivalent small baffled piston.	58
Figure 3.7	Coordinate system, nodal lines and phases of a vibrating rectangular panel.	59
Figure 3.8	Block diagram of an FRF.	61
Figure 3.9	Measuring FRFs on a structure.	62
Figure 3.10	Impact testing to get FRF of a structure.	64
Figure 3.11	Curve fitting FRF measurements.	64
Figure 4.1	Overall view of the methodology of research.	69
Figure 4.2	The four units of sundatangs.	70
Figure 4.3	An enlarged view of the anatomy of sundatang.	71
Figure 4.4	Signal measurement using microphones, accelerometers and ADC Harmonie.	73
Figure 4.5	Photo of the modified sundatang that were used in the experiment.	75
Figure 4.6	Modal testing using CADA-X impact hammering. experiment setup.	77

Figure 4.7	Hammering points on the back plate of acacia sundatang were marked evenly.	79
Figure 4.8	The corresponding geometry to back plate was created in the CADA-X system.	79
Figure 4.9	Experiment arrangement of ODS measurement.	81
Figure 4.10	FRFs and ODSs of the top plate of acacia wood sundatang (top and back plates were attached) when the 1^{st} string was plucked.	82
Figure 5.1	Acacia, vitex and jack fruit tree.	84
Figure 5.2	Preparation of the main material of sundatang.	85
Figure 5.3	Wood block was cut into the basic shape of sundatang using <i>parang</i> .	86
Figure 5.4	Tail and bridge of sundatang were shaped.	87
Figure 5.5	Neck, head and ribs of sundatang were shaped.	87
Figure 5.6	Surface of sundatang was smoothen using <i>parang</i> .	88
Figure 5.7	Air cavity of sundatang was dug using small knife-hoe and chisel.	89
Figure 5.8	Back plate of sundatang. ERSITI MALAYSIA SABAH	90
Figure 5.9	The back plate fasten by a cord to the body of sundatang.	90
Figure 5.10	Sound holes of sundatang.	91
Figure 5.11	Tuning peg pins.	91
Figure 5.12	Tuning peg holes.	91
Figure 5.13	Tuning pegs were fixed to the head of sundatang.	92
Figure 5.14	Tuning pegs and strings fixed to the sundatang.	92
Figure 5.15	Strings were fixed to the bridge of sundatang.	92
Figure 5.16	Making of the frets.	93
Figure 5.17	Frets Installation.	93

Figure 5.18	The Installed frets were coated with bee wax.	94
Figure 5.19	Fixing the fine tuner thread at the first string of sundatang.	94
Figure 5.20	String pad on the V shape of the top of the 1^{st} fret.	95
Figure 5.21	Tuning process of sundatang.	95
Figure 5.22	Measured dimensions of sundatang.	98
Figure 5.23	Graph of the height of frets of the four units of sundatangs.	101
Figure 6.1	Background sound at 15 cm from the top plate of sundatang.	105
Figure 6.2	Background sound inside the air cavity of sundatang.	105
Figure 6.3	Background vibration on the top plate of sundatang	106
Figure 6.4	Background vibration at the bridge of sundatang.	106
Figure 6.5	Amplitude versus time of sound signal from the 1 st string and 2 nd string of sundatang A (acacia).	108
Figure 6.6	Comparison of sound frequency of the 1 st string and 2 nd string of sundatang A (acacia).	108
Figure 6.7	Comparison of sound frequency of the 1 st string and 2 nd string of sundatang C (vitex wood).	109
Figure 6.8	Fret number of sundatang.	110
Figure 6.9	Fundamental sound frequency of the 1 st string of sundatag A (acacia) at different frets.	111
Figure 6.10	Fundamental frequency versus fret number of the 1 st string of sundatang A (acacia).	112
Figure 6.11	Harmonic frequencies equations of sundatang A (acacia), when the 1 st string was plucked at different frets.	113
Figure 6.12	Gradient of harmonic frequency (from the graph harmonic frequency versus harmonic number) of each fret versus fret number of the sundatang A (acacia).	114
Figure 6.13	Plot of fundamental frequency versus length of the 1^{st} string from the bridge to the <i>n</i> th-fret of sundatang A	116

	(acacia).	
Figure 6.14	Sound holes of sundatang.	118
Figure 6.15	Back plate of sundatang.	119
Figure 6.16	Frequency analysis of sound from 1^{st} string of sundatang A (acacia) (sound holes opened and closed).	121
Figure 6.17	Frequency harmonic of sound recorded at 15 cm from the top plate and in the air cavity of sundatang A (acacia) $(1^{st}$ string) with back plate attached.	123
Figure 6.18	Frequency harmonic of sound recorded at 15 cm from the top plate and in the air cavity of sundatang A (acacia) $(1^{st}$ string) without back plate.	123
Figure 6.19	Plucking force to the string of sundatang.	126
Figure 6.20	Frequency analysis of effect of the plucking force to the sou quality of sundatang A (acacia, 1 st string). Circle in (b)-(g) indicate the noise peak and sound neutralization for strong plucking force.	127
Figure 6.21	Frequency analysis of effect of the plucking force to the sound of sundatang A (acacia wood, 1 st string).	128
Figure 6.22	Measurement of plucking on string of sundatang.	129
Figure 6.23	Effect of the plucking point to the sound of sundatang A (acacia, 1 st string).	129
Figure 6.24	Fine tuner cord of sundatang.	131
Figure 6.25	Fundamental frequency of the sundatang A,B,C and D at d position of FTC	132
Figure 6.26	Frequency versus distance of FTC from the head of sundatang.	133
Figure 6.27	Frequency versus distance of FTC from the head of sundatang B.	133
Figure 6.28	Frequency versus distance of FTC from the head of sundatang C.	134
Figure 6.29	Frequency versus distance of FTC from the head of sundatang D	134

	(acacia).	
Figure 6.14	Sound holes of sundatang.	118
Figure 6.15	Back plate of sundatang.	119
Figure 6.16	Frequency analysis of sound from 1^{st} string of sundatang A (acacia) (sound holes opened and closed).	121
Figure 6.17	Frequency harmonic of sound recorded at 15 cm from the top plate and in the air cavity of sundatang A (acacia) $(1^{st}$ string) with back plate attached.	123
Figure 6.18	Frequency harmonic of sound recorded at 15 cm from the top plate and in the air cavity of sundatang A (acacia) $(1^{st}$ string) without back plate.	123
Figure 6.19	Plucking force to the string of sundatang.	126
Figure 6.20	Frequency analysis of effect of the plucking force to the sou quality of sundatang A (acacia, 1 st string). Circle in (b)-(g) indicate the noise peak and sound neutralization for strong plucking force.	127
Figure 6.21	Frequency analysis of effect of the plucking force to the sound of sundatang A (acacia wood, 1 st string).	128
Figure 6.22	Measurement of plucking on string of sundatang.	129
Figure 6.23	Effect of the plucking point to the sound of sundatang A (acacia, 1 st string).	129
Figure 6.24	Fine tuner cord of sundatang.	131
Figure 6.25	Fundamental frequency of the sundatang A,B,C and D $$ at d position of FTC	132
Figure 6.26	Frequency versus distance of FTC from the head of sundatang.	133
Figure 6.27	Frequency versus distance of FTC from the head of sundatang B.	133
Figure 6.28	Frequency versus distance of FTC from the head of sundatang C.	134
Figure 6.29	Frequency versus distance of FTC from the head of sundatang D.	134

Figure 6.30	String pad of sundatang.	135
Figure 6.31	Noise peaks of sound from the 1 st string of sundatang A (acacia) without and with string pad.	135
Figure 6.32	Graph of amplitude versus frequency of sound recorded at 15 cm from the top plate and in the air cavity, and vibration recorded on the bridge and top plate (sundatang A , 1 st string, acacia).	137
Figure 6.33	Graph of amplitude versus frequency of sound recorded at 15 cm from the top plate and in the air cavity, and vibration recorded on the bridge and top plate (sundatang D, 1^{st} string, vitex).	138
Figure 7.1	Anatomy and modifications to sundatangs' top plate and back plate.	140
Figure 7.2	Measurement conditions in modal parameter studies of the acacia and vitex sundatang.	141
Figure 7.3	FRF of the top plate (free edge) of acacia sundatang.	142
Figure 7.4	Mode shapes, natural frequencies (N.F) and percentage of critical damping (Damp) of the top plate (free edge) of acacia sundatang.	142
Figure 7.5	FRF of the back plate (free edge) of vitex sundatang.	143
Figure 7.6	Mode shapes, natural frequencies (N.F) and percentage of critical damping (Damp) of the back plate (free edge) of vitex sundatang.	143
Figure 7.7	Mode shapes of the top plate of acacia sundatang in free edge. The 3 Hz and 20 Hz are believed to be the swing modes.	144
Figure 7.8	Mode shapes of the top plate of vitex sundatang in free edge. The 20 Hz is the swing mode.	144
Figure 7.9	Mode shapes of the top plate of acacia sundatang in clamped edge. 19 Hz is the swing mode.	145
Figure 7.10	Mode shapes of top plate of vitex sundatang in clamped edge. The 19 Hz is the swing mode.	145
Figure 7.11	Mode shapes of back plate of acacia sundatang in free edge. The 11 Hz is the swing mode.	145

Figure 7.12	Mode shapes of back plate of vitex sundatang in free edge. The 3 Hz is the swing mode.	146
Figure 7.13	Mode shapes of back plate of acacia sundatang in clamped edge.	146
Figure 7.14	Mode shapes of back plate of vitex sundatang in clamped edge.	146
Figure 7.15	Measurement conditions in ODSs studies of sundatang soundboards.	151
Figure 7.16	FRFs and ODSs of the top plate of acacia wood sundatang (top and back plate attached) when the 1 st string was plucked.	152
Figure 7.17	ODS of the top plate of acacia sundatang when 1^{st} string was plucked (top plate and back plate were attached).	153
Figure 7.18	ODS of the top plate of acacia sundatang when 1^{st} string was plucked (only the top plate was attached).	153
Figure 7.19	ODS of the top plate of acacia sundatang when 2 nd string wa <mark>s plucked</mark> (top plate and back plate are attached).	154
Figure 7.20	OD <mark>S of the</mark> top plate of acacia sundatang when 2 nd string was plucked (only the top plate was attached).	154
Figure 7.21	ODS of the back plate of acacia sundatang when 1 st BAH string was plucked (top plate and back plate are attached.	154
Figure 7.22	ODS of the back plate of acacia sundatang when 1 st string was plucked (only the back plate was attached).	154
Figure 7.23	ODS of the back plate of acacia sundatang when 2 nd string was plucked (top plate and back plate were attached).	155
Figure 7.24	ODS of the back plate of acacia sundatang when 2 nd string was plucked (only the back plate was attached).	155
Figure 7.25	ODS of the top plate of vitex sundatang when 1 st string was plucked (top plate and back plate were attached).	155
Figure 7.26	ODS of the top plate of vitex sundatang when 1^{st} string was plucked (only the top plate was attached).	155
Figure 7.27	ODS of the top plate of vitex sundatang when 2 nd string	156