MODE-I LOW CYCLE FATIGUE DELAMINATION OF WOVEN GLASS FIBRE REINFORCED POLYMER MATRIX COMPOSITE

MOHD AIDY FAIZAL BIN JOHARI

PERFUSTAKAAN UNIVERSITI MALAYSIA SABAN

THIS THESIS IS SUBMITTED IN FULFILLMENT FOR THE MASTER DEGREE OF ENGINEERING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY 2008

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS THESIS®

JUDUL : MODE-I LOW CYCLE FATIGUE DELAMINATION OF WOVEN GLASS FIBRE REINFORCED POLYMER MATRIX COMPOSITE

IJAZAH : SARJANA KEJURUTERAAN (BAHAN KOMPOSIT)

SESI PENGAJIAN : 2004-2007

Saya, MOHD AIDY FAIZAL BIN JOHARI mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian saya.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. TIDAK TERHAD

PERPUSTAKAAN UNIVERSITI MALAYSIA

Disahkan oleh

(Penulis: MOHD AIDY FAIZAL BIN JOHARI)

Alamat: 276B Kampung Kemensah, Hulu Kelang, 68000 Ampang, Selangor, MALAYSIA

9

(TANDATANGAN PUSTAKAWAN)

(Penyelia: Prof. Dr. Yeo Kiam Beng @ Abdul Noor)

Tarikh: 4 Julai 2008

Tarikh: 4/7/08

CATATAN : [®] Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM)

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

JUNE 2008

PERPUSTAKAAN UNIVERSITI MALAYSIA SAM

MOHD AIDY FAIZAL BIN

JOHARI PS04-008-016

CERTIFICATION

TITLE : MODE-I LOW CYCLE FATIGUE DELAMINATION OF WOVEN GLASS FIBRE REINFORCED POLYMER MATRIX COMPOSITES

DEGREE : MASTER OF ENGINEERING (COMPOSITE MATERIALS)

VIVA DATE : 23rd JUNE 2008

DECLARED BY

(Signature)

alure

1. SUPERVISOR

Professor Dr. Yeo Kiam Beng @ Abdul Noor

2. CO-SUPERVISOR

Professor Datuk Dr. Mohd Noh Dalimin

ACKNOWLEDGEMENTS

يسم الله الرَّحْمَنِ الرَّحِيمِ

"IN THE NAME OF ALLAH, MOST GRACIOUS, MOST MERCIFUL"

First and foremost, Professor Dr. Abdul Noor @ Yeo Kiam Beng His knowledge, patience, encouragement, and advice were essential to my success here. I appreciate all the confidence and respect he had for my work. I would like to express my deepest appreciation and thanks to him for his continuous comments and suggestions for improvement and assistance throughout the period of this project development. He has provided me with tremendous knowledge and experience throughout the completion of this research. I am very grateful for his encouragement and patience in supervising me. InsyaAllah, ALLAH (s.w.a.) will return you with Prosperity, Happiness, Wealth and Blessing in this Life and in the Hereafter." YBhg. Professor Datuk Dr. Mohd Noh Dalimin - I really do appreciate his assistance, especially in the development stages of my research. Finally, I sincerely hope that he will succeed in his ambition to bring the UMS to the world-class level. Yayasan Universiti Malaysia Sabah, thank you for granting of scholarship to me. Much of my experimental work would not have been smoothly completed without the assistance of Mr. Alexender Kong (SKTM), Mr. Saiful (SKTM) and Mr. Azrie Alliamat (IBTP). All of you are excellent at what you do, and are extremely patient and helpful. Chua Bih Lii, Chong Wai Heng and Lim Eng Har, thanks to you all for being such outstanding colleague. I think working in the lab with all of you guys, has been one of the greatest work environments I have ever encounter. Centre of Materials & Minerals (CMM) - Thank you for the support, commitment and the photocopy, printing, stationary, etc. that was really helpful during the progress of this project. School of Engineering & IT (SKTM) - My thanks go to the SKTM of UMS for providing me support and also engaged me as a Tutor in last period of my research.

Also very special thanks to my dearest parents, **Johari (Abah) and Norihan (Mak)** who have made most of all this possible. To my younger brother **Isham** and sister **Wani**, thanks for being the best brother and sister I could ask for. To **Anita Muhamad**, my dearest wife, whose emotional strength, free-flowing love and caring concern have help shape my maturity and also her supportive, understanding effort throughout these years of my studies. This work is dedicated to all of you.

Last but not least, to those people who have directly or indirectly helped me but mislaid here, I apologise. Your helps do bring meanings to me. Thanks. I should also apologise to those whom I intentionally or unintentionally cause any hurt by my words or actions. As all the good things come from the Goodness and Beauty of ALLAH (s.w.t.), and the entire bad and wrong thing comes from our own weakness as a man. Wallahualam...

Thank You.

MOHD AIDY FAIZAL BIN JOHARI JUNE 2008

ABSTRACT

MODE-I LOW CYCLE FATIGUE DELAMINATION OF WOVEN GLASS FIBRE REINFORCED POLYMER MATRIX COMPOSITE

Most parts of the failures in structural elements in use were consequences of mechanical fatigue. Therefore, fatigue had been a critical factor in designing durable mechanical elements. In laminated woven GFRP composite material, the fatigue process involves different damage mechanism that results in the degradation of the materials. One of the most important damage mechanisms was the delamination between plies of the laminates. Outstanding performance woven E-glass/Polyester composites, which were increasingly used for various applications were susceptible to delamination. In response to this problem, the mode-I interlaminar fracture and fatigue delamination toughness of woven Eglass/Polyester laminates had been studied under tensile loading by using a double cantilever beam (DCB) specimen. Results were presented from an experimental study to determine the mode-I quasi-static and fatigue delamination toughness of a reinforced laminated composite. Mode-I double cantilever beam (DCB) tests had been performed on woven GFRP unsaturated polyester composite, E-Glass EWR 600 NISER, specimens. Static delamination had been first obtained. The specimen design and test procedure were performed with reference to the BS ISO 15024 and ASTM D5528. Specimens were then cycled at low cycle fatigue with 2Hz, 5Hz and 9Hz frequencies at constant amplitude of 1.5mm. These data used to determine the fatique delamination growth onset characteristic. The results from this investigation were used to generate a surface plot relating fracture toughness to mode-I and the number of cycles achieved before the onset of fracture. This plot characterizes the behaviour of the material under all static and fatigue conditions, thus providing a valuable tool for the design of composite structures in those applications where delamination growth had been of concern. Fatigue delamination growth onset test was carried out according to the ASTM D6115. The experimental results of mode-I fracture toughness, as a function of crack length had been obtained. Experimental data obtained were analyzed using the modified beam theory, MBT method. The delamination-resistance curve or the R-curve effect had been found as the general characteristics of the laminate system. Constant amplitude cyclic opening displacement fatigue test was also conducted to establish the delamination growth rate (da/dN) as a function of maximum cyclic energy release rate (G_{Imax}). The test then continues to identify the fatigue life characteristic. Fracture mechanic based total life model for delaminated woven GFRP composite was then established. The model includes the delamination growth predominant in the linear domain. Fibre bridging phenomenon with slow and stable crack propagation and extensive halfarm fiber bridged were also observed and identified from the fractographic analysis, with lower curing pressure was found to produce higher G_{IC} and G_{Imax} propagation toughness values.

ABSTRAK

Kebanyakan kegagalan pada bahagian komponen di dalam struktur elemen yang digunakan adalah akibat daripada kelesuan mekanikal. Oleh yang demikian, kelesuan adalah faktor kritikal di dalam merekabentuk elemen-elemen mekanikal yang tahan lasak. Bagi bahan komposit berlamina, proses kelesuan yang mengakibatkan keaiban pada bahan ini adalah merangkumi pelbagai mekanisma kerosakan yang berbeza-beza. Salah satu mekanisma kerosakan yang terpenting adalah delaminasi (delamination) di antara lapisan-lapisan bahan berlamina tersebut, Keupayaan yang sangat baik dari anyaman gentian kaca jenis-E/Polvester berlamina, yang mana kini banyak digunakan pada pelbagai aplikasi adalah turut berisiko mengalami delaminasi. Sebagai respon keadaan masalah ini, kajian kepada keupayaan dalam mod-I keretakan antara lamina dan kelesuan delaminasi telah dilakukan dengan menggunakan spesimen penyanggar alang berpasangan (DCB). Semua hasil keputusan diterjemahkan dalam bentuk eksperimen bagi ujikaji statik dan kelesuan untuk keupayaan bahan komposit peneguhan berlamina. Uiikaii dijalankan dengan menggunakan spesimen bahan komposit gentian kaca EWR 600 NISER. Ujikaji delaminasi statik merupakan hasil yang pertama sekali diperolehi. Uiikaji ini dilakukan berdasar dan berlandaskan pada rujukan piawaian BS ISO 15024 dan ASTM D5528. Seterusnya spesimen ini dikitarkan pada kitaran frekunsi rendah 2Hz, 5Hz dan 9Hz pada amplitud malar 1.5mm. Data-data dari ujikaji ini kemudiannya digunakan dalam memperincikan titik awalan kelesuan delaminasi. Ianya juga dijelaskan dengan memplot graf yang berkaitan dengan keupayaan keretakan dan bilangan kitaran yang dicapai sebelum berlakunya titik awalan kelesuan. Plot ini juga memperincikan bahan tersebut dari segi ciri-ciri statik dan kelesuan yang mana ianya amat berguna bagi merekabentuk struktur bahan komposit dalam situasi ciri kegagalan seperti ini dititikberatkan. Bagi ujikaji sebaran kelesuan delaminasi, ianya dilakukan dengan rujukan piawai ASTM D6115. Seterusnya keputusan ujikaji yang diperolehi adalah dalam bentuk mod-I keupayaan keretakan bagi fungsi kadar panjang keretakan. Semua data yang diperolehi diproses menggunakan teori pegubahsuaian alang (MBT). Lengkungan rintangan-delaminasi atau lengkuk-R telah dikenalpasti sebagai ciri umum bagi sistem berlamina. Pembukaan berkitar bagi ujikaji kelesuan pada amplitut malar telah dijalankan bagi memenuhi keperluan kadar pertambahan delaminasi (da/dN) bagi fungsi kitaran maksimum kadar pelepasan tenaga (G_{imax}). Seterusnya, ujikaji dilakukan untuk mengenalpasti ciri putaran hidup kelesuan. Mekanik keretakan berasakan model putaran hidup keseluruhan bagi pertambahan delaminasi pada bahagian (domain) linear. Melalui analisis fraktografy, fenomena penghubungan gentian dengan penyebaran keretakan yang stabil serta tokokan penghubungan gentian pada sebelah lengan spesimen telah diperhatikan. Spesimen lamina komposit yang difabrikasi dengan tekanan rendah dikenalpasti sebagai sesuatu yang memberikan nilai penyebaran tertinggi bagi GIC and GImax.

KEYWORDS

Woven GFRP, Mode-I, Double Cantilever Beam, Interlaminar, Fatigue Delamination.

.

THESIS CONTENT

	PAGE
TITLE PAGE	i
DECLARATION	i
CERTIFICATION	ii
ACKNOWLEDGMENTS	i ii
ABSTRACT	iv
ABSTRAK	v
KEYWORDS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATION	xix
LIST OF SYMBOLS	xxi
 CHAPTER 1 INTRODUCTION 1.1 OVERVIEW (a) Composite and Fatigue (b) Composite Toughness and Fracture 1.2 COMPOSITE TECHNOLOGY IN MALAYSIA 1.3 PROBLEMS STATEMENT 1.4 RESEARCH OBJECTIVE 1.5 RESEARCH OBJECTIVE 1.5 RESEARCH SCOPE 1.6 BENEFITS OF THE RESEARCH 1.7 RESEARCH METHODOLOGY 1.8 THESIS ORGANIZATION 1.9 SUMMARY 	1 2 3 5 7 8 9 9 10 12 14
 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION 2.2 COMPOSITE MATERIAL 2.2.1 Natural Composite 2.2.2 Fibre Reinforced Polymer (FRP) Composite 	15 15 16 17

	2.2.3 Woven Composite Constituent	19
	2.2.4 Resin Systems	20
	2.2.5 Fibre Forms	24
	2.2.6 Types of Fibre	25
	2.2.7 Glass Fibre	26
	2.2.8 Manufacturing Glass Fibre	27
	2.2.9 Basic Fibre Properties	29
2.3	WOVEN REINFORCED GFRP	30
	2.3.1 E-Glass Woven Reinforcement	30
	2.3.2 Mechanical Properties of E-Glass Woven GFRP	31
	2.3.3 Woven GFRP Composite Application	32
	2.3.4 Composite Industries	33
2.4	FRACTURE CONCEPT	34
	2.4.1 Fracture Mechanics And Fatigue	36
	2.4.2 Linear Elastic Fracture Mechanic	37
	2.4.3 Stress Intensity Factor	38
	2.4.4 The Energy Criterion	40
	2.4.5 Mode of Failure	41
25		42
2.5	2 E 1 Delamination and Crack	42
	2.5.1 Detailination and Clack	45
	2.5.2 Fatigue and Crack	46
	2.5.4 Fatigue and Composite	40
	2.5.4 Fatigue Modelling	50
	2.5.5 Fatigue Delamination Of Woven Composite	51
	2.5.7 Characteristic S-N Curve	52
	2.5.8 Characteristic G-N Curve	53
2.6	DOUBLE CANTILEVER BEAM GEOMETRY	53
2.7	55	
	2.7.1 Fatigue Failure Of Composite	56
CHAP	TER 3 DELAMINATION THEORY AND MODEL	58
3.1	INTRODUCTION	58
3.2	FIBRE COMPOSITE CHARACTERISTIC	58
3.3	GAPPROACH FOR COMPOSITE	59
3.4	DERIVATION OF ENERGY RELEASE RATE, G FACTOR	62
3.5	CRITICAL ENERGY RELEASE RATE Gr	66
3.6	DERIVATION OF G FOR DCB MODEL	67
3.7	ANALYSIS OF INTERLAMINAR FRACTURE TOUGHNESS	70
3.8	FATIGUE CHARACTERISTIC	72
3.9	FATIGUE LIFE MODEL	76
3.10	FATIGUE DELAMINATION CRACK GROWTH	77
СНАР	TER 4 SYNTHESIS AND EXPERIMENT	80
4.1	INTRODUCTION	80

÷

4.2 MATERIAL SELECTION 4.2.1 Plain-Weave Woven Glass Fibre 80 80 81

	4.2.2 Unsaturated Polyester Plastic Resin	83
4.3	PRE-CRACKING FABRICATION	84
4.4	PREPARATION AND FABRICATION	85
	4.4.1 Composite Panel Fabrication	86
	4.4.2 Rectangular Mould Fabrication	86
	4.4.3 Preparation of Mould for Lay Up	88
	4.4.4 Preparation of Woven E-Glass Ply	89
	4.4.5 Mixing Unsaturated Polyester Resin and Catalyst	90
	4.4.6 Woven GFRP Composite Lay Up	90
	4.4.7 DCB Sample Preparation	93
4.5	MECHANICAL PROPERTIES OF GFRP	94
	4.5.1 Tensile Test of the Matrix	94
	4.5.2 Tensile Test of Woven Composite Laminate	94
4.6	MODE-I INTERLAMINAR FRACTURE TEST	95
4.7	MODE-I FATIGUE DELAMINATION TEST	96
4.8	FRACTOGRAPHY ANALYSIS	99
	4.8.1 Optical Microscopy	99
	4.8.2 Scanning Electron Microscopy, SEM	100

CHAP1	TER 5	MODE-I QUASI-STATIC INTERLAMINAR TOUGHNESS	102
5.1	INTRO	DUCTION	102
5.2	PHYSI	CAL PROPERTIES	102
	5.2.1	Fibre Resin Characteristic	102
	5.2.2	Fibre-Resin Fraction	103
5.3	MECHA	NICAL PROPERTIES	110
	5.3.1	Matrix Tensile Test	110
	5.3.2	Woven GFRP Laminate Tensile Test	110
5.4	INTER	LAMINAR FRACTURE TOUGHNESS	115
	5.4.1	Interlaminar Fracture Toughness Characteristics	115
	5.4.2	Ply Arrangement and Curing Pressure Effect	116
	5.4.3	Critical Fracture Toughness Characteristic	118
5.5	INTER	LAMINAR FRACTURE MECHANISM	119
	5.5.1	Gross Micrographic Characteristic	119
	5.5.2	Fracture Mechanism by Optical Analysis	121
	5.5.3	Fracture Mechanism by SEM Analysis	122

CHAPT	TER 6	MODE-I FATIGUE DELAMINATION TOUGHNESS	124
6.1	INTRO	DUCTION	124
6.2	GFRP	COMPOSITE FATIGUE SAMPLE	124
6.3	FATIG	JE DELAMINATION	125
	6.3.1	Mode-I Interlaminar Toughness	125
	6.3.2	Fatigue Onset Life	126
	6.3.3	Fatigue Total Life	128
6.4	FREQU	ENCY EFFECT	129
6.5	FRACT	OGRAPHIC ANALYSIS	134

CHA	PTER 7 DISCUSSION	139
7.1	INTRODUCTION	139
7.2	MICROMECHANISM VIEW OF EFFECT	139
7.3	ENGINEERING TENSILE TEST	140
7.4	DOUBLE CANTILEVER BEAM GEOMETRY	141
7.5	MODE-I INTERLAMINAR TEST	142
7.6	MODE-I QUASI-STATIC DELAMINATION MODEL	143
	7.6.1 Beam Theory, BT	143
	7.6.2 Modified Beam Theory, MBT	144
	7.6.3 Compliance Calibration, CC	145
	7.6.4 Modified Compliance Calibration, MCC	145
7.7	MODE-I FATIGUE DELAMINATION MODEL	147
7.8	MODE-I FATIGUE DELAMINATION TEST	149
7.9	FRACTOGRAPHY ANALYSIS	151
СНА	PTER 8 CONCLUSION AND FUTURE WORK	152
8 1	INTRODUCTION	152

8.1	INTRODUCTION	152
8.2	CONCLUSION	152
8.3	FUTURE WORK	155
8.4	RESEARCH CONTRIBUTION	156

REFERENCES		157
GLOSSARY		164
APPENDICES		167
APPENDIX A	Testing Standards	167
APPENDIX B	Material Properties	172
APPENDIX C	Derived Papers	177

.

LIST OF TABLES

Table 2.1	Characteristics of Unsaturated Polyester Resin	23
Table 2.2	Different characteristic of each type of glass fibre	27
Table 2.3	Compositions of E-glass fibre and EWR-600B	27
Table 2.4	Specific mechanical characteristic of fibre	30
Table 2.5	Mechanical properties of E-glass woven GFRP laminate	32
Table 2.6	List of applications for various types of composite materials	33
Table 4.1	Physical properties of EWR-600B	83
Table 5.1	Physical analysis of woven GFRP composite laminate	108
Table 5.2	Mechanical tensile properties of woven GFRP laminate	113
Table 6.1	Onset life for fatigue with 2Hz frequency	127

LIST OF FIGURES

Figure 1.1	Components from composite materials for Airbus A320 manufactured by CTRM (Source: CTRM)	5
Figure 1.2	FRP composites application at chemical transfer ducting system	7
Figure 2.1	Comparison of conventional monolithic materials and composite materials on weight, thermal expansion, stiffness, strength, and fatigue resistance.	16
Figure 2.2	Natural fibre (woven type) produced by palm tree	16
Figure 2.3	Some application of Glass FRP composites (A) Boat hull, (B) Cooling tower, (C) Go-cart body parts, and (D) Water tank	18
Figure 2.4	Composites in different forms and types	20
Figure 2.5	Basic properties and characteristics of polymers	21
Figure 2.6	Process, forms, and types of thermosetting and thermoplastic polymers	22
Figure 2.7	Stress-strain of fibre, matrix and 50% volume fraction composite	25
Figure 2.8	Manufacturing process for woven roving and other types of glass fibre. Modified from (Schwartz, 1997)	29
Figure 2.9	Typical plain-weave woven E-glass	31
Figure 2.10	Problem in engineering fracture mechanics (a) crack growth curve (b) residual strength curve	34
Figure 2.11	Summary of the broad field of fracture mechanics and applications Modified from, (Broek, 1986).	35
Figure 2.12	Flow of certain important fracture and fatigue history	36
Figure 2.13	Stress at a point ahead of crack tip	38
Figure 2.14	Three-dimensional coordinate systems for region of a crack tip	39
Figure 2.15	Through thickness crack of infinite plate subject to remote tensile stress	40

Figure 2.16	Fractured (a) Mode-I opening; (b) Mode-II sliding; (c) Mode-III tearing	41
Figure 2.17	Fracture path in the composite materials (a) Interlaminar, (b) Intralaminar, and (c) Translaminar.	44
Figure 2.18	Cracks on the pillars and beam structures of the MRR2 flyover	47
Figure 2.19	Failure sequence in fatigue condition	49
Figure 2.20	Characteristic crack growth versus cyclic energy release rate factor for monolithic alloy and composite	50
Figure 2.21	G-N curve of FRP composite materials	53
Figure 2.22	Summary of fracture mechanism observed in woven laminate	55
Figure 2.23	Fatigue damage mode in (a) homogenous and isotropic and (b) composite materials	56
Figure 3.1	Infinite cracked plate under uniaxial load and load- displacement curve	60
Figure 3.2	Crack flank displacement of crack length <i>2a</i> in an infinitely loaded plate	62
Figure 3.3	Schematic of variation of total energy U as a function of crack length a	63
Figure 3.4	(a) The DCB specimen. (b) Compliance of load versus the displacement. (c) Compliance change as a function of crack length	68
Figure 3.5	Elastic variation of load versus displacement and change in energy	71
Figure 3.6	Sinusoidal load/stress versus time at constant amplitude	73
Figure 3.7	Fatigue behaviour of metals	74
Figure 3.8	Fatigue behaviour of fibre-reinforced composites	75
Figure 3.9	Transition of fatigue damages describe the total life of material	77
Figure 3.10	Schematic of the fatigue life and its dependence on stress levels	78

Figure 3.11	Schematic fatigue crack growth curve	78
Figure 4.1	Fill yarn, warp yarn and smallest unit cells for plain weave	81
Figure 4.2	Pre-cracking at crack tip and starter crack film	85
Figure 4.3	Process in producing composite panel for DCB specimen's preparation	86
Figure 4.4	Details of base plate, bottom and top view	86
Figure 4.5	(a) Detail of side skirt plate for base support plate (b) tapered hole and screw type level adjuster of mould	87
Figure 4.6	Pressure plate with additional plates and handles	88
Figure 4.7	Completely assembled mould	88
Figure 4.8	Masking laminating sequence based on the vertices condition of the woven ply (a) fill yarn OUT (b) fill yarn IN	89
Figure 4.9	Woven glass fibre plies after preparation and ready for lay up	89
Figure 4.10	Process of first resin mixtures layer on the mould base	91
Figure 4.11	Placement of the first ply of the woven glass fibre	91
Figure 4.12	Aluminium foil as a pre-cracking at the mid-plane of the laminate	91
Figure 4.13	Ply stacking sequence, (a) Non symmetrical and (b) Symmetrical	92
Figure 4.14	(a) completed fabrication process, and (b) finish GFRP composite panel	92
Figure 4.15	DCB specimen geometry and parameters	93
Figure 4.16	Specimen specification for neat resin tensile test	94
Figure 4.17	Tensile test of woven composite panel	95
Figure 4.18	Servo hydraulic testing machine, INSTRON	95
Figure 4.19	Testing procedure for fatigue delamination testing	97
Figure 4.20	Markings on DCB edge using standard interval	97
Figure 4.21	(a) Optical Microscope (Olympus BX60M) and image analyzer system, (b) woven GFRP laminate samples in epoxy resin	99

Principle of image and signal in Scanning Electron Microscope (SEM)	100
(a) Scanning Electron Microscope, and (b) sputter coating machine and sample before and after coating	101
Common physical characteristics of GFRP through thickness by optical image	103
SEM micrograph of polished woven roving laminate section	103
Average fibre (fill yarn) volume fraction of woven GFRP laminate by fibre packing arrangement relation to fibre radius at 430X magnification using SEM	104
Volume fraction of woven glass fibre/polyester laminate by fibre packing arrangement for fibre radius at 900X magnification using SEM.	105
Average fibre volume fraction of woven GFRP laminate with square packing arrangement relation to fibre radius at 430X magnification using SEM	106
SEM fractography of Woven GFRP laminate at various magnifications	107
Weight fraction with respect to various curing pressure of symmetrical and non-symmetrical ply arrangement specimen	109
Void content versus curing pressure	109
Engineering Tensile Stress Versus Tensile Strain of epoxy matrix	110
Typical fracture characteristics with various curing pressure and ply arrangement	111
Stress versus Strain of tested specimens	112
Estimated Knee point position of woven GFRP specimens	112
Young's modulus versus curing pressure	114
Percentage of ductility versus curing pressure	114
Load versus displacement	115
	Principle of image and signal in Scanning Electron Microscope (SEM) (a) Scanning Electron Microscope, and (b) sputter coating machine and sample before and after coating Common physical characteristics of GFRP through thickness by optical image SEM micrograph of polished woven roving laminate section Average fibre (fill yarn) volume fraction of woven GFRP laminate by fibre packing arrangement relation to fibre radius at 430X magnification using SEM Volume fraction of woven glass fibre/polyester laminate by fibre packing arrangement for fibre radius at 900X magnification using SEM. Average fibre volume fraction of woven GFRP laminate with square packing arrangement relation to fibre radius at 430X magnification using SEM SEM fractography of Woven GFRP laminate at various magnifications Weight fraction with respect to various curing pressure of symmetrical and non-symmetrical ply arrangement specimen Void content versus curing pressure Engineering Tensile Stress Versus Tensile Strain of epoxy matrix Typical fracture characteristics with various curing pressure and ply arrangement Stress versus Strain of tested specimens Estimated Knee point position of woven GFRP specimens Young's modulus versus curing pressure Percentage of ductility versus curing pressure Load versus displacement

Page

Figure 5.16	Delamination-resistance curve (R-curve) increasing with delamination	116
Figure 5.17	Load-displacement characteristics of (a) symmetrical and (b) non-symmetrical lay-ups	117
Figure 5.18	Typical delamination-resistance curve (R-curve) showing increasing delamination resistance with delamination length	118
Figure 5.19	Interlaminar fracture toughness and curing pressure by beam analysis	119
Figure 5.20	Failure mechanism of E-glass woven GFRP laminate (a) before loading, (b) initial crack, (c) fiber breakage and bridging, and (d) tow separation.	120
Figure 5.21	Delaminated surface, (a) Front, (b) Middle and, (c) Back, of the sample	120
Figure 5.22	Resin and fibre failure caused by static delamination.	121
Figure 5.23	Fibre bridging and tow separation observed during testing	121
Figure 5.24	Fractured morphology in symmetrical ply arrangement	122
Figure 5.25	Fractured morphology in non-symmetrical ply arrangement	122
Figure 6.1	Typical load-displacement curve of mode-I delamination test	125
Figure 6.2	Typical delamination-resistance curve (R-curve) of Woven GFRP laminates by MBT, CC and MCC methods.	126
Figure 6.3	Woven GFRP composite Mode-I fatigue delamination onset as a function of cycles and frequency. Lines show variation of onset life with G_{Imax}	127
Figure 6.4	Woven GFRP delamination propagation rates as a function of maximum strain energy release rate normalized by R-curve values. Lines are a power law fit for R ² values being 0.73 at frequency 2Hz	128
Figure 6.5	Woven GFRP delamination propagation rates as a function of maximum strain energy release rate for different frequencies. Lines are power law fitting with R ² values at 0.69 for 2Hz,	129

0.58 for 5Hz and 0.76 for 9Hz

Figure 6.6	Woven GFRP delamination propagation rates as a function of maximum strain energy release rate normalized by R-curve values. Lines are power law fitting at R ² values are 0.73 for 2Hz, 0.72 for 5Hz and 0.76 for 9Hz	130
Figure 6.7	Woven GFRP composite Mode-I fatigue delamination onset as a function of cycles and frequency. Lines show variation of onset life with G _{Imax}	131
Figure 6.8	Mode-I fatigue delamination as function of cycles and frequency. Lines are linear fitting at R ² values 0.72 for 2Hz, 0.85 for 5Hz and 0.83 for 9Hz	131
Figure 6.9	Measured delamination growth at first 300,000 cycles	132
Figure 6.10	Constant displacement amplitude block loading	133
Figure 6.11	Compliance increase versus cycles	133
Figure 6.12	Edge failure modes of fatigued specimen (a) creation of hairline crack, (b) crack at initiation length about 11mm, (c) tow separation phenomena, and (d) propagation of fatigue crack growth	134
Figure 6.13	Gross delamination surface of specimen depicting three crack zones	135
Figure 6.14	Failure mode and mechanism of laminate DCB	135
Figure 6.15	SEM micrography at the pre-crack zone of specimen	136
Figure 6.16	SEM microscopy of brittle planner fracture and shear cusps	136
Figure 6.17	SEM microscopy of fibre breakage and pull-out	137
Figure 6.18	Micrographs of broken and bare fibre, and pull-out fibre in weft direction	137
Figure 6.19	Fractured morphology showed brittle failure at higher magnification	138
Figure 7.1	Fracture process mechanism from the effect of crack extension	140
Figure 7.2	Flow chart for tensile test procedure	141
Figure 7.3	Arrangement of the end-block	142
Figure 7.4	Servo hydraulic machine system, INSTRON	143

Figure 7.5	Determination of the Δ -correction	144
Figure 7.6	Determination of Compliance Calibration	145
Figure 7.7	Determination of Modified Compliance Calibration	146
Figure 7.8	Characteristic of the fatigue crack growth rate curve	147
Figure 7.9	Typical delamination growth resistance curve, or <i>R</i> -curve	148
Figure7.10	Process connecting the fatigue delamination procedure	150
Figure7.11	Flow chart for Fractography Analysis procedure	151

.

LIST OF ABBREVIATION

- ASTM American Society for Testing and Materials
- Bhd. Berhad
- BPA bisphenol A
- BS British Standard
- BT Beam Theory
- CC Compliance Calibration
- CLS crack-lap shear
- CT Compact Tension
- DCB Double Cantilever Beam
- DEN double-edge-notch
- DENF double-end-notch flexure
- e.g. For example
- ELS end-loaded split
- EN European Norm
- ENF end-notched flexure
- EPFM Elastic Plastic Fracture Mechanic
- etc. Etcetera
- EWR E-glass Woven Roving
- FRP Fibre Reinforced Polymer
- GFRP Glass Fibre Reinforced Polymer
- i.e. That is to say
- ISO International Organization for Standardization
- LEFM Linear Elastic Fracture Mechanic
- M Malaysia
- MBT Modified Beam Theory
- MCC Modified Compliance Calibration
- MMB Mixed-mode bending
- MMF mixed-mode flexure
- MOU Memorandum Of Understanding
- MT Middle Tension
- RM Ringgit Malaysia
- SC surface-cracked

- SCB single cantilever beam
- Sdn. Sendirian
- SEM Scanning Electron Microscope
- SENB Single Edge Notch Bend
- SHCP Singapore Highpolymer Chemical Products
- VIC Vickers indentation crack
- WIF wedge-insert-fracture
- XWB Extra Wide Body

LIST OF SYMBOLS

- δ Load point deflection
- ∠ Effective delamination extension to correct for rotation of DCB arms a delamination front
- π Pie
- σ Remotely applied stress
- τ interfacial shear stress constantly along the length of the fibre
- *ρ* Density
- γ surface energy of the material
- ε Strain
- *θ* Angle within centre
- δ_{cr} Value of displacement at the onset of delamination growth from the insert in a quasi-static test
- ΔG Energy release rate range
- ΔL_o Increase in the specimen length between the gauge mark
- δ_{max} Maximum value of cyclic displacement
- δ_{mean} Mean value of cyclic displacement
- δ_{min} Minimum value of cyclic displacement
- Δ_x Incremental change in Log a
- Δ_{γ} Incremental change in Log C
- $[\Delta]_{av}$ Average value of Δ from the quasi-static tests
- [G_{IC}]_{av} Average value of GIC from the quasi-static tests
- 2R Closest centre to centre spacing of the fibres
- a Delamination length
- A Material constant in fatigue condition
- A_o Insert length
- A_i Initial cross-sectional of the specimen

A_I	Slope of plot of a/b versus C1/3
a _o	Initial delamination length
Ь	Width of DCB specimen
В	Material constant in fatigue condition
<i>b</i> _f	Material constant in fatigue condition
С	Compliance, δ/P , of DCB specimen
Cr	Constant in fatigue condition
D	Density of resin
d	Density of reinforcement
da	Infinitesimal increase in delamination length
dt	Time increment
dU	Infinitesimal increase in strain energy
E'	Young Modulus for plane stress
E _{II}	Modulus of elasticity in the fibre direction
F _{cor}	Large displacement correction factor
F	Force
G	Strain energy release rate
G _{IC}	Opening mode-I interlaminar fracture toughness
GIIC	Opening mode-II interlaminar fracture toughness
GIIIC	Opening mode-III interlaminar fracture toughness
G _{Imax}	Maximum or peak cyclic mode-I strain energy release rate
G _{IR}	Mode-I Interlaminar fracture resistance
G-N	Relationship between the cyclic stain energy release rate and the number of cycles to onset of delamination growth
GTH	Threshold strain energy release rate
h	Thickness of DCB specimen
h _{st}	Separation of the fibre

xxii

REFERENCES

- Anderson, T. L. 1995. Fracture Mechanics: Fundamentals and Applications. (2nd edition). United State of America: CRC Press Inc.
- Ashby, M. F. & Jones, D. R. H. 1980. Engineering Materials: An Introduction to their Properties and Applications. New York: Pergamon Press Inc.
- Ashecroft, I.A., Hughes, D.J. & Shaw, S.J. 2001. Mode-I Fracture Of Epoxy Bonded Composite Joints: 1. Quasi-Static Loading. International Journal Adhesion & Adhesives. 21:87-99.
- Avila, A.F. & Morais, D.T.S. 2005. A Multiscale Investigation Based on Variance Analysis for Hand Lay-Up Composite Manufacturing. *Composite Science Technology*. 65:827-838.
- Berthelot, J. M., Cole, J. M. (trans). & Ling, F. F. (ed.). 1999. Composite Materials: Mechanical Behavior and Structural Analysis. New York: Spriger-Verlag Inc.
- Blackman, B., Dear, J.P., Kinloch, A.J. & Osiyemi, S. 1991. The Calculation Of Adhesive Fracture Energies From Double-Cantilever Beam Test Specimens. *Journal Material Science Letters*. **10**:253-256.
- Bolotin, V. V. 1999. Mechanics of Fatigue. United State of America: CRC Press Inc.
- Brady, G. S., Clauser, H. R. & Vaccari, J. A. 1997. *Material Handbook*. (4th edition). New York: McGraw-Hill Companies.
- Broek, D. 1986. Elementary Engineering Fracture Mechanics. (4th edition). United Kingdom: Kluwer Acad. Publisher.
- Brooks, C. R. & Choudhury, A. 2002. Failure Analysis of Engineering Materials. New York: McGraw-Hill Companies Inc.
- BS 1268-1. 2001. Fiber Reinforced Plastics-Methods Of Producing Test Plates-Part 1: General Conditions. United Kingdom: British Standard.
- BS 2782-3 (EN ISO 527-4). 1997. Plastics-Determination Of Tensile Properties-Part 4: Test Conditions For Isotropic And Orthotropic Fiber-Reinforced Plastic Composites. United Kingdom: British Standard.

- BS 3396-1. 1991. Woven Glass Fiber Fabrics For Plastics Reinforcement Part 1: Specification For Loom-State Fabrics. United Kingdom: British Standard.
- BS 3396-2. 1987. Woven Glass Fiber Fabrics For Plastics Reinforcement Part 2: Specification For Desized Fabrics. United Kingdom: British Standard.
- BS 3396-3. 1987. Woven Glass Fiber Fabrics For Plastics Reinforcement Part 3: Specification For Finished Fabrics For Use With Polyester Resin Systems. United Kingdom: British Standard.
- BS 3532. 1990. Method Of Specifying Unsaturated Polyester Resin Systems. United Kingdom: British Standard.
- BS ISO 15024. 2001. Fiber-Reinforced Plastic Composites-Determination Of Mode- I Interlaminar Fracture Toughness, G_{IC}, For Unidirectionally Reinforced Materials. United Kingdom: British Standard.
- Bureau, M. N., Perrin, F., Denault, J. & Dickson, J. I. 2002. Interlaminar Fatigue Crack Propagation in Continuous Glass Fiber/Polypropylene Composites. International Journal of Fatigue. 24: 99-108.
- Cahn, R. W., Haasen, P., Kramer, E. J. & Chou, T. W. (ed.). 1993. *Material Science* and Technology: A Comprehensive Treatment, Structure and Properties of Composites. (13th edition). Weinheim: VCH Verlaggesellschaft mbH.
- Carlson, R.L. & Kardomateas, G.A., 1996. An Introduction to Fatigue in Metals and Composites. Britain: Chapman & Hall.
- Chawla, K. K. 1998. Composite Material: Science and Engineering. (2nd edition). New York: Springer-Verlag Inc.
- Clarke, J. L. (ed.). 1996. Structural Design of Polymer Composites. London: E & FN Spon.
- Colling, D. A. & Vasilos, T. 1995. Industrial Material: Polymers, Ceramics and Composites. (Vol. 2). New Jersey: Prentice-Hall Inc.
- "CTRM Aero Composites" (on-line) <u>http://www.ctrm.com.my.htm</u>. Accessed on 21 October 2006.
- Curtis, P. T. (ed.). 1988. Crag Test Method for the Measurement of the Engineering Properties of Fiber Reinforced Plastic, Series No. 88012, Technical Report of Royal Aerospace Establishment, London.

- D 2734. 2003. Standard Test Method for Void Content of Reinforced Plastics. West Conshohocken: American Society for Testing and Materials.
- D 3039. 2001. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. West Conshohocken: American Society for Testing and Materials.
- D 3479. 1996. Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite. West Conshohocken: American Society for Testing and Materials.
- D 4029. 2004. Standard Specification for Finished Woven Glass Fabrics. West Conshohocken: American Society for Testing and Materials.
- D 5528. 2001. Standard Test Method for Mode-I Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composite. West Conshohocken: American Society for Testing and Materials.
- D 638. 2003. Standard Test Method for Tensile Properties of Plastics. West Conshohocken: American Society for Testing and Materials.
- D 6115. 1997. Standard Test Method for Mode-I Fatigue Delamination Growth Onset of Unidirectional Fiber Reinforced Polymer Matrix Composite. West Conshohocken: American Society for Testing and Materials.
- D 6856. 2003. Standard Guide for Testing Fabric-Reinforced "Textile" Composite Material. West Conshohocken: American Society for Testing and Materials.
- Degreick, J. & Paepegem, W. V. 2001. Fatigue Damage Modeling of Fiber Reinforced Composite Material: Review. Applied Mechanics Reviews. 54(4): 279-300.
- Deiter, G. E. 1986. Mechanical Metallurgy. (3rd edition). United State: McGraw-Hill Inc.
- Diefendorf, R. J. (ed.). 1992. *High Performance Synthetic Fibers for Composites*. Washington: National Academy Press.
- Ding, W. 1999. Delamination Analysis of Composite Laminates. Department of Chemical Engineering and Applied Chemistry. Toronto: University of Toronto.
- Dowling, N. E. 1993. Mechanical Behavior Of Materials: Engineering Methods For Deformation, Fracture And Fatigue. New Jersey: Prentice Halloc.

- Dyer, K. P. & Isaac, D. H. 1998. Fatigue Behavior of Continuous Glass Fiber Reinforced Composites. *Composite Part B.* 29(B): 725-733.
- E 1823. 1996. Standard Terminology Relating to Fatigue and Fracture Testing. Philadelphia: American Society for Testing and Materials.
- Ewalds, H. L. & Wanhill, R. J. H. 1986. Fracture Mechanics. London: Edward Arnold Publisher Ltd.
- Faizal, M. A., Yeo, K. B. & Dalimin, M. N. 2006. Tensile Property of Hand Lay-Up Plain-Weave Woven E-Glass/Polyester Composite: Curing Pressure and Ply Arrangement Effect. Borneo Science, A Journal of Science and Technology. Vol.19: 27-34.
- Faizal, M. A., Yeo, K. B. & Dalimin, M. N. 2006. Mode-I Interlaminar Fracture Toughness of Hand Lay-Up Plain-Weave Woven GFRP/Unsaturated Polyester Laminate. Proceedings Regional Postgraduate Conference on Engineering and Science. Johor, Malaysia. 287-291.
- Ferreira, J. A. M., Costa, J. D. M., Reis, P. N. B. & Richardson, M. O. W. 1999. Analysis of Fatigue and Damage in Glass Fiber Reinforced Polypropylene Composite Materials. *Composite Science and Technology*. **59**: 1461-1467.
- Gibson, R. F. 1994. Principles of Composite Materials Mechanics. New York: McGraw-Hill Companies Inc.
- Gregory, J. R. & Spearing, S. M. 2004. Constituent and Composite Quasi-Static and Fatigue Fracture Experiments. Composites Part A: Applied Science and Manufacturing: 1-10.
- Hamda, M. M. A., Megahed, M. M. & Hammouda, M. M. I. 1998. Fatigue Crack Growth in Double Cantilever Specimen with an Adhesive Layer. *Engineering Fracture Mechanic*: **60**(5-6): 605-614.
- Hashemi, S., Kinloch, A. J. & Williams, J. G. 1990. The Analysis of Interlaminar Fracture in Uniaxial Fibre-Polyer Composite. *Proceedings of the Royal Society of London*, Vol.A427. London. 1-27.
- Hull, D. & Clyne, T. W. 1996. An Introduction to Composite Materials. (2nd edition). Cambridge: Cambridge University Press.
- Jones, C. E. 1975. Boat Maintenance: Ideas and Practice. Lymington: Nautical Publishing Co. Ltd.

- Kim, D. H. 1995. Failure of Composite. Composite Structures for Civil and Architectural Engineering. London: E & FN Spon. pp. 333-354.
- Kumagai, S., Shindo, Y. & Inamoto, A. 2005. Tension-tension Fatigue Behavior of GFRP Woven Laminates at Low Temperatures. *Cryogenics*. **45**: 123-128.
- Meyers, M. A. & Chawla, K. K. 1999. *Mechanical Behavior of Materials*. New Jersey: Prentice-Hall Inc.
- Mohd Aidy Faizal Bin Johari. 2004. Fatigue Fracture Toughness of Alloy Steel. Kota Kinabalu: Universiti Malaysia Sabah.
- Mohd Roshdi Hassan. 2007. Kapal Terbang Plastik. Utusan Malaysia. (on-line) http://www.utusan.com.my/utusan/content.asp?y=2007&dt=0130&pub=Utusa n Malaysia&sec=Rencana&pg=re_02.htm. Accessed on 30 January 2007.
- Morais, A.B. 2003. Double Cantilever Beam Testing of Multidirectional Laminates. Composites: Part A. 32(12):1135-1142.
- Morais, A.B., de Moura, M.F., Goncalves, J.P.M. & Camanho, P.P. 2003. Analysis of Crack Propagation in Double Cantilever Beam Test of Multidirectional Laminates. *Mechanics of Materials*. **35**:641-652.
- Morais, A.B., de Moura, M.F., Marques, A.T. & de Castro, P.T. 2002. Mode-I Interlaminar Fracture Of Carbon/Epoxy Cross-Ply Composite. Composite Science and Technology. 62:679-686.
- Nielsen, L. E., Landel, R. F. & Faulkner, L. L. (ed.). 1994. *Mechanical Properties of Polymers and Composites*. (2nd edition). New York: Marcel Dekker, Inc.
- Osada, T., Nakai, A. & Hamada, H. 2003. Initial Fracture Behavior of Satin Fabric Composites. Composite Structures. 61:333-339.
- Paepegem, W. V., Degrieck, J. & Baets, P. D. 2001. Finite Element Approach for Modeling Fatigue Damage in Fiber Reinforced Composite Materials. *Composites Part B.* 32(7): 575-588.
- Pandita, S.D., Huysmans, G., Wevers, M. & Verpoest, I. 2004. Tensile Fatigue Behavior Of Glass Plain-Weave Fabric Composites In On-And Off-Axis Directions. Composites: Part A. 32:1533-1539.
- Pascoe, K. J. 1978. An Introduction to the Properties of Engineering Materials. (3rd edition). England: Van Nostrand Reinhold (UK) Co. Ltd.

- Pereira, A. B. & Morais de A. B. 2004. Mode-I Interlaminar Fracture of Carbon/Epoxy Multidirectional Laminates. *Composite Science and Technology*. 64: 2261-2270.
- Perrin, F., Bureau, M.N., Denault, J. & Dickson, J.I. 2003. Mode-I interlaminar crack propagation in continuous glass fiber/polypropylene composites: temperature and molding condition dependence. *Composite Science and Technology*. 63:597-607.
- Pirondi, A. P. & Nicolette, G. 2004. Fatigue Crack Growth in Bonded DCB Specimens. Engineering Fracture Mechanics. 71: 859-871.
- Rao, B. N. & Acharya, A. R. 1995. Evaluation of Facture Energy Glc Using a Double Cantilever Beam Fiber Composite Specimen. *Engineering Fracture Mechanic*. 51(2): 317-322.
- Rita, R., Savkar, B. K. & Bose, N. R. 2001. Behavior of E-Glass Fiber Reinforced Vinylester Resin Composites Under Impact Fatigue. *Bulletin Material Science*. 24(2): 137-142.
- Robinson, P. & Das, S. 2004. Mode I testing of composite laminates reinforced with z-direction pins: a simple model for the investigation of data reduction strategies. *Engineering Fracture Mechanics*. **7**:345-364.
- Rossmanith H. P. (ed.). 1997. Fracture research in Retrospect: An anniversarry volume in honour of George R. Irwin's 90th birthday. Netherlands: A. A. Balkema Publishers.
- Roy, R., Sarkar, B. K. & Bose, N. R. 2001. Impact Fatigue of Glass Fiber-Vinylester Resin Composites. Composites Part A: applied science and manufacturing. 32:871-876.
- Schwartz, M. M. 1997. Composite Material: Properties, Nondestructive testing and repair. (Vol. 1). New Jersey: Prentice-Hall Inc.
- Schwartz, M. M. 1997. Composite Material: Processing, Fabrication and Application. (Vol. 2). New Jersey: Prentice-Hall Inc.
- Seiglie, M. 1997. Archeology and the Book of Exodus: Exit From Egypt. The Good News 2 (2):22-24.
- Shindo, Y., Inamoto, A. & Naritta F. 2005. Characterization of Mode-I Fatigue Crack Growth in GFRP Woven Laminates at Low Temperatures. *Acta Materialia*. **53**: 1389-1396.

- Shivakumar, K. Chen, H. Abali, F. & Davis, C. A. 2006. A Total Fatigue Model for Mode I Delaminated Composite Laminates. *International Journal of Fatigue* 28:33-42.
- Srivastava, V. K. & Hogg, P. J. 1998. Damage Performance of Particles Filled Quasi-Isotropic Glass-Fiber Reinforced Polyester Resin Composites. *Journal Material Science* 33:1119-1128.
- Stevanovic, D., Jar, P-Y,B, Kalyanasundaram, S. & Lowe, A. 2000. On crack-initiation conditions for mode I and mode II delamination testing of composite materials. *Composite Science Technology*. **60**:1879-1887.
- Suresh, S. 2003. Fatigue of Material. (2nd edition). U. K: Cambridge University Press.
- Swanson, S. R. 1997. Introduction to Design and Analysis with Advanced Composites Materials. Upper Saddle River: Prentice-Hall Inc.
- Todo, M. & Jar, P-Y.B. 1997. Study of Mode-I Interlaminar Crack Growth in DCB Specimens of Fiber-Reinforced Composites. *Composite Science and Technology*. 58:105-118.
- Tong, J. 2002. Characteristic of Fatigue Crack Growth in GFRP Laminates. International Journal of Fatigue. 24: 291-297.
- Villaverde, N. B. 2004. Variable Mixed-Mode Delamination in Composite Laminates Under Fatigue Condition: Testing & Analysis. Department d' Enginyeria Mecanica I de la Construccio Industrial. Girona: University of Girona.
- Whitney, J. M. 1985. Stress Analysis of the Double Cantilever Beam Specimen. Composite Science and Technology. 23: 201-219.
- Yates, J. 1992. Glass-Fibre Boat Repair. Marlborough: The Crowood Press Ltd.
- Yeo, K. B. & Mohd. Noh Dalimin. 2001. Mode-I Interlaminar Fracture Toughness of Unidirectional Carbon Fiber Epoxy Composite. *Borneo Science, A Journal of Science and Technology*. 10: 1-9.
- Zeng, M. H. 2002. Fatigue Life Prediction of a Woven Fabric Composite Subjected to Biaxial Cyclic Loads. Composites Part A: Applied Science and Manufacturing. 33:253-266.

