SCREENING AND CHARACTERIZATION OF MICROBIAL INHIBITORS AGAINST EUKARYOTIC PROTEIN PHOSPHATASES (PP1 and PP2A)

ONG SI MON

PERPUSTAKAAN UNIVERSITI MALAYSIA SABA4

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2005

UNIVERSITI MALAYSIA SABAH

CATATAN: Tesis[®] dimaksudkan sebagai tesis Doktor Falsafah atau Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja khusus dan penyelidikan atau laporan Projek Sarjana Muda (LPSM)

	BORANG PENGESAHAN STATUS TESIS®		
Judui:	SCREENING AND CHRACTEIZATION OF MICROBIAL INHIBITORS AGAINST EUKARYOTIC PROTEIN PHOSPHATASES (PP1 AND PP2A)		
ljazah:	SARJANA SAINS (BIOTEKNOLOGI)		
Sessi Pengajian:	2002-2005 PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH		
Saya Ong Si Mon mengaku membenarkan tesis sarjana disimpan di perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:			
 Tesis adalah hak milik Universitit Malaysia Sabah Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi Tidak terhad 			
	Disahkan oleh		
(Ong Si Mon) Alamat Tetap: 213, Jalan Taming Sa 34000 Taiping, Perak. Tarikh: 12 Disember 3	Tandatangan Pustakawan) ari, بالنديرلمية Penyelia: Prof Dr Ho Coy Choke		

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

Ong Si Mon PS2002-001-518 June 2005

First of all, I would like to express my sincerest appreciation and thank to my supervisor Professor Dr. Ho Coy Choke for his guidance, supervision, dedicated effort and patience through out this research.

I also would like to express my appreciation and thank you to Professor Dr. Michael J.R. Stark from University of Dundee for willing to run the assay test that is not available in UMS on the samples that I have provided. I would like to thank Dr. Linda Morris and Miss Ling-say Wong from University of Dundee for willing to determine the structure of my samples that is not available in UMS.

The staffs of the Institute of Tropical Biological and Conservation of Universiti Malaysia Sabah and World Wild Fund (WWF) have been most accommodating and helpful in providing the means to participate in their expeditions to the rainforests of Sabah. The staffs from Sabah Park and Forests Research Center, Sandakan (FRC) have been very helpful throughout the expedition. A special thank to the staff of Recaventure Sdn. Bhd. that have been provided me accommodation and transport to collect sample in Kudat.

I would like to express my thanks to my postgraduate colleagues, undergraduates and friends for their assistance and companion.

I would like to express special thank and appreciation to the love and support of my family, my father Ong Ah Kong, my mum Phoon Lee Sun, my sister Ong I Rin, my grandmother Sin Ha and to the memory of my grandfather Ong Ah Keng who passed away 7 years ago. The last but not least to express my special thank to my girlfriend, Chin Sheau Yen for her companion and support through out my research.

ABSTRAK

SCREENING AND CHARACTERIZATION OF MICROBIAL INHIBITORS AGAINST EUKARYOTIC PROTEIN PHOSPHATASES (PP1 and PP2A)

Sampel tanah diperoleh dari tanah hutan Sabah di Ulu Padas, Lower Segama, Melalap, Maliau Basin, Tabin, Kpg Limau-limauwan dan kawasan di sekitar Kota Kinabalu. Sejumlah 283 actinomycetes dan 44 mikrofungi telah berjaya diasingkan dan ditulenkan. Unsur asing ini telah dikaji dan disaring dengan menggunakan sistem penyaringan perencat PP1. Dua jenis yis telah digunakan sebagai sasaran penyaringan terhadap PP1; yis jenis liar yang membawa GLC7 dan vis mutan yang membawa alel glc7 (glc7-10) yang sensitif terhadap suhu yang tinggi. Mutan menyebabkan kitaran sel terencat dan keutuhan dinding sel terjejas pada 37°C tetapi diselamat dengan penambahan 1M sorbitol. Perencat berpotensi yang bertindak ke atas Glc7p jenis liar akan menunjukkan ciri yang sama seperti strain mutan. Ekstrak kasar aceton H7520, H9318 dan H9978 menunjukkan perencatan positif terhadap sistem penyaringan perencat PP1. Ujian perencat yang melibatkan aktiviti enzim telah dijalankan oleh Prof Michael J.R. Stark, dengan esktrak kasar aseton H9318 dan H9978 vang telah dibeku-kering menunjukkan aktiviti perencatan terhadap PP1 dan PP2A, sementara esktrak H7520 hanya merencat PP2A dan bukannya PP1. Tahap kesensitifan bagi perencat berpotensi yang telah disaring terhadap yis S. cerevisiae, PP1 atau PP2A diuji dalam ujian kekurangan haploid. Strain ASY25 (PPH21/pph21::LEU2 pph22::URA3/PPH22) dan ASY27 (glc7::LEU2/GLC7) adalah sensitif terhadap ekstrak kasar aceton H9318 dan H9978 yang telah dibekukering berbanding dengan strain AYS927 (PPH21/PPH21 PPH22/PPH22 GLC7/GLC7). Strain ASY25 adalah lebih sensitif terhadap ekstrak kasar aceton H7520 yang telah dibeku-kering berbanding dengan strain AYS927 dan ASY27. Pengesktrakan ienis cecair-cecair telah dijalankan dan lapisan ekstrak etil asetat (H7520. H9318 dan H9978) menunjukkan aktiviti perencatan. Hanya lapisan etil acetat H9318 diuji dengan RP-HPLC. Dua kompaun aktif, S1 dan S2 telah dikesan dan diasingkan keluar. S1 dan S2 bagi H9318 menunjukkan aktiviti perencatan terhadap sistem penyaringan perencat PP1. Tahap kesensitifan bagi S1 dan S2 yang telah disaring terhadap vis PP1 atau PP2A diuji dalam ujian kekurangan haploid. Strain ASY27 menunjukkan kesensitifan yang lebih tinggi terhadap S2 berbanding dengan strain diploid yang lain. S1, strain ASY25 adalah lebih sensitif daripada strain AYS927 dan ASY27. S1 dan S2 merencat kedua-dua PP1 dan PP2A dalam ujian perencat yang melibatkan aktiviti enzim. Dalam kitaran sel S. cerevisiae, S1 menunjukkan kesan yang sama seperti mutan pph22 (binuklear di dalam sel induk) dan mengumpul pelbagai nuklei. S2 menunjukkan kesan yang sama seperti glc7-10 (mempamerkan morfologi pertunasan secara sisi) dan juga perbelahan nukleus. Dengan bantuan daripada Dr Linda Morris dan Ling-say Wong, S1 dan S2 dikenalpasti dengan menggunakan MS. Sebahagian struktur yang dicadangkan ialah tripeptida, S1 ialah satu komplex kuprumtripeptida, GHC (Glycine-Histidine-Cystein) dan bergabung dengan ion kuprum, sementara S2 mempunyai 2 tripeptida yang tidak bergabung dengan ion kuprum, GHC dan GHK (Glycine-Histidine-Lysine).

ABSTRACT

SCREENING AND CHARACTERIZATION OF MICROBIAL INHIBITORS AGAINST EUKARYOTIC PROTEIN PHOSPHATASES (PP1 and PP2A)

Soil samples were collected from Sabah forests soils in Ulu Padas, Lower Segama, Melalap, Maliau Basin, Tabin, Kpg Limau-limauwan and area around Kota Kinabalu. A total of 283 actinomycetes included and 44 microfungi were successfully isolated and purified. These isolates were studied and screened against PP1 inhibitor screening system. Two types of yeast were used as the screening targets against protein phosphatase 1; wild-type yeast which carried GLC7 and mutant yeast which carried a high temperature sensitive glc7 allele (glc7-10). The mutant causes cell cycle arrest and cell wall integrity defect at 37°C but was rescued by the addition of 1M sorbitol. A potential inhibitor that acted on the wild-type Glc7p will show similar characteristic as the mutant strain. Crude acetone extracts of H7520, H9318 and H9978 demonstrated positive inhibitions on PP1 inhibitor screening system. Enzymatic inhibitor assavs were performed by Prof Michael J.R. Stark, where freezedried crude acetone extracts of H9318 and H9978 showed inhibitory activities on PP1 and PP2A while extract H7520 inhibited on PP2A but not PP1. The degree of sensitivity of the potential inhibitors screened against yeast S. cerevisiae, PP1 or PP2A were examined in the haploid-insufficiency test. Strain ASY25 (PPH21/pph21::LEU2 pph22::URA3/PPH22) and ASY27 (glc7::LEU2/GLC7) were both sensitive to freeze-dried crude acetone extract of H9318 and H9978 compare to strain AYS927 (PPH21/PPH21 PPH22/PPH22 GLC7/GLC7). Strain ASY25 was more sensitive to freeze-dried crude acetone extract H7520 compare to strain AYS927 and ASY27. Liquid-liquid extractions were performed and ethyl acetate layer extracts (H7520, H9318 and H9978) exhibited inhibitory activities. Only ethyl acetate layer of H9318 was performed in RP-HPLC. 2 active compounds. S1 and S2 were detected and were fractions out. Fractions S1 and S2 of H9318 showed inhibitory activity on PP1 inhibitor screening system. The degree of sensitivity of the S1 and S2 fractions screened against yeast PP1 or PP2A were examined in the haploid-insufficiency test. Strain ASY27 showed higher sensitivity to fraction S2 compared to other diploid strains. For fraction S1, strain ASY25 was more sensitive than strains AYS927 and ASY27. S1 and S2 inhibited both PP1 and PP2A on enzymatic inhibitor assay. In veast (S. cerevisiae) cell cvcle, fraction S1 showed similar effect as pph22 mutant (binucleate in mother cell) and accumulate multiple nuclei. Fraction S2 showed similar effect as glc7-10 (displays aberrant bud morphology) and also nucleus fragmentation. With the help from Dr Linda Morris and Ling-say Wong, the active fractions of S1 and S2 were identified using MS. The proposed partial structures of these 2 fractions were tripeptides, S1 was a tripeptide-copper complex, GHC (Glycine-Histidine-Cystein) and incorporate with copper ion while S2 had 2 tripeptides and both without any incorporate ion, GHC and GHK (Glycine-Histidine-Lysine).

- Abs Absorbance
- DO Dissolved oxygen
- GLC7 The gene that encodes PP1 in yeast, Saccharomyces cerevisiae
- *glc7-10* The mutated gene of *GLC7* which shows temperature sensitivity in which was due to the replacement of the amino acid phenylalanine with leucine at the position 135 on the catalytic subunit of *GLC7* protein
- Glc7p The protein that is encoded by GLC7
- HV agar Humic acid agar
- MAPK Mitogen activated protein kinase
- min Minutes
- mm Millimeter
- MP media Mannitol peptone glucose media
- PDA Potato dextrose agar
- PP1 Protein phosphatase 1
- PP2A Protein phosphatase 2A
- PPH21 One of the gene encoded PP2A in yeast, Saccharomyces cerevisiae
- PPH22 One of the gene encoded PP2A in yeast, Saccharomyces cerevisiae
- YPD Yeast extract peptone agar

LIST OF CONTENTS

	Page
RESEARCH TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRAK	iv
ABSTRACT	v
LIST OF ABBREVIATIONS	vi
LIST OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xvi
KEYWORDS	xxi
CHAPTER 1 - INTRODUCTION	
1.1 Research background	1
1.2 Research objectives	3
CHAPTER 2 – LITERATURE REVIEWS	
2.1 Actinomycetes	8
2.1.1 Streptomyces	8
2.1.2 Nocardia	11
2.2 Fungi	12
2.2.1 Deuteromycetes	13
2.2.2 Yeast	15
2.3 Forests in Sabah, Malaysia	16
2.4 Actinomycetes and fungi in ecosystem	18
2.5 Microorganisms in mangrove and terrestrial forests	18
2.6 Signal transduction	19
2.7 Modes of cell-cell signaling	20
2.8 Pathway of intracellular signal transduction	21
2.8.1 MAPK pathway	21
2.9 Protein phosphatases	23
2.10 Protein phosphatase 1 (PP1) in mammals	24
2.10.1 Regulation of the glycogen-bound PP1	26
2.10.2 PP1 role in cell cycle	27
2.10.3 PP1 role in learning and memory	30

•

BOUNDS

2.11 Protein phosphatase 2A (PP2A) in mammals	33
2.11.1 PP2A role in cell cycle	34
2.12 PP1 in Saccharomyces cerevisiae	36
2.12.1 Glc7p in glucose repression and glycogen synthesis	37
2.12.2 Glc7p in cell cycle division	39
2.12.3 Glc7p in cell integrity	40
2.13 PP2A in Saccharomyces cerevisiae	41
2.13.1 Pph21p and Pph22p in cell cycle division	42
2.12.2 Pph21p and Pph22p in cell wall integrity	42
2.14 Inhibitors of protein phosphatases	

CHAPTER 3 - MATERIALS AND METHODS

3.1 Soil sampling	48
3.2 Isolation media	49
3.2.1 Isolation medium for Streptomyces	49
3.2.2 Isolation medium for Nocardia	49
3.2.3 Isolation medium for microfungi	50
3.3 Serial dilution of soil suspension onto isolation medium	50
3.4 Purification media	50
3.4.1 Purification medium for actinomycetes	50
3.4.2 Purification medium for microfungi	51
3.5 Classifications of strains	51
3.5.1 Actinomycetes	51
3.5.2 Microfungi	51
3.6 Classification of stock number	51
3.7 Growth media	52
3.7.1 Growth medium for actinomycetes for production of secondary metabolites	52
3.7.2 Growth medium for microfungi for production of secondary metabolites	52
3.8 Extraction of secondary metabolites from actinomycetes and microfungi	52
3.9 Storage and safekeeping of actinomycetes and microfungi strains	52
3.10 Sterilization	53
3.11 Characterization of potential PP1 inhibitor strains	53
3.11.1 Gram staining	53
3.11.2 Acid fast staining	

3.11.3 Lacto phenol blue staining	54
3.11.4 DAP isomer detection	55
3.12 Single layer agar PP1 inhibitor screening system	56
3.12.1 Media used for single layer agar PP1 inhibitor screening	56
3.12.2 Method used in single layer agar PP1 inhibitor screening system	56
3.13 Freeze-drying of extract	57
3.14 Top layer agar PP1 inhibitor screening system	58
3.14.1 Method used in top layer agar PP1 inhibitor screening system	58
3.15 Haploinsufficiency test	58
3.15.1 Method used in haploinsufficiency test	59
3.16 Enzymatic inhibitor assay	60
3.16.1 Preparation of ³² P-labelled phosphorylase a substrate	60
3.16.2 [³² P] phosphorylase phosphatase assay	63
3.16.3 Calculation of phosphatase activity	64
3.17 Liquid-liquid extraction	65
3.17.1 Method for liquid-liquid extraction	65
3.18 High performance liquid chromatography (HPLC)	65
3.19 Yeast effect of HPLC fraction towards yeast morphology under fluorescent microscope with DAPI staining	66
3.20 Active compound identification using MS and NMR	67
CHAPTER 4 – RESULTS	
4.1 Description of soil samplings	68
4.2 Sources of samples	69
4.3 Isolation of actinomycetes	84
4.3.1 Isolation medium	85
4.3.2 Description of isolated actinomycetes strains	85
4.3.3 Morphology of actinomycetes on growth medium	85
4.4 Isolation of microfungi	88
4.4.1 Isolation medium	89
4.4.2 Description of isolated microfungi strains	89
4.4.3 Morphology of microfungi on growth medium	89
4.5 Characterization of isolated strains that show toxic of positive result in PP1 inhibitor screening	92
4.5.1 Actinomycetes	92
4.5.2 Microfungi	98

4.6 Screening for Protein Phosphatase 1 (PP1) inhibitors	101
4.6.1 Expected results	101
4.6.2 Result of inhibitor on single layer agar PP1 inhibitor screening system	102
4.7 Potential inhibitor strains	106
4.7.1 Concentration dependency tested on single layer agar PP1 inhibitor screening system	106
4.7.2 Freeze-dried crude extracts tested on top agar PP1 inhibitor screening system	109
4.7.3 Haploinsufficiency test	115
4.7.4 Enzymatic inhibitor assays tested on freeze-dried	118
crude extracts	
4.7.5 Liquid-liquid extraction	122
4.7.6 Liquid-liquid extraction from ethyl acetate layer tested on haploinsufficiency test	126
4.7.7 High performance liquid chromatography (HPLC)	131
4.7.7.1 Analytical column	131
4.7.7.2 Semi-preparative column	140
4.7.8 Effect of S1 and S2 of H9318 towards yeast morphology under fluorescent microscope with DAPI staining	146
4.7.9 Effect of S1 and S2 ofH9318 towards enzymatic inhibitor assay	153
4.7.10 Sequence of peptides in S1 and S2	155
CHAPTER 5 – DISCUSSIONS	159
5.1 Actinomycetes and microfungi isolation	159
5.2 Isolation media and distribution of actinomycetes and microfungi	160
5.3 Morphological characteristics of actinomycetes	162
5.4 Morphological characteristics of microfungi	164
5.5 Maintenance and preservation of actinomycetes cultures	165
5.6 Maintenance and preservation of microfungi cultures	166
5.7 Fermentation and extraction of secondary metabolites	167
5.8 PP1 inhibitor screening system using <i>S. cerevisiae</i>	168
5.8.1 Single and top agar PP1 inhibitor screening system	170
5.9 Haploinsufficiency test	171
5.10 Enzymatic inhibitor assay	172

5.11 Liquid-liquid extraction	172
5.12 S1 and S2 of H9318	173
5.12.1 The difference of i <i>n vivo</i> and <i>in vitro</i> test using S1 and S2	174
5.12.2 S1 and S2 in yeast cell cycle with DAPI staining	175
5.12.3 Identification of peptides sequence of S1 and S2	177
5.13 Compounds of H7520, H9318 and H9978 compared with	177
known compounds	
CHAPTER 6 - CONCLUSIONS	179

REFERENCES

182

·

.

LIST OF TABLES

		Page
Table 2.1	Protein phosphatase families	23
Table 2.2	Classification of protein serine-threonine phosphatase activities based on their biochemical properties	23
Table 2.3	Protein phosphatases of the yeast S. cerevisiae	24
Table 2.4	Protein phosphatase 1 regulatory subunits in mammal	25
Table 2.5	Differences of PP1 and PP2A in mammalian cell cycle	35
Table 2.6	List of yeast PP1c (Glc7p)-interacting proteins	36
Table 2.7	K _i values for inhibition of protein phosphatase 1 and 2A by tautomycin, okadaic acid and microcyctins-LR	44
Table 3.1	Number of soil samples collected in Sabah	48
Table 3.2	Yeast strains used in PP1 screening system	56
Table 3.3	Yeast growth in the PP1 inhibitor screening method	57
Table 3.4	Yeast tester strains used in haploinsufficiency test	59
Table 3.5	Yeast strains used for nucleus morphology observation under fluorescent microscope	66
Table 4.1	Description of soil samples (Long Pasia)	72
Table 4.2	Description of soil samples (Melalap)	75
Table 4.3	Description of soil samples (Lower Segama)	78
Table 4.4	Description of soil samples (Limau-limauwan, Kudat)	81
Table 4.5	Number of actinomycetes isolates from different sampling sites	84
Table 4.6	Description of isolated actinomycetes strains	86
Table 4.7	Number of microfungi isolates from different sampling sites	89
Table 4.8	Description of isolated microfungi strains	90
Table 4.9	Description of characterization strain actinomycetes	92
Table 4.10	The expected result of the inhibitor effect on PP1 inhibitor screening system	102
Table 4.11	Effect of acetone extracts from actinomycetes strains on single agar PP1 inhibitor screening system	103
Table 4.12	Effect of acetone extracts from microfungi strains on single layer agar PP1 inhibitor screening system	105
Table 4.13	Summary of inhibitory activity of acetone extracts towards PP1 inhibitor screening system	105
		UNIVERSITI MALAYSIA SABA

Table 4.14	Effect of different concentration of crude acetone extracts of H7520 on single layer agar PP1 inhibitor screening system	
Table 4.15	Effect of different concentration of crude acetone extracts of H9318 on single layer agar PP1 inhibitor screening system	
Table 4.16	Effect of different concentration of crude acetone extracts of H9978 on single layer agar PP1 inhibitor screening system	108
Table 4.17	Effect of crude freeze-dried extract of H7520 on top layer agar PP1 inhibitor screening system	109
Table 4.18	Effect of crude freeze-dried extract of H9318 on top layer agar PP1 inhibitor screening system	111
Table 4.19	Effect of crude freeze-dried extract of H9978 on top layer agar PP1 inhibitor screening system	113
Table 4.20	Inhibitory effect of crude freeze-dried extract of H7520 on PP1 and PP2A using haploinsufficiency test	115
Table 4.21	Inhibitory effect of crude freeze-dried extract of H9318 on PP1 and PP2A using haploinsufficiency test	116
Table 4.22	Inhibitory effect of crude freeze-dried extract of H9978 on PP1 and PP2A using haploinsufficiency test	117
Table 4.23	Inhibition of crude freeze-dried extract of H7520 towards Glc7p and PP1γ activity	118
Table 4.24	Inhibition of crude freeze-dried extract of H9318 towards Glc7p and PP1γ activity	119
Table 4.25	Inhibition of crude freeze-dried extract of H7520 towards PP1γ and PP2A activity	120
Table 4.26	Inhibition of crude freeze-dried extract of H9318 towards PP1γ and PP2A activity	121
Table 4.27	Inhibition of crude freeze-dried extract of H9978 towards PP1γ and PP2A activity	121
Table 4.28	Fraction of liquid-liquid extraction of H7520 tested on top layer agar PP1 inhibitor screening system	123
Table 4.29	Fraction of liquid-liquid extraction of H9318 tested on top layer agar PP1 inhibitor screening system	124
Table 4.30	Fraction of liquid-liquid extraction of H9978 tested on top layer agar PP1 inhibitor screening system	125

Table 4.31	Ethyl acetate fraction of H7520 tested on haploinsufficiency test	126
Table 4.32	Ethyl acetate fraction of H9318 tested on haploinsufficiency test	127
Table 4.33	Ethyl acetate fraction of H9978 tested on haploinsufficiency test	128
Table 4.34	Ethyl acetate fraction of actinomycetes fermentation medium without inoculums tested on haploinsufficiency test	129
Table 4.35	Ethyl acetate fraction of fungi fermentation medium without inoculums tested on haploinsufficiency test	130
Table 4.36	S1 fraction tested on PP1 and PP2A using haploinsufficiency test	133
Table 4.37	S2 fraction tested on PP1 and PP2A using haploinsufficiency test	133
Table 4.38	S1 fraction tested on PP1 and PP2A using haploinsufficiency test	137
Table 4.39	S2 fraction tested on PP1 and PP2A using haploinsufficiency test	137
Table 4.40	S1 and S2 fractions of H9318 tested on top layer agar PP1 inhibitor screening system	138
Table 4.41	S1 fraction tested on PP1 and PP2A using haploinsufficiency test	142
Table 4.42	S2 fraction tested on PP1 and PP2A using haploinsufficiency test	143
Table 4.43	S1 and S2 fractions of H9318 tested on top layer agar PP1 inhibitor screening system	144
Table 4.44	Number of affected cell under treatment and non treatment of S1 and S2 fractions	148
Table 4.45	Percentage of affected cell under treatment and non treatment of S1 and S2 fractions	149
Table 4.46	Inhibitory activity of S1 and S2 fractions of H9318 towards PP1 γ and PP2A	153
Table 4.47	Proposed peptides sequence of S1 and S2	155
Table 4.48	Actual mass of main fragment S1 and S2 compare with theoretical mass	155
Table 5.1	Types of isolation media	160

Table 5.2	Different respond on growth inhibition at 26 ^o C and 37 ^o C by various <i>S. cerevisiae</i> mutation	168
Table 5.3	Different respond on growth inhibition at 26 ^o C and 37 ^o C by various <i>PPH22</i> mutation in <i>S. cerevisiae</i>	170

.

LIST OF FIGURES

		Page
Figure 2.1	Production of pigmented secondary metabolites by Streptomyces colonies	10
Figure 2.2	Nocardia farcinia, a clinical isolate	12
Figure 2.3	Nocardia brasiliensis was isolated from soil and produces a novel amicetin group antibiotic	12
Figure 2.4	Types of conidiophores of A. Aspergillus and B. Penicillium	n14
Figure 2.5	Mitotic cell cycle of S. cerevisiae	15
Figure 2.6	Distribution of forests in Sabah, Malaysia	17
Figure 2.7	MAPK pathway in mammalian cell and yeast (S. cerevisiae)	22
Figure 2.8	Association of catalytic subunit (PP1c) with regulatory subunits, which G-subunit targets PP1c to glycogen particles in muscle	26
Figure 2.9	Cell cycle regulation	29
Figure 2.10	Summary of pRb phosphorylation/ dephosphorylation reaction	29
Figure 2.11	Pathways regulated by PP1 in various phases of mammalian cell cycle	30
Figure 2.12	Schematic model of the balance kinase/phosphatase	32
Figure 2.13	Structures of PP2A	34
Figure 2.14	Role of PP2A in cell cycle regulation	35
Figure 2.15	Model for regulation of the Snf1 kinase complex	38
Figure 2.16	Gac1p targets Glc7p to dephosphorylate glycogen synthase	39
Figure 2.17	Role of Glc7p involves its antagonistic relationship with lpl1p	40
Figure 2.18	IpI1p function to promote correct chromatids segregation during anaphase	40
Figure 2.19	Structure of protein phosphatase inhibitors	47
Figure 3.1	Plan of a microplate assays	60
Figure 4.1	The map of Sabah which shows the location of soil sampling sites	70
Figure 4.2	Location of soil sampling sites in Long Pasia	71
Figure 4.3	Location of soil sampling sites in Melalap	74
		UNIVERSITI MALAVSIA SADAH

Figure 4.4	Location of soil sampling sites in Lower Segama	77
Figure 4.5	Location of soil sampling in sites Kpg Limau-limauwan, Kudat	80
Figure 4.6	Montane forests of Long Pasia	82
Figure 4.7	Secondary forests of Melalap	83
Figure 4.8	Nipah forests of Lower Segama	83
Figure 4.9	Mangrove forests of Kpg Limau-limauwan	84
Figure 4.10	Culture of H7520 in oatmeal agar	93
Figure 4.11	H7520 under light microscope (1000X) and stained with Gram stain	93
Figure 4.12	Culture of H8889 in oatmeal agar	94
Figure 4.13	H8889 under light microscope (1000X) and stained with Acid fast stain	94
Figure 4.14	Culture of H8893 in oatmeal agar	95
Figure 4.15	H8893 under light microscope (1000X) and stained with Acid fast stain	95
Figure 4.16	Culture of H11199 in oatmeal agar	96
Figure 4.17	H11199 under light microscope (1000X) and stained with Gram stain	96
Figure 4.18	Culture of H11189 in oatmeal agar	97
Figure 4.19	H11189 under light microscope (1000X) and stained with Acid fast stain	97
Figure 4.20	DAP isomer detection by TLC	98
Figure 4.21	Culture of H9318 on PDA medium	99
Figure 4.22	H9318 observed under light microscope (1000X)	99
Figure 4.23	Culture of H9978 on PDA medium	100
Figure 4.24	H9978 observed under light microscope (1000X)	100
Figure 4.25	PAY704-1 and PAY700-4 growth at 25 ^o C and 37 ^o C with or without 1M sorbitol	101
Figure 4.26	Inhibitory activity of crude freeze-dried extract of H7520 on top layer agar PP1 inhibitor screening system	110
Figure 4.27	Inhibitory activity of crude freeze-dried extract of H9318 on top layer agar PP1 inhibitor screening system	112
Figure 4.28	Inhibitory activity of crude freeze-dried extract of H9978 on top layer agar PP1 inhibitor screening system	114
Figure 4.28 Figure 4.29	Inhibitory activity of crude freeze-dried extract of H9978 on top layer agar PP1 inhibitor screening system Inhibitory effect of crude freeze-dried extract of H7520 towards PP1 and PP2A in haploinsufficiency test	114 116

Figure 4.30	Inhibitory effect of crude freeze-dried extract of H9318 towards PP1 and PP2A in haploinsufficiency test	117
Figure 4.31	Inhibitory effect of crude freeze-dried extract of H9978 towards PP1 and PP2A in haploinsufficiency test	118
Figure 4.32	Inhibitory of crude freeze-dried extract of H7520 towards Glc7p and PP1γ dephosphorylation activity	119
Figure 4.32	Inhibitory of crude freeze-dried extract of H9318 towards Glc7p and PP1γ dephosphorylation activity	119
Figure 4.34	Inhibitory of crude freeze-dried extract of H7520 towards PP1γ and PP2A dephosphorylation activity	120
Figure 4.35	Inhibitory of crude freeze-dried extract of H9318 towards PP1γ and PP2A dephosphorylation activity	121
Figure 4.36	Inhibitory of crude freeze-dried extract of H9978 towards PP1γ and PP2A dephosphorylation activity	122
Figure 4.37	Fraction of liquid-liquid extraction of H7520 tested on top layer agar PP1 inhibitor screening system	123
Figure 4.38	Fraction of liquid-liquid extraction of H9318 tested on top layer agar PP1 inhibitor screening system	124
Figure 4.39	Fraction of liquid-liquid extraction of H9978 tested on top layer agar PP1 inhibitor screening system	125
Figure 4.40	Fraction of ethyl acetate of H7520 towards PP1 and PP2A in haploinsufficiency test	127
Figure 4.41	Fraction of ethyl acetate of H9318 towards PP1 and PP2A in haploinsufficiency test	128
Figure 4.42	Fraction of ethyl acetate of H9978 towards PP1 and PP2A in haploinsufficiency test	129
Figure 4.43	Fraction of ethyl acetate of actinomycetes fermentation medium without inoculums towards PP1 and PP2A in haploinsufficiency test	130
Figure 4.44	Fraction of ethyl acetate of fungi fermentation medium without inoculums towards PP1 and PP2A in haploinsufficiency test	131
Figure 4.45	Chromatograph of fraction of ethyl acetate of H9318 performed in HPLC using analytical column	132
Figure 4.46	 a) Inhibitory activity of each minute's fraction collected in HPLC in haploinsufficiency test b) Inhibitory activity of S1 and S2 towards PP1 and PP2A in haploinsufficiency test 	133

.

Figure 4.47	Inhibitory activity of H9318 fraction of S1 towards PP1 and PP2A in haploinsufficiency test	134
Figure 4.48	Inhibitory activity of H9318 fraction of S2 towards PP1 and haploinsufficiency test	134
Figure 4.49	Chromatograph of fraction S1 of H9318 using HPLC analytical column	135
Figure 4.50	Chromatograph of fraction S2 of H9318 using HPLC analytical column	135
Figure 4.51	Inhibitory activity of S1 and S2 towards PP1 and PP2A in haploinsufficiency test	136
Figure 4.52	Inhibitory activity of S1 towards PP1 and PP2A in haploinsufficiency test	137
Figure 4.53	Inhibitory activity of S2 towards PP1 and PP2A in haploinsufficiency test	138
Figure 4.54	Inhibitory activity of S1 and S2 of H9318 on top layer agar PP1 inhibitor screening system	139
Figure 4.55	Chromatograph of fraction ethyl acetate of H9318 performed in HPLC using semi-preparative column	140
Figure 4.56	Chromatograph of fraction S1 of H9318 using analytical column	141
Figure 4.57	Chromatograph of fraction S2 of H9318 using analytical column	141
Figure 4.58	S1 and S2 collected using semi-preparative column tested on haploinsufficiency test	142
Figure 4.59	Inhibitory activity of S1 (collected using semi-preparative column) tested on haploinsufficiency test	143
Figure 4.60	Inhibitory activity of S2 (collected using semi-preparative column) tested on haploinsufficiency test	144
Figure 4.61	Inhibitory activity of fraction S1 and S2 of H9318 on top layer agar PP1 inhibitor screening system	145
Figure 4.62	Yeast PAY704-1 (<i>GLC7</i>) nuclear morphology and bud morphology treated with S1 and S2 as compared with mutant yeast PAY700-4 (<i>glc7-10</i>) and DEY214 (<i>pph22-12</i>)	152
Figure 4.63	Inhibition of S1 fraction of H9318 towards PP1γ and PP2A dephosphorylation activity	154

Figure 4.64	Inhibition of S2 fraction of H9318 towards PP1γ and PP2A dephosphorylation activity	154
Figure 4.65	Mass spectrum of S1 showing the GHC-Cu peak (359.3846 m/z)	156
Figure 4.66	Mass spectrum of S2 showing the GHC peak (298.4093 m/z)	157
Figure 4.67	Mass spectrum of S2 showing the GHC-Cu peak (325.2232 m/z)	158

xx

Protein phosphatase 1, protein phosphatase 2A, secondary metabolites, inhibitor, *Penicillium*, *Streptomyces*

CHAPTER 1

INTRODUCTION

1.1 Research Background

Microorganisms are associated with the lives of humans, animals and plants. Selman A. Waksman, who received the Nobel Prize in 1952 for the discovery and the use of the antibiotic streptomycin, said the following (Batzing, 2002):

There is no field of human endeavor, whether it be in industry or in the preparation of food or in connection with the problems of shelter or clothing or in the conservation of human and animal health and the combating of disease, where the microbe does not play an important role and often the dominant role.

Study of microorganisms for the secondary metabolites production has been intensively pursued for many decades. Actinomyetes and fungi are the well known microorganisms which have capability to produce variety of secondary metabolites. Some of secondary metabolites from actinomycetes and fungi can be used as antibiotic. For example, penicillin, a well known antibiotic found in 1929 by Sir Alexander Fleming from *Penicillium notatum* has been used widely in the pharmaceutical field. Streptomycin an antibiotic produced by *Streptomyces griseus*, is used to against the infection that is caused by *Mycobacterium tuberculosis*.

Since then, research on secondary metabolites production from actinomycetes and fungi, has been generated for treatment of various diseases. For example, rapamycin an antifungal agent purified from *Streptomyces hygroscopicus* has immunosuppressive effects where rapamycin inhibit both host rejection following

organ transplantation and the restenosis of coronary arteries after angioplasty besides as TOR inhibitor (Inoki et al, 2005). Even tautomycetin produced by Streptomyces griseochromogenes (Kobayashi et al, 1988) has been found as a specific inhibitor of Protein serine/threonine phosphatase 1 (Mitsuhashi et al, 2001) where PP1 is a positive regulator of ras-1 in vivo in MAPK signaling pathway (Mitsuhashi et al, 2003). Tautomycetin also discover as a novel immunosuppressant in transplantation (Han et al, 2003; Chae et al, 2004). A fungus strain, Trichoderma harzianum produce an antibiotic, harzianic acid that shows antimicrobial activity against Pasteurella piscicida (Sawa et al, 1994) and later found to be specific inhibitor of Protein serine/threonine phosphatase 2A (Kawada et al, 2004) where PP2A serve as a regulatory functions at G₂/M transition and the exit from mitosis (Janssens & Goris, 2001). Cytostatin produced by Streptomyces sp (Masuda et al, 1995) is a novel inhibitor of PP2A and can inhibit B16 melanoma pulmonary metastasis by the expansion and activation of NK (natural killer) cells (Kawada et al, 2003). Fostriecin produced by Streptomyces pulveraceus and is the most selective small molecule inhibitor of serine/threonine phosphatases yet discovered. Fostriecin is an antibiotic that displays 40000-fold selectivity for PP2A over PP1 (McCluskey, Sim & Sakoff, 2002).

Signal transduction pathway plays an important role in signaling cell growth, differentiation, development, metabolism and apoptosis. Disruption or overstimulation can lead to diseases like cancer, neurological disease, diabetes and immune disorder. It is sensible to understand the signaling pathway and search for novel secondary metabolites from microorganisms that can inhibit the signal transduction. For many years protein phosphatases were seen as playing a very passive role as the providers of a blanket level of dephosphorylation to oppose the protein kinases, while the protein kinases were perceived to take the active role in the process. However, it is becoming increasingly clear that protein phosphatase activity

- Al-Murrani, S.W.K., Woodgett, J.R. & Damuni, Z. 1999. Expression of l_2^{PP2A} , an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. *Biochemical Journal* **341**: 293-298.
- Andrews, P.D & Stark, M.J.R. 2000. Type 1 Protein Phosphatase Is Required For Maintenance Of Cell Wall Integrity, Morphogenesis And Cell Cycle Progression In Saccharomyces cerevisiae. *Journal of Cell Biology* 113: 507-520.
- Alexopoulus, C.J., Mims, C.W., & Blackwell, M. 1996. Introductory mycology. (4th edition). New York: John Wiley and Sons.
- Batzing, B.L. 2002. *Microbiology- An Introduction*. Pacific Groove, California: Brooks/Cole Thomson Learning.
- Becker, W.M., Kleinsmith, L.J. & Hardin, J. 2000. The World of The Cell. 4th Edition. San Francisco: The Benjamin/Cummings Publishing Company.
- Berndt, N. 1999. Protein dephosphorylation and the intracellular control of the cell number. Frontiers in Bioscience 4: 22-42
- Berndt, N. 2003. Roles and regulation of serine/threonine-specific protein phosphatases in the cell cycle. Meijer, L., Jézéquel, A. & Roberge, M (eds). *Progress in Cell Cycle Research* 5: 497-510.
- Chae, W.J., Choi, J.M., Yang, J.J. & Lee, S.K. 2004. T cell-spesific immunosuppression using tautomycetin or PTD-conjugated protein drugs. *Yonsei Medical Journal* **45**(6): 978-990.
- Cheah, Y.H. 2003. Isolation of actinomycetes from mangroves in Sabah and screening for inhibitors against eukaryotic signal transduction. School of Science and Technology, Universiti Malaysia Sabah.
- Cheng, X.C., Ubukata, M. & Isono, K. 1990. The structure of tautomycetin, a dialkylmaleic anhydride antibiotic. *The Journal of Antibiotics* **43**: 890-896.
- Cohen, P. & Cohen, P.T.W. 1989. Protein phosphatases come of age. Minireview The Journal of Biological Chemistry 264(36): 21435-21438.
- Cohen, P.T.W. 2002. Protein phosphatase 1-targeted in man directions. *Journal of Cell Science* **115**: 241-256.
- Cooper, G.M. 2000. The Cell: A Molecular Approach second edition. Washington DC: ASM Press.
- Damiens, E. 2000. Molecular events that regulate cell proliferation: an approach for the development of new anticancer drugs. Meijer, L., Jézéquel, A. & Docommun, B (eds). *Progress in cell cycle research* **4**: 219-233.
- Dawes, C.J. 1981. Marine botany. New York: A Wiley-Interscience publication.

- Dawson, J.F. & Holmes, C.F.B. 1999. Molecular Mechanisms Underlying Inhibition of Protein Phosphatases by Marine Toxins. *Frontiers in Bioscience* **4**: 646-658.
- Egloff, M.P., Johnson, D.F., Moorhead, G., Cohen, P.T.W., Cohen, P. & Barford, D. 1997. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. *The EMBO Journal* **16**: 1876-1887.
- Elsayed, S. 2005. Nocardia and other medically important aerobic actinomycetes. In: Church, D. (Eds). Microbiology Newsletter, A Publication of the Division of Microbilogy. Calgary Laboratory Services 3.
- Evans, D.R.H. & Stark, M.J.R. 1997. Mutations in the Saccharomyces cerevisiae Type 2A Protein Phosphatase Catalytic Subunit Reveal Roles in Cell Wall Integrity, Actin Cytoskeleton Organization and Mitosis. *The Genetics Society* of America 145: 227-241.
- Frederick, D.L. & Tatchell, K. 1996. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. *Molecular and Cellular Biology* **16**(6): 2922-2931.
- Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D. & Mansuy, I.M. 2002. Protein phosphatase 1 is a molecular constraint on learning and memory. *Nature* **418**: 970-975.
- Giaever, G., Shoemaker, D.D., Jones, T.W., Liang, H., Winzeler, E.A., Astromoff, A. & Davis, R.W. 1999. Genomic profiling of drug sensitivities via induced haploinsufficiency. *Nature Genetics* **21**: 278-283.
- Goodfellow, M. & Minnikin, D.E. 1981. The genera Nocardia and Rhodococcus. The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria. New York: Springer-Verlag.
- Gustin, M. C., Albertyn J., Alexander M. & Davenport K., 1998. MAP Kinase Pathways in the Yeast Saccharomyces cerevisiae. *Microbiology and Molecular Biology Reviews* 62 (4), 1264-1300.
- Han, D.J., Jeong, Y.L., Wee, Y.M., Lee, A.Y., Lee, H.K., Ha, J.C., Lee, S.K. & Kim, S.C. 2003. Tautomycetin as a novel immunosuppressant in transplantation. *Elsevier Science, Transplantation Proceedings* **35**: 547.
- Ho, C.C. 2003. *Molecular cell biology, biodiversity and biotechnology*. Kota Kinabalu: Universiti Malaysia Sabah.
- Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T. & Williams, S.T. 1994. Bergey's Manual of Determinative Bacteriology Ninth Edition. Baltimore: A Waverly Company.
- Inoki K., Ouyang, H., Li, Y. & Guan, K.L. 2005. Signaling by target of rapamycin proteins in cell growth control. *Microbiology and Molecular Biology Reviews* **69**(1): 79-100.
- Işik, K., Kariptaş, E., Şahin, N., Ward, A.C. & Goodfellow, M. 1999. Identification and evaluation of clinically significant Nocardia brasiliensis, Nocardia farcinia and Nocardia otitidiscaviarum strains using pyrolysis mass spectrometry (PyMS). *Turk Journal Biology* **25**: 103-111.

- Janssens, V. & Goris, J. 2001. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatase implicated in cell growth and signaling. *Biochemical Journal* **353**: 417-439.
- Kawada, M., Kawatsu, M., Masuda, T., Ohba, S.I., Amemiya, M., Kohama, T., Ishizuka, M. and Takeuchi, T. 2003. Specific inhibitors of protein phosphatases 2A inhibit tumor metastasis through augmentation of natural killer cells. International Immunopharmacology 3: 179-188.
- Kawada, M., Yoshimoto, Y., Kumagai, H., Someno, T., Momose, I., Kawamura, N., Isshiki, K. & Ikeda, D. 2004. PP2A inhibitors, Harzianic acid and related compounds produced by fungus strain F-1351. The Journal of Antibiotics 57(3): 235-237.
- Kobayashi, Y., Ko, K., Yamaguchi, I., Shen, Y.C. & Isono, K. 1988. New antibiotic, tautomycetin. *The Journal of Antibiotic* **42**(1): 141-144.
- Lai, N.S. 2003. Isolation of actinomycetes from Sabah and the screening for inhibitors against eukaryotic signal transduction. School of Science and Technology, Universiti Malaysia Sabah.
- Lee, E.Y.C., Zhang, L.F., Zhao, S.M., Wei, Q., Zhang, J., Qi, Z.Q. & Belmonte, E.R. 1999. Phosphorylase phosphatease: New horizons for an old enzyme. *Frontiers in Bioscience* 4: 270-285.
- Lin, J.T. & Lis, J.T. 1999. Glycogen Synthase Phosphatase Interacts with Heat Shock Factor to Activate CUP1 Gene Transcription in Saccharomyces cerevisiae. *Molecular and Cellular Biology* **19**(5): 3237-3245.
- Lo, C.W., Lai, N.S., Cheah, H.Y., Wong, N.K.I. & Ho, C.C. 2001. Actinomycetes isolated from soil samples from the Crocker Range Sabah. In: Ismail, G. & Ali, L. (eds). Crocker Range National Park Sabah Vol 1, Natural Ecosystem and Species Component. Asean Acad Press, London: 259-267.
- Ludin, K., Jiang, R. & Carlson, M. 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. National Academy of Science 95: 6245-6250.
- MacKintosh, C. & Klumpp, S. 1990. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatase 1 and 2A. Elsevier Science Publisher Biomedical Division 227(1,2): 137-140.
- Madeo, F., Fröhlich, E. & Fröhlich, K.U. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. *The Journal of Cell Biology* **139**(3): 729-734.
- Madigan, M. T., Martinko, J. M. & Parker, J., 1997. Brock- Biology of Microorganisms. Eighth Edition. New Jersey: Prentice Hall International, Inc.
- Mansuy, I.M. 2003. The use of regulated genetic tools to study the role of protein phosphatase in learning and memory. Plenary talk at UMS Biotechnology Symposium II, Universiti Malaysia Sabah, 3 5 Dec 2003, Kota Kinabalu.

- Mathews, C.K., Holde, K.E.van. & Ahern, K.G. 2000. *Biochemistry. Third edition*. San Francisco: Addison-Wesley Publishing Company.
- McCluskey, A., Sim, A.T.R. & Sakoff, J.A. 2002. Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. *Journal of Medicinal Chemistry* **45**(6): 1151-1175.

Nippon Paint. 2002. Millennium Colours. Edition 2. Shah Alam: Nippon Paint.

- Mitsushahi, S., Matsuura, N., Ubukata, M., Oikawa, H., Shima, H. & Kikuchi, K. 2001. Tautomycetin is a novel and specific inhibitor of serine/threonine protein phosphatase type 1, PP1. *Biochemical and Biophysical Research Communications* 287: 328-331.
- Mitsushahi, S., Shima, H., Tanuma, N., Matsuura, N., Takekawa, M., Urano, T., Kataoka, T., Ubukata, M. & Kikuchi, K. 2003. Usage of tautomycetin, a novel inhibitor of protein phosphatase 1 (PP1), reveals that PP1 is a positive regulator of Raf-1 in Vivo. *The Journal of Biological Chemistry* **278**(1): 82-88.
- Miyadoh, S. 1997. Frontispiece. Miyadoh, S., Hamada, M., Hotta, K., Kudo, T., Seino, A., Vobis, G. & Yokota, A. (Eds). *Atlas of Actinomycetes*. The Society for Actinomycetes Japan: 2-8.
- Murray, A. & Hunt, T. 1993. The cell cycle: an introduction. New York: Oxford university press.
- Oliver, C.J. & Shenolikar, S. 1998. Physiological Importance of Protein Phosphatase Inhibitors. Frontiers in Bioscience 3: 961-972.
- Ong, S.M., Voo, L.Y.C., Lai, N.S., Stark, M.J.R. & Ho, C.C. 2003. Screening for microbial inhibitors against eukaryotic protein phosphatase 1. Poster presentation at UMS Biotechnology Symposium II, Universiti Malaysia Sabah, 3 – 5 Dec 2003, Kota Kinabalu (Abstract).
- Oqata, W.N. 1962. Preservation of Neurospora stock cultures with anhydrous silica gel. Neurospora Newsletter 1.
- Oskay, M., Tamer, A. Ü. & Azeri, C. 2004. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. *African Journal of Biotechnology* **3**(9): 441-446.
- Pirouz, T., Karbasian, M.A. & Goodfellow, M. 1999. Isolation of some aerobic actinomycetes species from the soil of Zahedan County, south-east of Iran. *Iran Journal Medical Science* 24(1&2):65-67.
- Prescott, L.M., Harley, J.P. and Klein, D.A. 1999. *Microbiology, fourth edition*. New York: WCB McGraw Hill.
- Ramaswamy, N.T., Li, L., Khalil, M. & Cannon, J.F. 1998. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. *Genetics* Society of America 149: 57-72

i

Rubin, E., Tamrakar, S. & Ludlow, J.W. 1998. Protein phosphatase type 1, the product of the retinoblastoma susceptibility gene and cell cycle control. *Frontiers in Bioscience* 3: 1209-1219.

Sabah Forestry Department. 2005. www.sabah.gov.my/htan/data 1/a toppage main/frames.htm Printed on 2 July 2005.

- Sassoon, I., Severin, F.F., Andrews, P.D., Taba, M.R., Kaplan, K.B., Ashford, A.J., Stark, M.J.R., Sorger, P.K. & Hyman, A.A. 1999. Regulation of Saccharomyces cerevisiae kinetochores by type 1 phosphatase Glc7p. *Genes* and Development 13: 545-555.
- Sawa, R., Mori, Y., Iinuma, H., Naganawa, H., Hamada, M., Yoshida, S., Furutani, H., Kajimura, Y., Fuwa, T. & Takeuchi, T. 1994. Harzianic acid, a new antimicrobial antibiotic from a fungus. *The Journal of Antibiotic* 47(6): 731-732.
- Shenolikar, S. 1994. Protein serine/threonine phosphatases-New avenues for cell regulation. Annual Review Cell Biology 10: 55-86.
- Skoog, D.A., West, D.M. and Holler, F.J. 1994. Analytical chemistry: An introduction. 6th edition. Florida: Saunders College Publishing.
- Stark M.J.R. 2003. Roles and regulation of yeast protein serine-threonine phosphatases. Plenary talk at UMS Biotechnology Symposium II, Universiti Malaysia Sabah, 3 5 Dec 2003, Kota Kinabalu.
- Talaro, K.P. & Talaro, A. 1999. Foundation in Microbiology, Third edition. New York: WCB McGraw Hill.
- Tamrakar, S., Rubin, E. & Ludlow, J.W. 2000. Role of pRb dephosphorylation in cell cycle regulation. *Frontiers in Biosciences* 5: 121-137.
- Thomson, C.J., Fink, D. & Nguyen, L.D. 2002. Principles of microbial alchemy: insights from the Streptomyces coelicolor genome sequence. *Genome Biology* 2002, 3(7):reviews1020.1–1020.4
- Tu, J.L., Song, W.J. & Carlson, M. 1996. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. *American Society for Microbiology* **16**(8): 4199-4206.
- Vandré, D.D. & Wills, V.L. 1992. Inhibition of mitosis by okadaic acid: possible involvement of a protein phosphatase 2A in the transition from metaphase to anaphase. Journal of Cell Science 101: 79-91.
- Voo, L.Y., Lai, N.S., Daim, S., Lo, C.W., Chung, Y.T., Moh, M.H. & Ho, C.C. 2003. Screening for inhibitors against eukaryotic signal transduction from actinomycetes and fungi from limestone hills, Tabin and caves, Sapulut. In: Mohamed, M., Schilthuizen, M. & Andau, M. (Eds). *Tabin Limestone Scientific Expedition 2000*, Universiti Malaysia Sabah, Kota Kinabalu: 149-156.

- Voo, L.Y. 2004. Isolation of fungi from Sabah that produce bioactive compounds which affect signal transduction. School of Science and Technology, Universiti Malaysia Sabah.
- Watanabe, T., Huang, H.B., Horiuchi, A., Silva, E.F., Wilson, L.H., Allen, P.B., Shenolikar, S., Greengard, P. & Nairn, A.C. 2001. Protein phosphatase 1 regulation by inhibitors and targeting subunits. *PNAS* **98**(6): 3080-3085.
- Wera, S. & Hemmings, B.A. 1995. Serine/threonine protein phosphatases. Biochemical Journal 311: 17-29.
- Wong, L.S. 2005. Isolation of bioactive compounds derived from fungi found in Borneo H9318. Chemistry, University of Dundee.
- Wu, X., Hart, H., Cheng, C., Roach, P.J. & Tatchell, K. 2001. Characterization of Gac1p, a regulatory subunit of protein phosphatase type 1 involved in glycogen accumulation in Saccharomyces cerevisiae. *Molecular Genetic Genomics* 265: 622-635.
- Yan, Y. & Mumby, M.C. 1999. Distinct roles for PP1 and PP2A in phosphorylation of retinoblastoma protein. *The Journal of Biological Chemistry* **274**(45): 31917-31924.
- Yokota, A. 1997. Section 2. Mycobacterium, Nocardia and related genera. Miyadoh, S., Hamada, M., Hotta, K., Kudo, T., Seino, A., Vobis, G. & Yokota, A. (Eds). *Atlas of Actinomycetes*. The Society for Actinomycetes Japan: 26-34.

