NUMERICAL MODELING OF SEAWATER INTRUSION IN THE AQUIFER OF MANUKAN ISLAND

SARVA MANGALA PRAVEENA

THESIS SUBMITTED IN FULLFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2011

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : NUMERICAL MODELING OF SEAWATER INTRUSION IN THE AQUIFER OF MANUKAN ISLAND

IJAZAH : DOKTOR FALSAFAH

SAYA : SARVA MANGALA PRAVEENA

SESI PENGAJIAN : 2010/2011

Mengaku membenarkan tesis (Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana Penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS)

PERPUSTALAAN UNIVERSITI MALAYSIA SABAH

Disahkan oleh:

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

TANDATANGAN PUSTAKAWAN)

PROF DR MOHD HARUN ABDULLAH PROF MADYA DR KAWI BIDIN NAMA PENYELIA

18/4/2011 Tarikh:

Tarikh: 18 April 2011

DECLARATION

I hereby declare that the materials in this thesis are my own except for quotations, excerpts, summaries and references, which have been duly acknowledged.

3 April 2011

SARVA MANGALA PRAVEENA PS2008-8061

CERTIFICATION

NAME : SARVA MANGALA PRAVEENA

MATRICS NO : PS2008-8061

- TITLE : NUMERICAL MODELING OF SEAWATER INTRUSION IN THE AQUIFER OF MANUKAN ISLAND
- DEGREE : DOCTOR OF PHILOSOPHY
- VIVA DATE : 25 MAC 2011

DECLARED B oplease 1. MAIN SUPERVISOR PROF DR MOHD HARUN ABDULLAH

2. CO- SUPERVISOR ASSOC. PROF DR KAWI BIDIN

ACKNOWLEDGEMENTS

It is a pleasure for me to thank many people who made this thesis possible. First and foremost, I would like to thank God who is the essence of everything for giving me opportunity, strength, wisdom and guidance during this study.

My utmost gratitude goes to my main thesis supervisor, Prof Dr Mohd Harun Abdullah for allowing me to join his small islands research team and opportunity to work with him. I am also deeply indebted to my co-supervisor, Associate Professor Dr Kawi Bidin whose comments, suggestions and encouragements helped me in all the time of research. Their overly enthusiasm and integral view on research as well as their mission for providing 'only high-quality work and not less', has made a deep impression on me.

My sincere appreciation goes to National Science Fellowship (NSF) Scholarship of the Ministry of Science, Technology and Innovation (MOSTI), Malaysia as a financial support for this postgraduate study. It has also helped me to attend conferences and journal publishing support. I also would like to thank Centre for Postgraduate Studies, Universiti Malaysia Sabah for several travel grants support for me to attend conferences locally and internationally.

This research project was financially supported by MOSTI under Science Fund: 04-01-10-SF0065 and Kurita Water and Environment Foundation (KWEF), Japan. We would like to express our appreciation to Sabah Parks for permission to conduct this study on Manukan Island. Sincere thanks also goes to Mr. Irwan Isnain and his colleagues from Sabah Parks for taking good care of the meteorological station, Mr Jamal and the rest of the technicians who have helped us sincerely during boreholes construction as well as all the cleaners who took care of boreholes during daily cleaning activities and Jesselton Port especially to Dynamic Holiday Cruise boat service for their kind help in carrying the heavy sampling equipments during samplings. Sincere thanks to borehole team (Mr. Lin Chin Yik, Miss Bibi Noorarlijannah Mohamad Ali, Miss Li Ying Chua, Mr. Jay Jim and Mr. Ng Kuan Leang) for their assistance in borehole construction. From bottom of my heart, I owe a special debt of gratitude to my special friends (Mr Lin Chin Yik and Dr Ahmad Zaharin Aris) who have helped me in research design and groundwater samplings. I believed that we have made a good teamwork and research spirit in us that made this research to be accomplished. Ideas, discussion, comments, experience and support while working with both of you are the greatest single legacy for me personally.

Ideas as well as help on groundwater modeling and SEAWAT-2000 numerical model from Dr C. P. Kumar of the National Institute of Hydrology, Roorkee, India and Dr Alyssa Dausman and Dr Chris Langevin of the United States Geological Survey (USGS) during this research are highly appreciated. Parts of this doctoral thesis have been published. Hence, thanks to all the reviewers for valuable comments and time spent to improve the papers. To conclude this piece, good quality comments and reviewers really do make a difference.

I cannot end without thanking my family members (Amma, Nana, Sri Themudu, Kishore, Visnu and Chandru) for their unwavering love and support throughout my time. Thank you for everything especially to my parents. This piece of work is dedicated to my late brother, Sarath Chandru. My journey in academe and research has just begun which I hope to continue, in my own small way to fulfill my dreams. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

ABSTRACT

NUMERICAL MODELING OF SEAWATER INTRUSION IN THE AQUIFER OF MANUKAN ISLAND

This study presents an understanding of seawater intrusion in the low lying area of Manukan Island. A three dimensional numerical model (SEAWAT-2000) was developed based on modeling protocol using low lying area of Manukan Island. SEAWAT-2000 output indicated that there is about 1.4% of freshwater and seawater mixing ratio at sea level in low lying area of Manukan Island illustrates the seawater intrusion problem. Upconing process simulated by SEAWAT-2000 showed the current status of seawater intrusion in Manukan Island is about 14.6% of freshwater and seawater mixing ratio at the beneath of pumping well (W6). Moreover, the calibrated model was also used to predict current and potential extent of seawater intrusion in low lying area of Manukan Island two years with all conditions assumed to remain same as those in December 2009 under different scenarios of varying recharge and pumping rates. The SEAWAT-2000 model's output showed pumping rates are higher than recharge rates in all of the selected scenarios, thereby indicating that overpumping is the main factor behind seawater intrusion in the low lying area of Manukan Island. The seawater-freshwater mixing ratio moves landwards after two vears of simulation in Scenario 1. In order to control overpumping in this study area, Scenario 2 has resulted in backward movement of the 1.4% seawater-freshwater mixing ratio towards to coast after two years of prediction. The current contamination of the coastal aquifers by seawater intrusion will be more severe with an impact of El-Nino events on groundwater resources depletion in Scenario 3. Reductions of pumping and recharge rates in Scenario 4 have worsened seawater intrusion problem. With an aid of artificial recharge, highest hydraulic heads and lowest chloride concentration were observed (Scenario 5). In addition to this, water balance components have illustrated sustainable groundwater management selected for Manukan Island's current situation will be Scenario 2. In view of the effects of El-Nino events in the future, Scenario 5 can be implemented to restore groundwater resources. Moreover, a suitable groundwater management plan in Manukan Island must also include economic, social and environmental issues together with further adjustment of pumping rate using water usage data from various parts (restaurant, tourism, office and chalets). In a nutshell, this study has provided a management foundation for restoration of the groundwater resources of Manukan Island which can be applied in other small islands with similar hydrogeological conditions...

Keywords: groundwater, seawater intrusion, SEAWAT-2000, recharge, pumping, management

ABSTRAK

Kajian ini adalah mengenai kemasukan air laut di kawasan rendah, Pulau Manukan. Peraga berangka tiga dimensi (SEAWAT-2000) telah dibina berdasarkan protokol permodelan menggunakan kawasan rendah di Pulau Manukan. Output peraga berangka SEAWAT-2000 mendapati bahawa nisbah percampuran air tawar dan laut di kawasan rendah Pulau Manukan adalah sebanyak 1.4%. Simulasi proses "upconing" menunjukkan nisbah percampuran air tawar dan laut di telaga pam (W6) adalah 14.6%. Tambahan, peraga berangka yang telah TERkalibrasi digunakan untuk meramal potensi lanjut proses percampuran air tawar dan laut di kawasan rendah Pulau Manukan bagi dua tahun berikutnya dengan keadaan yang sama seperti pada bulan Disember 2009 berdasarkan senario kadar pengisian semula dan pengepaman yang berbeza. Output peraga berangka SEAWAT-2000 menunjukkan kadar pegepaman adalah lebih tinggi dari kadar pengisian bagi semua senario yang dikaji menerangkan pengepaman yang berlebihan adalah faktor utama di sebalik kemasukan air laut di kawasan rendah Pulau Manukan. Nisbah percampuran air tawar dan laut bergerak ke arah daratan setelah dua tahun di dalam Senario 1. Bagi mengawal pengepaman yang berlebihan di kawasan kajian, Senario 2 telah menghasilkan pergerakan nisbah percampuran air tawar dan laut ke arah lautan. Kemasukan air laut pada masa ini dijangka akan diterukkan lagi oleh impak El-Nino terhadap sumber air bawah tanah. Pengurangan kadar pengepaman serta pengisian semula juga telah mengeruhkan lagi keadaan kemasukan air laut (Senario 3). Pengurangan kadar pengepaman dan pengisian semula dalam Senario 4 telah memburukkan lagi keadaan. Dengan bantuan pengisian semula secara buatan, paras hidraulik yang tertinggi serta kepekatan klorida yang terendah telah dikenalpasti (Senario 5). Tambahan, komponen neraca air telah menggambarkan penggunaan serta pengurusan sumber air bawah tanah secara lestari di kawasan kajian ini pada masa sekarang adalah Senario 2. Dengan kesan El-Nino yang dijangkakan pada masa hadapan, Senario 5 boleh dilaksanakan bagi melindungi bekalan sumber air bawah tanah di Pulau Manukan. Tambahan, pelan pengurusan sumber air bawah tanah yang sesuai di Pulau Manukan harus merangkumi isu ekonomi, sosial dan alam sekitar serta, penyesuaian kadar pengepaman lebih lanjut boleh dilakukan dengan menggunakan data penggunaan air dari pelbagai bahagian (restoran, pelancongan, pejabat dan rumah tumpangan). Kesimpulannya, hasil kajian ini telah memberikan asas pengurusan bagi perlindungan sumber air bawah tanah di Pulau Manukan. Ia boleh diaplikasi di pulaupulau kecil yang mempunyai keadaan hidrogeologikal yang serupa bagi tujuan perlindungan sumber air bawah tanah.

Kata kunci: air bawah tanah, kemasukan air laut, SEAWAT-2000, pengisian semula, pengepaman, pengurusan

CONTENTS

Ρ	a	a	e
•	~	-	-

TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES/ PHOTOS	xiv
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	xxi
LIST OF APPENDIX	xxii
CHAPTER 1: INTRODUCTION	1
1.1 Islands Definition	1

1.2	Small Islands and Groundwater	2
1.3	Seawater Intrusion and Modeling	2
1.4	Research Problems and Facts About Groundwater in Manukan Island	4
1.5	Research Objectives	6
1.6	Expected Advantages	8
1.7	Study Limitation	9
1.8	Thesis Outline	11
1.9	Theoretical Framework Adopted in Current Study	12

CHAPTER 2: LITERATURE REVIEW

2.1	Groundwater Studies of Small Islands in Malaysia	14
-----	--	----

	2.1.1 Evaluation of Groundwater Studies in Small Islands Conducted in Malaysia	16
	2.1.2 Study Location Perspective	18
	2.1.3 Methods Perspectives	18
	2.1.4 Types of Studies Perspective	22
2.2	Groundwater Modeling	24
2.3	Groundwater Solution Techniques: A Brief Overview	25
	2.3.1 Various Solution Techniques Assessment	26
	2.3.2 Advantages and Limitations of Various Solution Techniques	27
	2.3.3 Evaluation of Groundwater Studies Using Each	33
	Specific Solution Techniques	
2.4	Numerical Modeling Protocol	40
	2.4.1 Model Study Plan for Groundwater Flow and Transport	42
	2.4.2 Key Elements In Conceptual Model	43
	2.4.3 Types of Conceptual Models	45
2.5	Mathematical Model/ Governing Equation	47
	2.5.1 Groundwater Flow	47
	2.5.2 Darcy's Law	49
	2.5.3 Continuity Equation	53
	Combining with Water Balance	55
	2.5.5 Groundwater Transport	58
2.6	Model Boundary Condition	64
	2.6.1 Groundwater Flow	64
	2.6.2 Groundwater Transport	66
2.7	Initial Conditions in Groundwater Flow and Transport	68
2.8	Time Step	68
2.9	Types of Models	69
2.10	Types of Grids	70
2.11	Numerical Code Selection	72
2.12	Calibration and Validation	75
2.13	Evaluating Calibration	78
2.14	Sensitivity Analysis	82

2.15	Model Verification/ Validation	82
2.16	Simulation/Prediction	83
2.17	Postaudit	84
2.18	Expected Potential Error of Numerical Modeling	88
2.19	Density-dependent Flow of Miscible Fluids	89
2.10	Seawater Intrusion Phenomena in Coastal Environment	92
2.21	Approaches in seawater intrusion models	95
2.22	Seawater Intrusion Numerical Models 2.21.1 Evaluation of the Numerical Seawater Intrusion Models	98 99
2.23	Evolution of SEAWAT-2000 Model	106
CHAPTER 3	: METHODOLOGY	110
3.1	Introduction	110
3.2	Site Description 3.2.1 Geographical Settings 3.2.2 Climate 3.2.3 Geological and Hydrogeological Settings 3.2.4 Vegetation	110 110 112 113 120
3.3	Importance of Manukan Island 3.3.1 Tourism 3.3.2 Economy Revenue	120 120 120
3.4	Current Situation in Manukan Island	122
3.5	Sampling Strategy	123
3.6	Boreholes Construction	125
3.7	Establishment of Mini Meteorological Station	129
3.8	 Soil Sample Analysis 3.8.1 Determination of Hydraulic Conductivity 3.8.2 Determination of Dispersivity 3.8.3 Determination of Soil Total Porosity 3.8.4 Determination of Specific Yield 3.8.5 Determination of Specific Storage 	132 132 135 138 140 141

3.9	Groundwater Samplings 3.9.1 Borehole Samplings 3.9.2 Observation Wells Samplings	142 144 146
3.10	Methods of Analysis 3.10.1 In-Situ 3.10.2 Determination of Chloride	147 147 147
3.11	Water Balance Calculation 3.11.1 Water Balance at the Surface	149 151
3.12	Evapotranspiration	152
3.13	Evapotranspiration Calculation using Penman Method 3.13.1 Adjustment Factor for Ratio U day/U Night 3.13.2 Temperature and Altitude Dependent Weighting Eactor	154 154 154
	3.13.3 Equivalent Net Radiation	154
3.14	Groundwater Modeling and Simulation	156
3.15	Software Package Selection	158
3.16	Selection of SEAWAT-2000 3.16.1 Data Collection and Preparation 3.16.2 Conceptual Model Development 3.16.3 Numerical Model Development 3.16.4 SEAWAT-2000 Model Simulation 3.16.5 Model Calibration 3.16.6 Model Error 3.16.7 Model Validation 3.16.8 Model Sensitivity	159 160 161 162 169 175 176 176 177
	3.16.9 Model Prediction/Simulation 3.16.10 Model Auditing	177 180
3.17	Modeling Uncertainties in This Study 3.17.1 Natural Uncertainty 3.17.2 Model Uncertainty 3.17.3 Parameter Uncertainty	180 181 181 181
СНАРТЕ	R 4: RESULTS AND DISCUSSION	183
4.1	Data Collection and Preparation	183
4.2	Local Groundwater and Environmental Conditions Properties	184
4.3	Model Calibration Output	187

	4.3.1 Uncertainty Analysis Results	190
4.4	Seawater Intrusion in Manukan Island at Current Situation	192
4.5	Prediction of Seawater Intrusion Using Selected Scenarios	195
4.6	Simulation Modeling for Efficient Groundwater Management in Manukan Island	199
	4.6.1 Chloride Concentration of Each Scenario 4.6.2 Dynamic Equilibrium of Recharge and Pumping Rates	201 202
4.7	Modeling of Water Balance Components Using Promising Groundwater Management Options	204
4.8	Tourism Environmental Carrying Capacity 4.8.1 Tourism Environmental Carrying Capacity of Manukan Island	209 210
CHAPTER 5	: CONCLUSION AND SUGGESTION	212
5.1	Research Findings of Current Study	212
5.2	Suggestion 5.2.1 Future Studies of Groundwater in Manukan Island 5.2.2 Recommendations	215 215 215
REFERENCE		217
APPENDIX	UNIVERSITI MALAYSIA SABAH	236
AWARDS &	PUBLICATIONS DURING CANDIDATURE	247

LIST OF TABLES

Page

Table 1.1	Problems Indicated in Manukan Island Pass 8 Years (2001-2009)	5
Table 2.1	Small Islands in Malaysia Selected Based on Existed Literatures	17
Table 2.2	Groundwater Modeling Studies in Malaysia by Means of Numerical Modeling	19
Table 2.3	Groundwater studies in Malaysia Based on Hydrochemical Analysis	20
Table 2.4	Groundwater studies in Malaysia using Geophysical Investigation	21
Table 2.5	Groundwater studies in Malaysia using Geochemical Modeling	22
Table 2.6	Advantages and Limitations of Six Solution Techniques	29
Table 2.7	Groundwater Studies Using Specific Solution Techniques	33
Table 2.8	Key Elements in Model Study Plan for Groundwater Flow and Transport	42
Table 2.9	Three Main Components in Conceptual Model	44
Table 2.10	Differences in Governing Equations in System Viewpoint	57
Table 2.11	Factors and Aspects of Model Discretization in the Selection of Model Grid	72
Table 2.12	Types of Model Errors	88
Table 2.13	Comparison of Seawater Intrusion Models	101
Table 3.1	Information of Each Borehole	129
Table 3.2	Information of the Mini Meteorological Station	130
Table 3.3:	Coefficient of Permeability in Different Soils	133
Table 3.4	The Sampling Locations of Observation Wells (W) and Boreholes (B)	142
Table 3.5	List Of Parameters for In-Situ Detection	147
Table 3.6	Input Parameters for the Model and Simulation Strategies for This Study	168

Table 3.7:	Advantages and Limitations of Solution Methods	173
Table 3.8	Selected Scenarios in This Study for Efficient Groundwater Management	178
Table 3.9	Predictive Simulations of Seawater Intrusion Two Years After December 2009 Based On Scenarios	179
Table 4.1	Descriptive Statistics for Soil Physical Properties (Layer 1)	184
Table 4.2	Soil Physical Properties for Layers 2, 3 & 4	184
Table 4.3	Input Parameters for the Model and Simulation Strategies for This Study	185
Table 4.4	Mean Values of Local Groundwater Properties in the Study Area	186
Table 4.5	Mean Values of Environmental Conditions in the Study Area in Year 2009	186
Table 4.6	Results of Model Validation	188
Table 4.7	Chloride Concentrations (mg/L) Simulations In Different Scenarios	202
Table 4.8	Calculated Water Balance For Low Lying Area of Manukan Island (October 2008-December 2009)	205
Table 4.9	Water Balance Components for Three Different Scenarios	208
Table 4.10	Categories of Tourism Environmental Carrying Capacity	209
Table 4.11	Tourism Environmental Carrying Capacity in the Contents of Natural and Economy in Manukan Island	210

LIST OF FIGURES/ PHOTOS

Page

Figure 1.1	Islands Definition	1
Figure 1.2	Theoretical Framework of this Study	13
Figure 2.1	Cross Section of Small Islands Showing the Groundwater Surrounded by Seawater (modified from Aris, 2009c; White et al., 2007)	15
Figure 2.2	Selected Small Islands in Malaysia for an Evaluation of Groundwater Challenges	17
Figure 2.3	Types of Groundwater Models Listed by Spitz and Moreno (1996)	27
Figure 2.4	Types of Model Applications in Real-World System	40
Figure 2.5	Modeling Protocol for Setting Up a Model for Groundwater Flow and Transport	41
Figure 2.6	Conceptual Model of Confined Aquifer in Lockyer Valley, West of Brisbane, Queensland, Australia	45
Figure 2.7	Information about Aquifer Viewpoint and Flow System Viewpoint	46
Figure 2.8	Conceptual Model of Geologic System Based on Aquifer and System Viewpoints	47
Figure 2.9	Law and Equation Representing Groundwater Flow	48
Figure 2.10	Darcy's Law	50
Figure 2.11	Groundwater Flow Based on Darcy's Law and True Flow Paths	51
Figure 2.12	The Representative Elementary Volume (REV) in the Derivation of Governing Equation	53
Figure 2.13	Governing Equations in System Viewpoint of Unconfined Aquifer Representing Groundwater Flow	57
Figure 2.14	Types of Transport Problems	59

Figure 2.15	Advection and Dispersion Processes Involving Solute Concentration	60
Figure 2.16	Tortuosity of the Pore Network	63
Figure 2.17	Types of Boundary Conditions in Groundwater Flow	65
Figure 2.18	Types of Boundary Conditions in Groundwater Transport	67
Figure 2.19	Types of Time Steps	69
Figure 2.20	Classification of Type of Models in Conceptual Modeling Based on Spatial Dimension	70
Figure 2.21	Dissimilarity Between Grids in Finite Difference and Finite Element	71
Figure 2.22	Five Types of Numerical Solution Technique Methods	73
Figure 2.23	The Solution Process of Numerical Code in Computer	73
Figure 2.24	Computational Molecules for Three Dimensional Finite Difference Model	74
Figure 2.25	Types of Calibrations	76
Figure 2.26	Detail Information of Two Ways to Achieve Calibration in Solving the Inverse Problem	77
Figure 2.27	Ways to Show Calibration	79
Figure 2.28	An Example of Presentation of Average Differences in Calibration of Heads and Solute Concentrations in Manukan Island, Malaysia	81
Figure 2.29	The Complete Steps Implementing Groundwater Flow Model	86
Figure 2.30	The Complete Steps Implementing Groundwater Solute Transport Model	87
Figure 2.31	Seawater Intrusion Due to Natural and Human Factors	93
Figure 2.32	Seawater and Freshwater Condition in a Confined Coastal Aquifer in Continuity With The Ocean	94
Figure 2.33	Seawater and Freshwater Condition in an Unconfined Coastal Aquifer in Continuity with the Ocean	94

Figure 2.34	Approaches In Groundwater Studies for Density Dependent Problems (a) Sharp Interface and (b) Dispersed Interface	95
Figure 2.35	Zone of Dispersion in Dispersed Interface Approach	97
Figure 2.36	Advantages and Disadvantages of Sharp and Dispersed Interface Approaches	97
Figure 3.1	Location of Manukan Island in Tunku Abdul Rahman National Park	110
Figure 3.2	Tourist Facilities and Infrastructural Facilities Available in Manukan Island	111
Figure 3.3	Average Monthly Rainfall Distribution for Study Area from 1999 To 2009	112
Figure 3.4	Average Monthly Temperature Distribution for Study Area From 1999 To 2009	112
Figure 3.5	Average Monthly Humidity Distribution for Study Area from 1999 To 2009	113
Figure 3.6	The Evidence of the Cutoff of Sandstone and Sedimentary Rock in Manukan Island	115
Figure 3.7	Soil Map Profile of Kota Kinabalu including Tunku Abdul Rahman National Park Islands	116
Figure 3.8	Soil Profiles at Low Lying Area of Manukan Island	117
Figure 3.9	Morphology of Low Lying Area in Manukan Island (North-South)	118
Figure 3.10	Morphology of Low Lying Area in Manukan Island (East-West)	119
Figure 3.11	Uniqueness of Manukan Island	121
Figure 3.12	Number of Tourists to Tunku Abdul Rahman Park and Manukan Island From 2000 To 2009	122
Figure 3.13	Operating and Shutdown Wells in Manukan Island	124
Figure 3.14	Location of Ten Boreholes in Low Lying Side of Manukan Island	127
Figure 3.15	Cross-section of the Boreholes	128

Figure 3.16	The Location of The Mini Meteorological Station, Display Board and MKIIICC-LR in the Study Area	131
Figure 3.17	The Steps Involved in Hydraulic Conductivity Determination	134
Figure 3.18	Hydraulic Conductivity Determination Model	135
Figure 3.19	Subsurface Solute Transport Events	136
Figure 3.20	The Longitudinal Dispersivity as a Function of an Overall Scale	138
Figure 3.21	The Steps Involved in Soil Total Porosity Determination	139
Figure 3.22	Specific Yield of An Unconfined Aquifer	141
Figure 3.23	Aerial Views of Observation Wells and Boreholes in Manukan Island	143
Figure 3.24	Flow of Borehole and Well Samplings	144
Figure 3.25	Determination of Chloride in Water Samples Using APHA (1995)	148
Figure 3.26	Water Balance Stages in Manukan Island	149
Figure 3.27	Diagrammatic Illustration of the Groundwater System Balance Method	150
Figure 3.28	Water Balance Components	1 52
Figure 3.29	Water Balance Within the Groundwater System on an Island	152
Figure 3.30	Groundwater Modeling Process	157
Figure 3.31	Manukan Island Focusing Low Lying Area	161
Figure 3.32	Conceptual Model for Low Lying Area of Manukan Island	162
Figure 3.33	Spatial Discretization for the Three Dimensional Numerical Model (meter): a. Plan View and b. Cross-section along Row	164
Figure 3.34	Numerical Grid Discretization and Boundary Conditions in the Low Lying Area of Manukan Island	165
Figure 3.35	Hydraulic Conductivities for Each Layer	167
Figure 3.36	WHS Solver Selected in this Study	170

Figure 3.37	Run Section in Visual MODFLOW	174
Figure 3.38	Running the Model Window	174
Figure 4.1	Scatterplots Between Measured Against Calibrated Hydraulic Heads and Chloride in Observation Wells	188
Figure 4.2	Sensitivity Analysis at Randomly Selected Observation Wells (W1, W3 and W9)	189
Figure 4.3	Effect of Parameter Uncertainty in Model Input Parameter	190
Figure 4.4	The Calibrated Groundwater Flow in Low Lying Area of Manukan Island	191
Figure 4.5	The Calibrated Groundwater Transport in Low Lying Area of Manukan Island	191
Figure 4.6	Freshwater and Seawater Mixing of 1.4% in Low Lying Area of Manukan Island	193
Figure 4.7	Upconing Process and Movement of 14.6% Iso-Chloride Moves about 3m at the Beneath of the Pumping Well (W6)	194
Figure 4.8	Simulated Extent of Seawater Intrusion For Low Lying Area of Manukan Island Shown By a Solid Line In 2009. Extent of Seawater Intrusion For Next Two Years After December 2009 by a Dashed Line	196
Figure 4.9	Study Area Showing Boreholes Locations and Pumping Well (W6)	200
Figure 4.10	Simulated Hydraulic Heads From Pumping Well (W1) To Borehole Nearest To the Sea At the End Of Simulation	200
Figure 4.11	Comparison Between Recharge and Pumping Rates in Study Area	203
Figure 4.12	Water Balance Components in 2009	206
Figure 4.13	Inconsistency In Recharge Rate and Overpumping From January to December 2009 in Manukan Island	207

LIST OF ABBREVIATIONS

IPCC	Intergovernmental Panel on Climate Change
REV	Representative Elementary Volume
SUTRA	Saturated-Unsaturated Transport
CODESA3D	COupled variable DEnsity and Saturation 3D
PVC	Polyvinyl Chloride
APHA	American Public Health Association
ORP	Oxygen Reduction Potential
WHO	World Health Organization
MOH	Ministry of Health
USEPA	U.S. Environmental Protection Agency
IGWMC	International Ground Water Modeling Center
TVD	Total-variation-diminishing
ET Z	Evapotranspiration
MOC	Method of Characteristics
MMOC	Modified Method of Characteristics
PCG2	Preconditioned Conjugate-Gradient Package
SIP	Strongly Implicit Procedure Package
SSO	Slice-Successive Overrelaxation Package
SAMG	Algebraic Multigrid Methods for Systems
GMG	Geometric Multigrid Solver
UFD	Upstream Finite Difference
CFD	Central Finite Difference
GCG	Generalized Conjugate Gradient Solver

ME	Mean Error
MAE	Mean Absolute Error
RMS	Root Mean Squared Error
GUI	Graphical User Interface
SI	International System Of Units
3D	Three Dimensional
2D	Two Dimensional

LIST OF SYMBOLS

Sa	Salinity
----	----------

Total dissolved solids TDS

CI Chloride

km Kilometer

Centimeter cm

Meter m Ca²⁺

Calcium

Mg²⁺ Magnesium

HCO₃⁻ Bicarbonate

Na⁺ Sodium

K+ Potassium

SO4²⁻ Sulphate

°C Celcius

%

Square kilometer km²

mL Mililiter

Percentage

Miligram mg

Milligram/liter mg/L

Ν North Е East

0 Degree

- Potasium dichromate K₂CrO₄
- AgNO₃ Argentum nitrate
- AgCl Silver chloride

Ag₂CrO₄ Silver chromate

LIST OF APPENDIX

		Page
Appendix A	Borehole Information	236
Appendix B	Process Of Boreholes Construction	237
Appendix C	Process of Core Soil Samples Collection	238
Appendix D	Compilation of Typical Values of Hydrogeologic Parameters	239
Appendix E	List of Representative Porosity Values (total and effective porosities)	240
Appendix F	Water Sampling in Manukan Island	241
Appendix G	Adjustment Factor for Ratio U day/U night, for RHmax and for Rs	242
Appendix H	Temperature and Altitude Dependent Weighting Factor (W)	243
Appendix I	Mean Actual Sunshine Duration & Maximum Possible Sunshine Duration (hour/d)	243
Appendix J	Extra-terrestrial Radiation (mm/day)	244
Appendix K	f(T) = Function Of Temperature Values	245
Appendix L	f(ed) = Actual Vapour Pressure Values	245
Appendix M	f(n/N) = Sunshine Duration Values	245
Appendix N	Natural Environmental Carrying Capacity (Water Environmental Carrying Capacity)	246

CHAPTER 1

INTRODUCTION

1.1 Islands Definition

Islands present in different manners and patterns, located adjacent to continental masses and some are dispersed in midocean in singular isolation or in groups. Many islands are arranged, geographically in quadrangles, triangles and various patterns (Munawwar, 1995). Islands can be categorized in a number of ways, each for useful purposes. However there is no single definition fits all the purposes (Hassan et al. 2005). Most of available definitions on islands tend to incorporate with size, topography and geology (Figure 1.1). In term of size, large islands are considered as an area of 13, 000-20, 000 square kilometers with fewer than 1.0-1.2 million people. Small islands are considered to be 10, 000 square kilometers and have 500, 000 or less people. Definitions of very small, micro and smallness also have been used in islands definitions (Falkland, 1991; Hassan et al. 2005).

Source: Falkland (1991)