ON INTELLIGENT IMAGE PROCESSING METHODOLOGIES APPLIED TO NAVIGATION ASSISTANCE FOR VISUALLY IMPAIRED

G.SAINARAYANAN (PS 2000-008- 157(A))

UNIVERSITI MALAYSIA ŞABAH

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (ELECTRICAL & ELECTRONICS ENGINEERING)

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH KOTA KINABALU

2002

BORANG PENGESAHAN STATUS TESIS[®]

JUDUL : ON INTELLIGENT IMAGE PROCESSING METHODOLOGIES APPLIED TO NAVIGATION ASSISTANCE FOR VISUALLY **IMPAIRED**

IJAZAH : Doktor Falsafah (Kejuruteraan Elektrik dan Elektronik)

SESI PENGAJIAN : 2000 - 2002

Saya, G.SAINARAYANAN mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
- 4. TIDAK TERHAD

G. h-7

Disahkan oleh

Disahkan oleh UNIVERSITI MALAYSIA SABAH

(Penulis: G.SAINARAYANAN)

Tarikh: 26 December 2002

(TANDATANGAN PUSTAKAWAN)

hummer-P

(Penyelia: Prof. Dr. R.NAGARAJAN)

Tarikh : 15. 01. 2003

CATATAN: [@] Tesis dimaksudkan sebagai tesis ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM)

DECLARATION

I hereby declare that the research work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

G. L-7.

G.SAINARAYANAN (PS 2000-008- 157(A))

26 December 2002

Prof. Dr. R. NAGARAJAN Universiti Malaysia Sabah SUPERVISOR **CERTIFIED BY**

Assoc. Prof. Dr. SAZALI YAACOB Universiti Malaysia Sabah CO -SUPERVISOR

Assoc. Prof. DR. ALI CHEKIMA Universiti Malaysia Sabah INTERNAL EXAMINER

Assoc. Prof. Dr. SAZALI YAACOB Dean, School of Engineering and Information Technology, UMS

Universiti Sains Malaysia EXTERNAL EXAMINER

Prof. Dr. R.K.SUBRAMANIAN

Prof. Dr. MOHD ZAHEDI DAUD Chairman, Examining Committee

ACKNOWLEDGEMENT

The author is highly grateful and indebted to his supervisor Prof. Dr. R.Nagarajan, Professor of Electrical and Electronics Engineering, School of Engineering and Information Technology, Universiti Malaysia Sabah (UMS) for his inspirational guidance, valuable advice and continuous encouragement through out all stages of the author's research and thesis work. His timely suggestions and fruitful discussion with the author helped in improvising the quality of thesis.

The author expresses his sincere gratitude to his Co-supervisor Assoc. Prof. Dr. Sazali Yaacob, Dean, School of Engineering and Information Technology, UMS for his unremitting support and wise counsel for the completion of this work. The author also thanks him for facilities provided in the school. Author has immense contentment in placing on record, his gratitude and thanks to both his supervisor and co supervisor for the completion of this research.

For the facilities and undying support, the author expresses his humble gratitude and deep sense of reverence to Tan Sri Professor Datuk Seri Panglima Dr. Abu Hassan Othman, Vice Chancellor, UMS.

The author wishes to thank Ministry of Science, Technology and Environment for funding the research through Universiti Malaysia Sabah: IRPA code: 03-02-10-0004. The author conveys his sincere appreciation to the blind volunteers, Mr. Marapan (Chairman of Sabah Blind Association) and Mr. Peter Gumba for their patience and Co-operation in every stage of the research.

The author thanks Dr. Peter Meijer, Philips research laboratories, Netherlands and Prof. R.M. Rangayan, University of Calgray, Canada for their constant discussions and comments and for providing the requested materials for literature survey. The author also expresses his heartfelt gratitude to Datuk. Dr. P.Muthusamy, Ophthalmologist for his encouragement and productive thoughts. The author shows his appreciation and express thanks to his Co research students Miss. Farrah Wong, Mr. Kenneth Teo, Mr. Muralidaran and Mr. Pandian for their time and support and to members of Artificial Intelligent Research Group of the school for timely suggestions and comments.

Author thanks The Almighty and his parents for everything provided in his career.

ABSTRACT

The main objective of this thesis is to develop a computer based Navigation Assistance for Visually Impaired (NAVI) as a vision substitutive system. The hardware of the system includes a Vision sensor mounted on a headgear, a set of Stereo earphones and a Single Board Processing System (SBPS) with batteries, duly placed in a vest. The Vision sensor is a digital video camera. The video camera captures the image of the environment. The captured image is processed, mapped on to specially structured stereo sound patterns and sent to the earphones. A set of image processing requirements for vision substitution is identified and incorporated in The image processing, developed in this thesis, is designed to the NAVI system. work as a model of the human vision system. To model the human vision system in image processing, two properties of human eye, namely lateral inhibition and domination of the object properties rather than background are incorporated. The image processing methodologies applied in NAVI are developed using artificial intelligent techniques. The property of lateral inhibition is incorporated using neural network based Canny edge filter. In vision substitutive system, definition of objects and background is not easy as compared to industrial object recognition system. Therefore, three methods for object enhancement and background suppression are proposed in NAVI using fuzzy logic and neural network. The edge image and the object enhanced image with background suppressed are integrated to produce a resultant image. The resultant image is sonified to produce stereo acoustic patterns. Blind volunteers were trained with the developed NAVI system and they were tested to identify the environment. They were able to understand the logic behind the sound in discriminating the object from background. It was also verified that the discrimination of objects by the blind through the proposed image processing methodologies is effective and easier than that of earlier efforts in this direction.

ABSTRAK

Objektif utama tesis ini adalah untuk merekacipta alat bantuan navigasi berasakan komputer bagi mereka yang cacat penglihatan atau NAVI 'Navigation Assistance for Visually Impaired' sebagai satu sistem pengganti pengalihatan. Sistem perkakasan yang telah dihasilkan merangkumi penderia penglihatan yang dipasang pada 'headgear', fontelinga stereo dan sistem pemprosesan papan tunggal ('single board processing system'). Bateri disimpan dalam baju yang direka khas. Penderia penglihatan adalah sebuah kamera video digital yang digunakan untuk merakam imej persekitaran. Imej yang dirakam akan diproses dan ditukarkan kepada isyarat bunyi stereo berstruktur khas dan dihantar kepada fontelinga. Satu set keperluan pemprosesan imej telah dikenal pasti dan digunakan dalam system NAVI ini. Pemprosesan imej yang dibangunkan dalam tesis ini berfungsi sebagai satu model sistem penglihatan manusia. Untuk memodelkan sistem penglihatan manusia dari segi pemprosesan imei, dua ciri mata manusia iaitu penekanan untuk mengenalpasti bahagian hujung dan dominasi sifat-sifat objek berbanding dengan latarbelakang telah digunakan. Dalam tesis ini, kaedah pemprosesan imej adalah berasaskan teknik-teknik kecerdikan buatan. 'Canny Edge Filter' berasaskan rangkaian neural digunakan untuk mengenalpasti bahagian hujung dan sifat objek. Di dalam sistem pengganti penglihatan, definisi sistem pengesan objek dan latar belakang adalah tidak semudah untuk dilakukan berbanding dengan industri. Jadi, tiga kaedah untuk menguatkan paparan objek and mengurangkan latarbelakang dengan menggunakan kaedah fuzzy logik and rangkaian neural buatan telah dicadangkan. Gabungan bahagian tepi imej ("edge image") dengan kesan objek yang dikuatkan dan latarbelakang yang telah dikurangkan membentuk imej yang lebih menonjol. Imej yang dihasilkan ini ditukar kepada bentuk isyarat bunyi stereo. Sukarelawansukarelawan yang cacat penglihatan telah dilatih dan diuji untuk mengenalpasti persekitaran dengan menggunakan NAVI. Mereka berupaya memahami logik di sebalik bunyi yang dihasilkan untuk membezakan objek daripada latarbelakang. Di samping itu, diskriminasi objek menggunakan kaedah pemprosesan imej yang dicadangkan ini adalah lebih berkesan dan mudah berbanding dengan kaedahkaedah sebelum ini.

CONTENTS

	Page
DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	V
CONTENTS	vi
LIST OF TABLES	xi
LIST OF ILLUSTRATIONS	xii
NOMENCLATURE	XVII
CHAPTER 1 INTRODUCTION	1C

1.1	INTR		1
1.2	BLIND	POPULATION - AN OVERVIEW ALAYSIA SABAH	2
1.3	ELEC	TRONIC TRAVEL AIDS	3
1.4	OBJE	CTIVE OF THE THESIS	4
	1.4.1	To build a vision substitutive system	5
	1.4.2	To develop significant image processing methodology	5
	1.4.3	To design image to sound transformation	6
	1.4.4	To implement a prototype system	6
	1.4.5	To train the blind individuals with the system	6
1. 5	ORGA	ANIZATION OF THESIS	7

CHAPTER 2 LITERATURE SURVEY AND GENERAL METHODOLOGY

2.1	INTRODUCTION	9
2.2	BLIND NAVIGATION AIDS – A LITERATURE SURVEY	9

	2.2.1	Early ETAs	9
	2.2.2	Modern ETAs	13
	2.2.3	On going researches or Future ETAs	20
2.3	IMPO	RTANCE OF SONIFICATION	23
2.4	HUM	AN AUDITORY PERCEPTION	24
2.5	EXPE	RIMENTAL PROTOTYPE SYSTEM	27
2.6	OUTL	INE OF NAVI SCHEME	33
	2.6.1	Incorporation of lateral inhibition	34
	2.6.2	Non linear distribution of vision concentration	35
	2.6.3	Superimposing and normalization	35
	2.6.4	Stereo acoustic transformation	36
2.7	CONC	CLUSION	36

CHAPTER 3 PROPERTY OF VISION – I : LATERAL INHIBITION

3.1	INTRODUCTION	38
3.2	EDGE DETECTION - A PREVIEW	40
	3.2.1 Canny edge detector	42
3.3	NEURAL NETWORK - AN OVERVIEW ALAYSIA SABAH	45
3.4	PROPOSED PROCEDURE FOR LATERAL INHIBITION	47
	3.4.1 Data collection	48
	3.4.2 Training	50
	3.4.3 Real time implementation	50
3.5	RESULTS AND DISCUSSIONS	52
3.6	CONCLUSION	63

CHAPTER 4 PROPERTY OF VISION – II : OBJECT AND BACKGROUND CONSIDERATION

4.1	INTRODUCTION	65
4.2	NEED FOR BACKGROUND SUPPRESSION	67
4.3	HUMANIRIS	69

4.4	FUZZY LOGI	IC – AN OVERVIEW	69
4.5	BACKGROU	ND SUPPRESSION AND	
	OBJECT EN	HANCEMENT	73
4.6	METHOD -	INVERSION OF PIXELS	73
4.7	METHOD II :	FUZZY LOGIC IMAGE PROCESSING SYSTEM	
	(FLIPS)		74
	4.7.1 Design	of FLIPS	75
	4.7.2 Iris con	sideration	79
	4.7.3 FLIPS	algorithm	79
	4.7.4 Illustrat	ions	82
	4.7.5 Observ	ations	88
4.8	METHOD III	PATTERN CLUSTERING	89
	4.8.1 Propos	ed feature extraction	91
	4.8.2 Data co	ollection	94
	4.8.3 Pattern	clustering using Learning Vector Quantization	94
	4.8.4 Fuzzy 0	e mean clustering	99
	4.8.5 Fuzzy l	earning Vector Quantization (FLVQ)	107
	4.8.6 Illustrat	ions	114
	4.8.7 Observ	ations UNIVERSITI MALAYSIA SABAH	120
4.9	COMPARISO	ON OF THREE METHODS FOR BACKGROUND	
	SUPPRESSI	ON AND OBJECT ENHANCEMENT	120
4.10	CONCLUSIO	N	121

CHAPTER 5 IMAGE TO STEREO ACOUSTIC TRANSFORMATION

5.1	INTRODUCTION	123
5.2	A BRIEF SURVEY ON SONIFICATION	124
5.3	CHARACTERISTICS OF SOUND	127
	5.3.1 Pitch	128
	5.3.2 Loudness	129
	5.3.3 Timbre	130
	5.3.4 Location	130

viii

	5.3.5 Musical consideration	130
5.4	EARLY METHODS FOR SOUND SCANNING	131
5.5	PROPOSED STEREO SCANNING IN NAVI	134
5.6	DESIGN OF SONIFICATION IN NAVI	135
	5.6.1 Non linear frequency scaling	141
5.7	RESULTS AND DISCUSSIONS	143
5.8	CONCLUSION	146

CHAPTER 6 INTEGRATION OF IMAGE PROCESSING AND SONIFICATION IN NAVI SYSTEM

6.1	INTRODUCTION	147
6.2	INTEGRATION OF IMAGE PROCESSING MODULES	148
6.3	INTEGRATION OF IMAGE PROCESSING AND STEREO	
	SONIFICATION MODULES	154
6.4	HARDWARE COMPONENTS OF NAVI SYSTEM	162
	6.4.1 NAVI vest	163
	6.4.2 Headgear, vision sensor and stereo earphones SABAH	164
	6.4.3 Single board processing system (SBPS)	165
	6.4.4 Power supply for SBPS	168
6.5	CONCLUSION	170

CHAPTER 7 TRAINING AND TESTING WITH NAVI

7.1	INTRODUCTION	171
7.2	TRAINING WITH SIMULATED IMAGES – STAGE 1	172
7.3	TRAINING WITH SIMULATED IMAGES – STAGE 2	177
7.4	TRAINING WITH SIMULATED IMAGES – STAGE 3	179
7.5	TRAINING WITH REAL LIFE IMAGES – STAGE 1	180
7.6	TRAINING WITH REAL LIFE IMAGES – STAGE 2	182
77	DISTANCE DETERMINATION IN NAVI	183

7.8 CONCLUSION

CHAPTER 8 CONCLUSION

SUM	MARY	186
8.1.1	Establishing the need for the research	187
8.1.2	Incorporating human vision properties	188
8.1.3	Sonification	189
8.1.4	Implementation and training	191
SUG	GESTIONS FOR FUTURE RESEARCH	192
	SUMI 8.1.1 8.1.2 8.1.3 8.1.4 SUGO	SUMMARY8.1.1Establishing the need for the research8.1.2Incorporating human vision properties8.1.3Sonification8.1.4Implementation and trainingSUGGESTIONS FOR FUTURE RESEARCH

REFERENCES	193
APPENDIX A : LIST OF FUZZY RULES IN FLIPS	204
APPENDIX B : SPECIFICATIONS OF SPBS PCM-9550F/FM	206
PUBLICATIONS DERIVED FROM THIS RESEARCH	210

LIST OF TABLES

Table		Page
Table 3.1	Input and Output of FFNN for	62
	Simulated Images	
Table 3.2	Input and Output of FFNN for Real Life Images	63
Table 4.1	Results of Training and Testing With	98
	LVQ	
Table 4.2	Results of Training and Testing With LVQ With the Proposed Learning Rate Updation	99
Table 4.3	Results of Training and Testing With Conventional FLVQ	111
Table 4.4	Results of Training and Testing With SIA SABAH FLVQ With Proposed Fuzzification	113
Table 4.5	Results of Classification	115

LIST OF ILLUSTRATIONS

Figure		Page
Figure 2.1	Prototype Model of Headgear	28
Figure 2.2	Blind Volunteer With Prototype System	28
Figure 2.3.	Processing Methodology of NAVI	34
Figure 3.1	Representation of Step Edge	41
Figure 3.2	Gaussian Function	48
Figure 3.3	Implementation of FFNN for Online Edge Detection	51
Figure 3.4	The Conventional Canny Edge Detecting Method	51
Figure 3.5	The Proposed Adaptive Canny Edge Detecting	
	Method	51
Figure 3.6	Simulated Image1	53
Figure 3.7	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Simulated Image1	53
Figure 3.8	Simulated Image2	54
Figure 3.9	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Simulated Image2	54
Figure 3.10	Simulated Image3	55
Figure 3.11	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Simulated Image3	55
Figure 3.12	Simulated Image4	56
Figure 3.13	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Simulated Image4	56

Figure 3.14	Real Life Image1	57
Figure 3.15	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Real Life Image1	57
Figure 3.16	Real Life Image2	58
Figure 3.17	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Real Life Image2	58
Figure 3.18	Real Life Image3	59
Figure 3.19	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Real Life Image3	59
Figure 3.20	Real Life Image4	60
Figure 3.21	Comparison Between Conventional and Proposed	
	Canny Edge Detector for Real Life Image4	60
Figure 4.1	Block Diagram of General Fuzzy Logic System	72
Figure 4.2	Input Membership Function for White (WH)	77
Figure 4.3	Output Membership Function for Background Gray	
	Level.	77
Figure 4.4	The Rules Surface for Black Vs White	78
Figure 4.5	The Rules Surface for Black Vs Light Gray	78
Figure 4.6	The Rules Surface for Black Vs Dark	79
Figure 4.7	An Illustration for FLIPS Based Background	
	Suppression and Object Enhancement	85
Figure 4.8	Results From FLIPS for Image 1	85
Figure 4.9	Results From FLIPS for Image 2	85
Figure 4.10	Results From FLIPS for Image 3	86
Figure 4.11	Results From FLIPS for Image 4	86

Figure	4.12	Results From FLIPS for Image 5	86
Figure	4.13	Results From FLIPS for Image 6	86
Figure	4.14	Results From FLIPS for Image 7	87
Figure	4.15	Results From FLIPS for Image 8	87
Figure	4.16	Results From FLIPS for Image 9	87
Figure	4.17	Results From FLIPS for Image 10	87
Figure	4.18	Results From FLIPS for Image 11	88
Figure	4.19	Results From FLIPS for Image 12	88
Figure	4.20	Architecture of LVQ	96
Figure	4.21	Convergence Graph of LVQ	97
Figure	4.22	Training of Conventional FLVQ	110
Figure	4.23	Training of FLVQ With Proposed Fuzzification	112
Figure	4.24	Illustration for FLVQ Based Background	
		Suppression and Object Enhancement	116
Figure	4.25	Results From FLVQ Based Clustering for Image 1	117
Figure	4.26	Results From FLVQ Based Clustering for Image 2	117
Figure	4.27	Results From FLVQ Based Clustering for Image 3	117
Figure	4.28	Results From FLVQ Based Clustering for Image4	118
Figure	4.29	Results From FLVQ Based Clustering for Image 5	118
Figure	4.30	Results From FLVQ Based Clustering for Image 6	118
Figure	4.31	Results From FLVQ Based Clustering for Image 7	118
Figure	4.32	Results From FLVQ Based Clustering for Image 8	119
Figure	4.33	Results From FLVQ Based Clustering for Image 9	119
Figure	4.34	Results From FLVQ Based Clustering for Image 10	119

xiv

Figure 4.35	Results From FLVQ Based Clustering for Image 11	119
Figure 5.1	The Scanning Method of The vOICe	125
Figure 5.2	Capelle's Multi Resolution Image	126
Figure 5.3	Representation of Attributes of Sound Signal	128
Figure 5.4	Left to Right Scanning In Peter Meijer's System	132
Figure 5.5	Representation of Spiral Scanning	133
Figure 5.6	Sequence of Stereo Scanning	134
Figure 5.7	A Sample Image To Describe Stereo Scanning	135
Figure 5.8	Linear Frequency Scaling	141
Figure 5.9	Non Linear Frequency Scaling	142
Figure 5.10	Distribution of Amplitude and Frequency for	
	Sample Image 1	144
Figure 5.11	Distribution of Amplitude and Frequency for	
	Sample Image 2	145
Figure 6.1	The Process of Superposition and Normalization	149
Figure 6.2	Image Processing Stages of Simulated Image1	151
Figure 6.3	Image Processing Stages of Simulated Image2	152
Figure 6.4	Image Processing Stages of Real Life Image	153
Figure 6.5	The Process of Stereo Sonification	154
Figure 6.6	Integration of Sonification With Image Processing	
	for Simulated Image1	156
Figure 6.7	Integration of Sonification Without Image	
	Processing for Simulated Image1	157
Figure 6.8	Integration of Sonification With Image Processing	
	for Simulated Image2	158

Figure 6.9	Integration of Sonification Without Image Processing for Simulated Image2	159
Figure 6.10	Integration of Sonification With Image Processing for Real Life Image	160
Figure 6.11	Integration of Sonification Without Image Processing for Real Life Image	161
Figure 6.12	Blind User With The NAVI Vest	164
Figure 6.13	Blind User With Headgear, Vision Sensor and Stereo Earphones	165
Figure 6.14	SPBS Mounted On Chassis – View 1	167
Figure 6.15	SPBS Mounted On Chassis – View 2	167
Figure 6.16	SPBS Mounted On Chassis – View 3	168
Figure 6.17	The Batteries Used In NAVI	168
Figure 6.18	Circuit Layout of Voltage Regulator	169
Figure 7.1	Examples of Simulated Shapes Used In Stage 1 Training	173
Figure 7.2	Examples of Simulated Shapes Used In Stage 2 Training	177
Figure 7.3	User Interface of The Training Software	179
Figure 7.4	Blind Volunteer Training With First Version of NAVI	180
Figure 7.5	Blind Volunteer Training With Second Version of NAVI	180
Figure 7.6	Examples of Real Life Images Used In Training	181
Figure 7.7	Blind Volunteer Taking Test In Indoor Environment	183

- G_{obi}: Gray level of object in FLIPS
- Go: Gray level of object in pattern clustering
- G_b : Gray level of background in pattern clustering
- G_x: First derivative of Gaussian function in x direction
- Gy: First derivative of Gaussian function in y direction
- H₁: Monochrome of 4 levels
- H_{in}: Input to FLIPS; this is the normalized histogram of preprocessed image.
- h1: Monochrome value of BL
- h₂: Monochrome value of DG
- h₃: Monochrome value of LG
- h₄ : Monochrome value of WH
- I : Preprocessed image
- I1 : Edge Image
- I₂: Object enhanced and background suppressed image
- I_3 . Image with edge and object enhanced with background suppressed.
- IBS : Background suppressed image matrix ERSITI MALAYSIA SABAH
- I_x : x component of image
- I_v: y component of image
- IL : Left half of image I
- I_R : Right half of image I
- J: Objective function in clustering
- K1, K2: Chosen scalar constants
- K_G: Constant gain.
- k: Updation parameter
- LVQ : Learning Vector Quantization
- M(x,y) : Magnitude of pixel value in edge detection
- M_c: Hard partition space of X

- M_{fc} : Fuzzy partition matrix
- M : Number of rows in the image I
- N : Number of columns in the image I
- n_1 and n_2 : image dependent constants
- n : Number of data
- q : Slope parameter
- R_T : Ratio of the lower to higher thresholds
- S(j): Sound pattern for column j of the image
- S_L : Sound pattern to the left earphone.
- S_R: Sound pattern to the right earphone
- s : Standard deviation of image.
- T : Class of the training vector
- T_h: High threshold
- T₁: Low threshold
- t: iteration count
- U* : Optimum partition
- v : Final cluster center
- v_i: Cluster center
- w₁: Weight vector for jth output unit
- X1, X2, X3: Object enhancement gains
- XBL. XDG. XLG. XWH: Feature vector from BL, DG, LG and WH gray levels
- X : Training vector
- $[x_1, x_2, x_3, x_4]$: Feature vector.
- z : weighting parameter
- z₀ : Initial z
- z_f : Final z
- α : initial learning rate in LVQ

 $\boldsymbol{\alpha}_t$: Learning rate, where t is iteration number in LVQ.

- β : A chosen parameter to distinguish background as light or dark color
- δ : Object occurrence factor
- ε: Termination criterion
- $\boldsymbol{\mu}$: Mean of image
- μ_{ik} : Membership of k^{th} data point in the i^{th} cluster
- μ_r : Mean of iris area
- θ_1, θ_2 and θ_3 : Enhancement decision factors
- σ : Gaussian spread parameter
- τ : Threshold of image

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Orientation, Navigation and Mobility are perhaps three of the most important aspects of human life. Most aspects of the dissemination of information to aid navigation and cues for active mobility are passed to human through the most complex sensory system, the vision system. This visual information forms the basis for most navigational tasks and so with impaired vision an individual is at a disadvantage because appropriate information about the environment is not available. The loss of eyesight is one of the most serious misfortunes that can befall a person. The term blindness refers to people who have no sight at all as well as to those whose sight is so seriously impaired that their vision cannot be corrected to what is generally considered normal. Approximately three-quarters of those considered as blind have limited vision, which cannot be corrected to normal vision with standard eyeglasses or contact lenses. These people are said to be severely visually impaired, (WHO. 1998). The major causes of blindness are age-related macular degeneration. cataracts, glaucoma, diabetic retinopathy, trachoma, onchocerciasis, by birth, lack of eye care and accident (Times of India, 2000).

Mobility is an ability of movement within the local environment. It is also the ability to move with the knowledge of objects and obstacles in front. Blind individuals find their mobility difficult and hazardous, because they cannot easily identify the obstacle for a comfortable navigation. The autonomous navigation without collision and with discrimination of objects becomes the major task for them to face their daily life requirement.

1.2 BLIND POPULATION - AN OVERVIEW

Visual impairment is one of the most common disabilities worldwide. WHO reported that due to the lack of epidemiological data, especially from the developing and under developed countries, the exact number of blind persons in the world is not known. In 1994, WHO estimated that it was around 38 million with a further 110 million cases of low vision, that are at risk of becoming blind. In 1998, the total population of visual impairment was more than 150 million people (WHO, 1998). Currently, there is a total of about 45 million blind people in the world and a further 135 million have low vision and this number is expected to double by 2020 (Times of India, 2000). The number of people who become blind each year is estimated to be 7 million. Over 70% of the people with vision problem receive treatment and their vision is restored. Thus, the number of blind persons worldwide is estimated to increase by up to 2 million per year (WHO, 1997). Eighty percent of these cases are ageing-related. In most countries of Asia and Africa, it accounts for over 40% of all blindness. It is also estimated that, currently, there are approximately 15 million blind people in South East Asia Region or one-third of the blind population of the world. China accounts for about 18% of the world's blind and is estimated to have the largest number of blind people in the world. There are a quarter of a million people in the UK who are registered as visually impaired. However, the UK actually has nearly one million

2

people entitled to register as a visually impaired person, and 1.7 million with the vision difficulty. This represents over three percent of the UK population (NFB, 2002). In Britain, more than twenty thousand children grow up with visual impairment, and there are two hundred vision-related accidents per day in the UK alone (Leonard and Gordon, 1999; Viisola, 1995). There are approximately 10 million visually impaired people in the United States (AFB, 2001). In addition, statistics state that for every seven minutes, someone in America is becoming visually impaired (Blasch, 1999). In Malaysia, alarming increment in blind population is noted with about 46.9 % from 1990 to 1999. By September 2000, there were about 13,835 registered in Blind associations and it is predicted that, it might be less than 50 % of the total blind population in the country (JKM, 2000; ERM, 2001).

The largest number of visually impaired people falls into the senior citizen category; in fact sixty-six percent of people with impaired vision are over seventy-five year old (Papenmeier, 1997; Lacey and Dawson-Howe, 1998; WHO, 1997a).

ELECTRONIC TRAVEL AIDS

1.3

Orientation and mobility are two of the main confront that visually impaired individuals face every day. Basic independent mobility is vital throughout all sections of society. Mobility, the ability to navigate in a complex environment, enables human to accomplish many different physical goals. Electronic Travel Aids (ETA) are the electronic equipment that help to present visual information to visually impaired people, so that they can have interaction with the environment. Many devices exist to assist visually impaired people in navigation (Duen, 1998). A number of research institutes and software companies are working on solutions to the problems of navigational information for visually impaired people. Since early 1950's several efforts in providing travel aids for visually impaired people had been on development. They ranged from the simple cane to advanced electronic aids (Löfving, 1998). The development of other assisting devices to aid visually impaired people in their everyday life has been increasing. In some cases, solutions to providing sensory supplementation such as Braille through to electronic reading machines have been very effective. However, truly adequate solutions for navigation assistance for visually impaired have not yet been achieved. A number of devices have already been developed to address some of the difficulties faced by visually impaired people with regard to travel (Baldwin, 1998).

Most of the early ETAs are based on ultrasonic sensors for obstacle detection. Later, due to the advancement in high sensitive sensors and computing devices, the research had been focused to video camera based ETAs and Global Positioning Systems. In this thesis, a video camera based ETA is developed. The image is captured using a digital video camera, processed in a computing device and is mapped on to specially structured sound patterns.

1.4 OBJECTIVE OF THE THESIS

The main objective of this thesis is to design a navigational system for blind people that is portable and has all necessary software to sonify the image in real time. The system is named as Navigation Assistance for Visually Impaired (NAVI). The objective of the thesis in developing the NAVI system has five folds:

4