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ABSTRACT 

MULTI-OBJECTIVE EVOLUTION OF RF-SIGNAL HOMING BEHAVIOR IN 

SIMULATED AUTONOMOUS WHEELED ROBOTS USING DIFFERENTIAL 

EVOLUTION 

Although there are more than 1 million robots occupying the world today in the 
automotive and materials handling industries, a large majority of these robots are 
fixed robots which are equipped with hand-engineered, pre-programmed routines 
to function within a static, predictable environment. Only a small fraction (0.15%) 
of this total comprises of autonomous mobile robots that have artificial intelligence 
and which can be adaptive to changing, dynamic environments. This is mainly due 
to the difficult task of synthesizing effective yet robust controllers for autonomous 
mobile robots. As such, evolutionary robotics (ER) has been introduced as a new 
methodology to overcome these limitations by applying artificial evolutionary 
optimization algorithms for the automatic generation of robotic controllers. Over the 
last decade, a number of successful studies have been reported in the application 
of ER. However until very recently, only single-objective evolutionary algorithms 
have been utilized in ER. In the few investigations that have utilized evolutionary 
multi-objective algorithms (EMO), the studies have only been conducted on highly 
abstract, legged robots. Hence, the motivation for this thesis is three-fold; firstly to 
investigate whether EMO can be successfully applied to ER on simulated but actual, 
real-world physical wheeled robots, secondly whether EMO can be applied to ER for 
generating radio-frequency (RF) localization behaviors, and lastly whether EMO can 
be applied to ER for generating useful behaviors in multiple robots working as a 
collectively-intelligent group. The experiments are implemented to focus on five 
main research objectives: (1) to obtain a fitness function for generating the 
wheeled robot's RF-localization behavior in an inherently noisy environment; (2) to 
evaluate the EMO's performance in evolving the required robot's controllers to solve 
the task environment; (3) to test the evolved controllers' robustness; (4) to verify 
the EMO's ability to generate useful controllers in a collective task; and (5) to 
analyze the evolved controllers' internal processing structure in terms of Hinton 
graphs. The results showed that: (1) a fitness function was successfully generated 
for the wheeled robot's RF-localization behavior; (2) the EMO performed reliably in 
synthesizing the required controllers for solving the task environment; (3) the 
evolved robot controllers were robust to the different, previously unseen testing 
environments that were different from the evolution environment; ( 4) the EMO was 
able to evolve controllers for solving a collective box-pushing task for multiple 
robots; and (5) based on the Hinton graph analysis, there were noticeably strong 
excitatory as well as inhibitory synapses present in the most optimal evolved 
controllers that produced the desired robot behaviors. Therefore in conclusion, this 
thesis has shown that EMO is a useful and promising technique to employ in ER for 
automatically generating robust RF-localization behaviors in simulated autonomous 
wheeled robots as well as for collective behaviors in multiple robot environments. 
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ABSTRAK 

Kini, terdapat lebih daripada satu juta robot yang beroperasi di dunia, akan tetapi 
majoriti besar robot yang terdapat dalam pasaran adalah terdiri daripada robot 
tetap yang digunakan dalam bidang automotif dan industri pengendalian bahan. 
Robot tersebut dilengkapi dengan kejuruteraan manual dan rutin pengaturcaraan 
yang beroperasi secara statik dalam persekitaran yang diketahui. Hanya segelintir 
robot autonomik (0.15%) dilengkapi dengan kecerdasan buatan yang dapat 
menyesuaikan diri dalam persekitaran lain. Ini adalah kerana perlaksanaan 
mensintesiskan pengawalan robot automatik yang berkemampuan tinggi adalah 
rumit. Maka, evolusi robotik (ER) telah diperkenalkan untuk mengatasi limitasi 
berkenaan dengan menggunakan algoritma evolusi dalam membangunkan 
pengawal robot autonomik. Banyak penyelidikan yang berjaya telah dilaporkan 
setelah pendedahan kepada pengetahuan ER. Walaubagaimanapun, hanya 
algoritma evolusi satu objektif yang sering digunakan dalam penyelidikan tersebut. 
Beberapa penemuan baru telah mengaplikasikan algoritma ''evolutionary multi­
objective (EMO)" tetapi penyelidikan tersebut hanya dilaksanakan pada robot 
berkaki yang maya. Maka, motivasi penyelidikan tesis ini dibahagikan kepada tiga 
bahagian: pertama adalah untuk menentukan sama ada ''EMO" dapat berjaya 
diaplikasikan dalam ER untuk simulasi robot beroda yang nyata fizikalnya, yang 
kedua adalah untuk menentukan kebolehan "EMO" dalam pengaplikasian ER untuk 
menghasilkan sifat penetapan radio-frekuensi (RF), dan akhir sekali adalah untuk 
menentukan kebolehan "EMO" dalam pengaplikasian ER untuk menghasilkan sifat 
yang berguna dalam persekitaran berbilang robot yang berfungsi dengan cerdik 
secara berkumpulan. Eksperimen-eksperimen dilaksanakan dengan memfokuskan 
kepada lima objektif utama: (1) membangunkan satu fungsi penyesuaian bagi 
menghasilkan pengawal tingkah laku penetapan RF bagi robot beroda; (2) untuk 
menilai pencapaian "EMO" dalam pengevolusian pengawal robot yang diperlukan; 
(3) menguji keteguhan pengawal yang telah berjaya dievolusikan; (4)
mengenalpasti kebolehan "EMO" dalam menghasilkan pengawal yang berguna
dalam tugasan yang melibatkan robot berkumpulan; serta (5) menganalisa struktur
dalaman pengawal yang telah dievolusikan dengan menggunakan teknik Hinton.
Keputusan yang dicapai menunjukkan bahawa: (1) satu fungsi penyesuaian telah
berjaya dibangunkan untuk tingkah laku penetapan RF bagi robot beroda; (2)
penggunaan ''EMO" berjaya dalam mensintesiskan pengawal yang diperlukan; (3)
pengawal robot dapat menyesuaikan diri dalam persekitaran yang berbeza, yang
sebelum ini tidak pernah disintesiskan dan digunakan dalam persekitaran yang
terlibat dalam pengevolusian; (4) "EMO" telah dibuktikan dapat menghasilkan
pengawal yang digunakan untuk menyelesaikan tugasan penolakkan kotak secara
berkumpulan yang melibatkan sebanyak lima robot; (5) berdasarkan kepada analisa
graf Hinton, ianya jelas menunjukkan bahawa struktur dalaman bagi pengawal­
pengawal robot yang dibangunkan mencerminkan kepada kelakuan dan tindak
balas gerakan robot. Secara kesimpulannya, tesis ini telah menggambarkan bahawa
''EMO" adalah teknik yang berguna dan berpotensi untuk digunakan dalam bidang
ER bagi menghasilkan pengawal bersifat penempatan RF yang dapat menyesuaikan
diri dalam simulasi robot beroda autonomik dengan sifat bekerja berkumpulan
dalam persekitaran berbilang robot.
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1.1 Overview 

CHAPTER 1 

INTRODUCTION 

There are more than one million industrial robots that are occupying the world 

today in an industry that is estimated to be worth around USO 18 billion annually 

and growing (IEEE, 2008). A large majority of these industrial robots are actually 

fixed or attached robots mainly deployed in the automotive and materials handling 

sectors. The working parameters of these robots are highly constrained where their 

controllers are usually pre-programmed and hand-engineered since the routines are 

only required to function within a restricted environment that is both static and 

predictable as well as highly controlled (Nolfi and Floreano, 2000). 

Furthermore, only a small fraction of industrial robots comprise of fully 

autonomous mobile robots (Pelletier, 2008). An industrial robot is defined as an 

automatically-controlled, reprogrammable, multipurpose manipulator programmable 

in three or more axes machine (Nof, 1999). An autonomous mobile robot is defined 

as mobile machines or wheeled machines that are equipped with Artificial 

Intelligence (AI) and capable to perform desired tasks in unstructured environments 

without continuous human guidance (Nolfi and Floreano, 2000). Major differences 

between the industrial robots and autonomous mobile robots are the capability of 

its movement and response to the environment. Industrial robots are fixed or 

attached robots whilst autonomous mobile robots are mostly wheeled ( or to a much 

lesser extent legged) robots that can move around in completing the desired tasks. 

On the other hand, industrial robots require either indirect or direct human 

intervention whereas autonomous mobile robots are able to complete tasks 

independently without any human interventions. 

The programming of such autonomous robots are significantly more 

complex and difficult compared to fixed or attached robots mainly due to their 

much larger scope of operational requirements that require both intelligent and 

adaptive behaviors in a working environment that is dynamic, possibly unknown 



and highly unpredictable. The field of Evolutionary Robotics (ER) was proposed in 

order to overcome some of the difficulties of hand-programming autonomous robot 

controllers (Nolfi and Floreano, 2000). The basic idea in ER is to apply artificial 

evolutionary optimization algorithms to automatically synthesize and optimize 

artificial neural network (ANNs) controllers that are able to generate the required 

behavior for the autonomous robots. ANN is a computational model based on 

biological neural networks that consists of an interconnected group of artificial 

neurons which can be practically used in prediction, classification, control problems 

and approximation. In other words, ANN is an adaptive system that changes its 

structure based on internal or external information that flows through the network 

during its learning phase. 

In just over a decade, significant progress has been made in the field of ER 

a�d its application to the automatic synthesis of autonomous robot controllers (Nolfi 

and Floreano, 2000). However, practically all of the reported studies relied on 

single-objective Evolutionary Algorithms (EAs) to conduct this artificial evolution 

process (Floreano et a( 2004). EA is a sub-topic of evolutionary computation and is 

a generic population-based metaheuristic optimization algorithm (Refer to Chapter 2, 

Section 2.5 for detailed discussion). A single-objective EA is a type of EA that is 

capable to solve only one objective in a single run (Coello Coello, 2005). Hence, 

there is only one solution found when such a technique is used. Furthermore, the 

main task has been reported in majority of ER studies focus on generating some 

light-following behaviors or commonly known as phototaxis (Christensen and Dorigo, 

2006; Christensen et al., 2007), and obstacle avoidance (Floreano et al., 2004) for 

single robots only. The robots that are equipped with phototaxis behavior are 

capable to seek for and navigate towards the light source whilst robots that are 

equipped with obstacle avoidance behaviors are capable of avoiding from bumping 

in to any walls or obstacles that are in the environment. Although some researchers 

have successfully shown promising results in evolving robot controllers using single­

objective EAs (Floreano et al., 2004; Christensen et al., 2007), there are still 

opportunities in terms of further improving the controllers that have already been 

developed. The controllers that are generated using a single-objective EA is only 

capable to perform a very limited and highly specific task rather than cooperate 

together in completing a complex task such as box-pushing or formation marching. 
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Furthermore, it is limited to only one solution that can be obtained with the single­

objective EA used in generating the required robot controllers in any single run. 

Hence, some researchers have proposed Evolutionary Multi-objective Optimization 

(EMO) algorithms in order to overcome such limitation found in single-objective EAs, 

where EMO refers to optimization algorithms that are able to generate multiple 

Pareto-optimal solutions that trade-off between two or more distinct and conflicting 

objectives in a single run of the EMO algorithms (Deb, 2002; Coello Coello, 2005). 

Some researchers have been initiated into the use of EMOs (Teo, 2003; Capi, 

2007) algorithms for ER applications although these limited studies only utilized 

highly abstract simulations of legged artificial creatures that do not have any real­

world counterparts (Teo, 2003; Parrott et al., 2005; Capi, 2007). EMO is well known 

as one of the evolutionary computing methods that are able to simultaneously 

optimize two or more conflicting objectives subject to certain constraints (Deb, 

2005). Hence, this is extremely beneficial in ER studies since rather than evolving 

robot controllers using single objective methods, a set of multiple Pareto-optimal 

solutions can be obtained using EMOs used rather than just a single solution if 

single objective methods were used. Furthermore, multiple objectives can be 

optimized in the same run without having to modify the weights if a weighted-sum 

approach is used in single objective methods. 

Therefore in this thesis, the main motivation is to fill some of these gaps in 

the literature as well as to explore previously untested areas of application for ER. 

Firstly, the proposed research will attempt to answer the question of whether EMO 

can actually be practically applied for the successful synthesis of ANN controllers for 

simulated but actual, physical autonomous wheeled robots that exist in the real 

world. One of the most popular EMOs, as named Pareto-frontier Differential 

Evolutionary (PDE) multi-objective optimization is considered and used in this study 

since it has been previously shown to work well in evolving abstract legged 

creatures (Teo, 2003). The PDE is a term that refers to hybridization of the EMO 

approach into the Differential Evolution algorithm (DE) which utilizes the Pareto­

frontier selection methodology (Abbass and Sarker, 2002). The Pareto-frontier 

selection method or Pareto set selection is the set of choices that is Pareto efficient 

(Abbass and Sarker, 2002). 
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Secondly, the proposed research will investigate whether EMO can be 

applied in ER to successfully generate a behavior that has thus far never been 

explored, which is radio frequency (RF) localization. RF-localization is a kind of taxis 

behavior that occurs when an organism navigates in response to the propagation of 

radio frequency. This is advantageous for some organisms or animals such as 

insects and birds to orient towards themselves for tracking their mate during mating 

session. Such a localization behavior would prove immensely useful in search-and­

rescue operation�, some of which are now already relying heavily on the radio 

frequency technology (Christensen et al./ 2007). Comparing against light-following 

behavior (which is also known as phototaxis), robots that are evolved with light 

following behaviors are limited in their tracking capability due to light's unique 

characteristic that makes it unable to propagate through any solid object whilst 

such limitations can be overcome with the use of RF signals. An RF signal can 

propagate through any immediate objects within a certain distance. Furthermore, 

an RF signal is able to propagate longer distances compared to a light source. 

Consequently, in the SETI Institute, practically all of the research programs uses 

radio signals to find evidence of extraterrestrial life rather than depending on light­

based telescopes (Glory, 2004). Moreover, radio signal technology is now widely 

utilized in current search-and-rescue operations (Pike, 2003). 

Thirdly, the proposed research will also investigate whether EMO can be 

again applied to ER for the generation of useful behaviors in environments with 

multiple robots that need to work as a collective intelligence with group robotics 

behavior in accomplishing the box-pushing task. The collective robotics behavior 

refers to a group of robots that can cooperate to accomplish given tasks subject to 

predefined objectives together as a group. In this research, the predefined 

objectives are referred to three tasks: (1) to home in towards the RF signal source 

and then (2) recognize the box and lastly (3) push the box towards wall. Again, 

such multi-robot solutions would prove highly useful in situations where a single 

robot is not able to solve the task independently, for example in the clearing of 

heavy rubble in an accident or disaster site. 

In this chapter, the discussions are organized as follow. Firstly, the problem 

statements are discussed in Section 1.2. Then, the objectives of this research are 
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