ON REAL TIME STEREO IMAGE PROCESSING AND SONIFICATION METHODOLOGIES APPLIED TOWARDS SVETA

G. BALAKRISHNAN

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2006

ON REAL TIME STEREO IMAGE PROCESSING AND SONIFICATION METHODOLOGIES APPLIED TOWARDS SVETA

G. BALAKRISHNAN

PERPUSTAMAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2006

BORANG PENGESAHAN STATUS TESIS

JUDUL

: ON REAL TIME STEREO IMAGE PROCESSING AND SONIFICATION METHODOLOGIES APPLIED TOWARDS SVETA

IJAZAH : DOKTOR FALSAFAH SESI PENGAJIAN : 2003-2006

Saya **G. BALAKRISHNAN** mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universii Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. TIDAK TERHAD

Disahkan oleh:

(Penulis : G. BALAKRISHNAN)

(TANDAIANGAN PUSTAKAWAN)

(Penyelia : DR. G. SAINARAYANAN)

DR. GOPALA SAINARAYANAN LECTURER School of Engineering & Information Technology Universiti Malaysia Sabab

Tarikh: 07th July 2006

DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

05-07-2006

G. BALAKRISHNAN PS03-008-030(A)

CERTIFIED BY

Dr. G. Sainaray<mark>anan,</mark> (Main Supervisor) School of Engineering and Information Technology, Universiti Malaysia Sabah.

UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to all those who have contributed directly or indirectly towards the completion of the research and therefore, this thesis.

Foremost, the author wishes to extend his heartfelt gratefulness and indebtedness to his guide and supervisor Dr. G. Sainarayanan, School of Engineering and Information Technology, Universiti Malaysia Sabah. His inspiring guidance, valuable advice and continuous encouragement have been a tremendous help throughout all stages of research and thesis work. His timely suggestion, motivating words, friendly approach and fruitful decision have assisted in the completion of the research and this thesis.

The author would also like to express his sincere gratitude to his co-supervisors Professor Dr. R. Nagarajan, former Professor, School of Engineering and Information Technology and Professor Dr. Sazali Yaacob, former Dean of School of Engineering and Information Technology, UMS for their encouragement and motivation in the research.

The author would like to express his gratitude to Assoc. Prof. Dr. Ideris Zakaria, Dean of School of Engineering and Information Technology for facilities provided in the school.

For facilities and underlying support, the author expresses his humble gratitude and deep sense of reverence to Prof. Datuk Dr. Mohd. Noh Dalimin, Vice Chancellor, Universiti Malaysia Sabah.

The Author wish to thank Ministry of Science, Technology and Innovation, Malaysia for funding the research through Universiti Malaysia Sabah under IRPA code: 03-02-10-0043/EA0041.

The author also likes to thank Mr. Gumba bin Agaram for being as a blind volunteer in training and testing of the system. His valuable feedback helped in improving the sound output of the system. The author also expresses his thanks to all student volunteers who actively participated in the training and testing of the system.

The author would like to acknowledge Dr. H. Hirschmueller (Institute of Robotics and Mechatronics, Germany), Kurt Konolige (SRI International, USA), B. N. Chatterji (IIT, India) and Dr. Ruigang Rang (The University of North Carolina, USA) for providing the requested material for literature survey.

The author shows his appreciation and expresses thanks to his co-research students Mr. Chelvam, Miss. Rosalyn R Porle and Mr. Khoo Wee Han for their time and support and to members of AI Research group of the school for timely suggestions and comments.

The author thanks The Almighty and his parents for everything provided in his carrier.

ABSTRACT

The main objective of this thesis is to develop a Stereo Vision based Electronic Travel Aid (SVETA) for visually impaired people. A hardware system is developed, which includes stereo cameras and stereo earphones molded in a headgear and Compact Computing Device (CCD) duly placed in a designed pouch. The stereo cameras capture stereo images of the environment. The captured images are processed and mapped to stereo musical sound patterns to the earphones. Earlier efforts mentioned in the literature towards single camera based vision aids, did not provide 3D information about the environment. Obstacle detection and its distance information are the significant features for comfortable blind navigation. In this thesis, to incorporate the distance information, stereo imaging techniques are proposed. Stereo image processing requirement in this application is critical and therefore conventional stereo matching methodology cannot be applied directly in this problem. The stereo image processing developed in this thesis, is designed to highlight the object properties from background and compute its distance in real time. Three methods are proposed for stereo image processing namely isolated object matching method, fuzzy relation method and improved area correlation method, whose merits and demerits are compared. The resultant image consists of 3D information of the objects with background suppressed. The resultant image is sonified to produce musical stereo acoustic patterns. Two methods are used for image sonification. The frequency of the sound depends on the height or elevation of the image pixels in the image plane. The amplitude of the sound depends on the intensity value of the image pixels. The left half of the image is sonified to left earphone and the right half of the image is sonified to the right earphone. The pleasantness of the sound is improved using octave frequencies and certain voice commands are also incorporated to alert the blind user about any impending obstacles. Blind and non blind volunteers were trained with the developed SVETA system and they were tested to identify the environment using SVETA. They were able to identify the objects based on its distance and other characteristics with the help of the musical sound. They were also able to navigate in indoor and restricted outdoor environments.

ABSTRAK

KAEDAH-KAEDAH PEMPROSESSAN IMEJ STEREO DAN SONIFIKASI DALAM MASA SEBENAR UNTUK SVETA

Objektif utama tesis ini adalah untuk merekabentuk 'Stereo Vision based Electronic Travel Aid' (SVETA) untuk orang yang cacat penglihatan. Sistem yang direkabentuk mengandungi kamera-kamera stereo dan fontelinga stereo yang dicantumkan di dalam gear kepala dan alat komputer kompak (Compact Computing Device) yang diletakkan di dalam kantung yang direka khas. Kamera stereo merakamkan imej di persekitaran orang buta. Rakaman imej yang di proses dan ditukarkan kepada isvarat bunvi muzik stereo akan disalurkan kepada fontelinga stereo. Melalui penvelidikan penglihatan alternatif berdasarkan kamera terdahulu, informasi tiga dimensi (3D) mengenai persekitaran tidak dapat dikenalpasti. Pengenalpastian halangan dan informasi jarak adalah penting untuk navigasi yang selesa. Di dalam tesis ini, untuk menggabungkan informasi jarak, stereo teknik pengimejan telah dicadangkan. Keperluan pemprosesan imej stereo untuk aplikasi ini sangat kritikal kerana kaedah penyepadanan stereo yang konvensional tidak dapat digunakan. Pemprosesan imej stereo yang direkabentuk dalam tesis ini akan <mark>mengut</mark>amakan unsur-unsur objek di dalam imej dan komputasi jarak akan dilakukan dalam masa sebenar. Tiga kaedah vang dicadangkan untuk pemprosesan imei stereo adalah kaedah penyepadanan objek terasing, kaedah hubungan 'fuzzy' dan kaedah korelasi kawasan yang diperbaiki. Kelebihan dan kelemahan ketigatiga kaedah ini akan dibandingkan. Hasil imei akan mengandungi informasi tiga dimesi yang berkaitan dengan objek dengan latarbelakang vang terhad. Hasil imei juga akan ditukarkan kepada isyarat bunyi muzik stereo. Dua kaedah telah dicadangkan untuk sonifikasi imej. Frekuensi bunyi bergantung kepada ketinggian atau penaikkan piksel-piksel imej di dalam satah imej. Amplitud bunyi bergantung kepada nilai kecerahan piksel-piksel imej. Separuh imej dibahagian kiri akan disonifikasikan ke fontelinga kiri dan separuh imei dibahagian kanan akan disonifikasikan ke fontelinga kanan. Keselesaan bunyi dipertingkatkan dengan menggunakan frekuensi oktaf dan arahan audio akan digabungkan untuk memberi amaran kepada orang buta mengenai halangan di hadapan mereka. Sukarelawan-sukarelawan yang cacat penglihatan dan normal telah dilatih dan diuji untuk mengenalpasti persekitaran mereka dengan SVETA. Mereka dapat mengenalpasti menggunakan obiek berdasarkan jarak dan sifat-sifat objek vang lain melalui bantuan bunyi muzik yg direka. Mereka juga dapat bernavigasi di dalam bangunan dan di persekitaran luar yang dihadkan.

CONTENTS

DECLARATIO	DN	ii
ACKNOWLE	DGEMENTS	iii
ABSTRACT		iv
ABSTRAK		v
CONTENTS		vi
LIST OF TAB	LES	xi
LIST OF ILLU	STRATIONS	xii
NOMENCLAT	URE	xix
CHAPTER 1:	INTRODUCTION	
1.1.	Introduction	1
1.2.	Population UNIVERSITI MALAYSIA SABAH	2
1.3.	Objective of the Thesis	4
	1.3.1. To build a travel aid for blind for navigational assistance	4
	1.3.2. To develop stereo matching methodology	4
	1.3.3. To convey information through sound	5
	1.3.4. To implement prototype system	5
	1.3.5 To train the blind people with the system	5
1.4.	Scope of the Research	6
1.5.	Organization of the Thesis	6

CHAPTER 2: LITERATURE REVIEW AND GENERAL METHODOLOGY

2.1. Blind Navigation Aids

8

2.2.	Classification of Electronic Travel Aids	10
	2.2.1. Electronic sensor based navigation aids	11
	2.2.2. Single camera based navigation aids	21
	2.2.3. Stereo camera based navigation aids	26
	2.2.4. Other navigation aids	32
2.3.	SVETA System Overview	35
	2.3.1. Importance of image processing	35
	2.3.2. Importance of sonification	37
	2.3.3. Importance of stereo vision	38
	2.3.4. Experimental prototype system	39
	2.3.5. Overview of the SVETA scheme	41
2.4.	Conclusion	43
CHAPTER 3:	ISOLATED OBJECT MATCHING METHOD	
3.1.	Introduction UNIVERSITI MALAYSIA SABAH	45
3.2.	Stereo Vision	46
3.3.	Epipolar Geometry	47
3.4.	Calibration	49
	3.4.1. Internal camera model	49
	3.4.2. External camera model	51
	3.4.3. Experimental setup for calibration	52
3.5.	Stereo Matching	54
	3.5.1. Area based stereo matching	55
	3.5.1. Area based stereo matching3.5.2. Feature based stereo matching	55 56
3.6.	3.5.1. Area based stereo matching3.5.2. Feature based stereo matchingProposed Method I: Isolated Object Matching Method	55 56 59

vii

	3.6.2.	Edge detection	64
	3.6.3.	Edge linking	65
	3.6.4.	Object enhancement	70
	3.6.5.	Noise removal	74
	3.6.6.	Isolated object image	78
	3.6.7.	Disparity calculation	82
	3.6.8.	Object preference	87
3.7.	Obser	vation	97
3.8.	Conclu	ision	99

viii

CHAPTER 4: FUZZY RELATION AND IMPROVED AREA CORRELATION METHOD

4.1.	Introduction	100
4.2.	Proposed Method II: Fuzzy Relation Method	101
	4.2.1. Fuzzy stereo matching	103
	4.2.2. Fuzzification UNIVERSITI MALAYSIA SABAH	104
	4.2.3. Fuzzy relationship	106
	4.2.4. Strength of relationship	107
	4.2.5. Satisfying fuzzy properties	108
	4.2.6. Obstacle extraction	111
	4.2.7. Observation	117
4.3.	Proposed Method III: Improved Area Correlation Method	118
	4.3.1. Laplacian of gaussian transform	119
	4.3.2. Low texture filter	123
	4.3.3. Left/Right consistency check	125
	4.3.4. Observation	130
4.4.	Comparative Measures	132

4.5.	Conclusion
1.0.	001101031011

CHAPTER 5: IMAGE SONIFICATION

	5.1.	Introduction	138
	5.2.	Characteristics of Sound	139
	5.3.	A Brief Survey on Sonification	140
	5.4.	Early Sound Scanning Methodologies	144
	5.5.	Proposed Sonification Procedures in SVETA	148
		5.5.1. Method I: Direct mapping method	149
		5.5.2. Method II: Musical octave method	152
	5.6.	Comparative Measures	157
	5.7.	Conclusion	160
СНАР	TER 6:	INTEGRATION OF SOFTWARE AND HARDWARE MODULES	
	6.1.	Introduction	161
	6.2.	Integration of Stereo Image Processing and the Sonification Method	162
	6.3.	Integrating Sonification and Voice Commands	170
	6.4.	Hardware Components of SVETA System	174
		6.4.1. SVETA pouch	175
		6.4.2. Vision sensors	175
		6.4.3. CCD and earphones	178
		6.4.4. Headgear	179
	6.5.	Hardware Versions of SVETA	180
		6.5.1. Version I	180
		6.5.2. Version II: Prototype version	182
		6.5.3. Version III: Final model	182

137

6.6. Conclusion

CHAPTER 7: TRAINING AND TESTING WITH SVETA

7.1.	Introduction	185
7.2.	Training based on Location	186
7.3.	Training based on Shapes and Distance	189
7.4.	Training with Complex Images	191
7.5.	Training with Real Life Images	193
7.6.	Conclusion	199

CHAPTER 8: CONCLUSION

8.1.	Summary	200
	8.1.1. Incorporating obstacle and distance information	200
	8.1.2. Sonification	202
	8.1.3. Implementation, training and testing LAYSIA SABAH	202
8.2.	Limitations of the System 203	
8.3	Suggestions for Future Research	203
REFERENC	ES	205
APPENDIX	A: LIST OF FUZZY RULES FOR PREFERENCE	
	ASSIGNMENT IN ISOLATED OBJECT MATCHING METHOD	217
	B: SPECIFICATIONS OF STEREO CAMERAS	219
	C: PUBLICATIONS DERIVED FROM THIS RESEARCH	221
ATTACHME	NT: CD ILLUSTRATING BLIND USER TESTING AND TRAINING	

х

184

LIST OF TABLES

Table 3.1:	Intrinsic Camera Parameters	50
Table 3.2:	External Camera Parameters	51
Table 3.3:	Inputs and Output of Fuzzy Based Object Preference	92
Table 4.1:	Comparative Measure for the Proposed Three Methods	134
Table 5.1:	Notes and their Corresponding Interval Names	155
Table 5.2:	Comparative Measures for the Two Image Sonification Methods	158
Table 5.3:	Test Results of Identifying the Characteristics of Objects	159
Table A1:	81 Fuzzy Rules	217
Table B1:	Technical Specifications	219

LIST OF ILLUSTRATIONS

Figure 2.1:	Mowat Sensor	12
Figure 2.2:	Sonic Torch	12
Figure 2.3:	Sonicguide	13
Figure 2.4:	KASPA	13
Figure 2.5:	'K' Sonar Cane	14
Figure 2.6:	Sonic Pathfinder	14
Figure 2.7:	Navbelt System	15
Figure 2.8:	The GuideCane Prototype	16
Figure 2.9:	The Navchair Prototype	16
Figure 2.10:	Laser Cane	17
Figure 2.11:	Polaron System	17
Figure 2.12:	Teletact System	18
Figure 2.13:	The Talking Cane UNIVERSITI MALAYSIA SABAH	18
Figure 2.14:	Talking Sign Receiver	19
Figure 2.15:	Smart Wheelchair	20
Figure 2.16:	The vOICe System	22
Figure 2.17:	Sonic Eye System	23
Figure 2.18:	Blind using Dobelle Eye	25
Figure 2.19:	Blind Volunteer with NAVI System	25
Figure 2.20:	ASMONC System	27
Figure 2.21:	EAV Prototype	28
Figure 2.22:	Sound Space Processor and Headset	29
Figure 2 23	Stereo Camera Setup and Piezo Electric Buzzers	30

Figure 2.24:	Electro-Neural Vision System	30
Figure 2.25:	NAVI Version 4	31
Figure 2.26:	C2 Compass	33
Figure 2.27:	A Volunteer wearing Drishti System	34
Figure 2.28:	SVETA Prototype System	40
Figure 2.29:	Blind Volunteer with Prototype System	41
Figure 2.30:	Overview of the Proposed Scheme	42
Figure 3.1:	A Simple Stereo System	47
Figure 3.2:	Epipolar Geometry	48
Figure 3.3:	Checkerboard Calibration Object	52
Figure 3.4:	Calibration Image Sets (Left images alone)	53
Figure 3.5:	Corner Features Extracted Images	53
Figure 3.6:	Original Uncalibrated Left and Right Stereo Images	54
Figure 3.7:	Rectified Left and Right Stereo Images after Calibration	54
Figure 3.8:	Area Based Stereo Matching Example MALAYSIA SABAH	56
Figure 3.9:	Feature Based Stereo Matching Example	57
Figure 3.10:	Results of Pre-processing Stage on Image Set 1	61
Figure 3.11:	Results of Pre-processing Stage on Image Set 2	62
Figure 3.12:	Results of Pre-processing Stage on Image Set 3	62
Figure 3.13:	Results of Pre-processing Stage on Image Set 4	63
Figure 3.14:	Results of Pre-processing Stage on Image Set 5	63
Figure 3.15:	Edge Detection and Edge Linking Results of Image Set 1	67
Figure 3.16:	Edge Detection and Edge Linking Results of Image Set 2	68
Figure 3.17:	Edge Detection and Edge Linking Results of Image Set 3	69
Figure 3.18:	Edge Detection and Edge Linking Results of Image Set 4	69
Figure 3.19:	Edge Detection and Edge Linking Results of Image Set 5	70

xiii

Figure 3.20:	Object Enhancement Results of Image Set 1	71
Figure 3.21:	Object Enhancement Results of Image Set 2	72
Figure 3.22:	Object Enhancement Results of Image Set 3	73
Figure 3.23:	Object Enhancement Results of Image Set 4	73
Figure 3.24:	Object Enhancement Results of Image Set 5	74
Figure 3.25:	Noise Removal Results of Image Set 1	76
Figure 3.26:	Noise Removal Results of Image Set 2	76
Figure 3.27:	Noise Removal Results of Image Set 3	77
Figure 3.28:	Noise Removal Results of Image Set 4	77
Figure 3.29:	Noise Removal Results of Image Set 5	78
Figure 3.30:	Isolated Object Results of Image Set 1	79
Figure 3.31:	Isolated Object Results of Image Set 2	79
Figure 3.31 C	ontd: Isolated Object Results of Image Set 2	80
Figure 3.32:	Isolated Object Results of Image Set 3	80
Figure 3.33:	Isolated Object Results of Image Set 4	81
Figure 3.34:	Isolated Object Results of Image Set 5	81
Figure 3.35:	Block Diagram of the Proposed Stages for Object Extraction	82
Figure 3.36:	Results of Disparity Calculation for Image Set 1	84
Figure 3.37:	Results of Disparity Calculation for Image Set 2	85
Figure 3.38:	Results of Disparity Calculation for Image Set 3	86
Figure 3.39:	Results of Disparity Calculation for Image Set 4	86
Figure 3.40:	Results of Disparity Calculation for Image Set 5	87
Figure 3.41:	Iris Area (Shaded region)	89
Figure 3.42:	Input Membership Function for Size (OS)	90
Figure 3.43:	Input Membership Function for Euclidean Distance (ED)	90

Figure 3.44:	Input Membership Function for Ratio of Object Area	00
	lying within the Central Region (RO)	90
Figure 3.45:	Input Membership Function for Disparity (DT)	91
Figure 3.46:	Output Membership Function for Object Preference (OP)	91
Figure 3.47:	Fuzzy Preference Results for Image Set 1	94
Figure 3.48:	Fuzzy Preference Results for Image Set 2	94
Figure 3.49:	Fuzzy Preference Results for Image Set 3	95
Figure 3.50:	Fuzzy Preference Results for Image Set 4	96
Figure 3.51:	Fuzzy Preference Results for Image Set 5	96
Figure 3.52:	Proposed Stages for Isolated Object Matching Method	97
Figure 3.53:	Critical Case Examples	98
Figure 4.1:	Varied Illumination Condition	109
Figure 4.2:	Final Disparity Image after Object Extraction	111
Figure 4.2 Co	ntd: Final Disparity Image after Object Extraction	112
Figure 4.3:	Block Diagram for Fuzzy Relation Method	112
Figure 4.4:	Results for Overlapping Object Situation	113
Figure 4.5:	Indoor Environment - Image Pair 1	114
Figure 4.6:	Indoor Environment - Image Pair 2	114
Figure 4.7:	Indoor Environment - Image Pair 3	115
Figure 4.8:	Outdoor Environment - Image Pair 1	115
Figure 4.9:	Outdoor Environment - Image Pair 2	116
Figure 4.10:	Outdoor Environment - Image Pair 3	116
Figure 4.11:	Stereo Pairs from Titled Cameras - Image Pair 4	117
Figure 4.12:	LoG Transform for Image Pair 1	120
Figure 4.13:	LoG Transform for Image Pair 2	120
Figure 4.14:	LoG Transform for Image Pair 3	121

xv

Figure 4.15:	LoG Transform for Image Pair 4	121
Figure 4.16:	Stereo Matching Results of LoG Transformed Image Pair 1	122
Figure 4.17:	Stereo Matching Results of LoG Transformed Image Pair 2	122
Figure 4.18:	Stereo Matching Results of LoG Transformed Image Pair 3	123
Figure 4.19:	Stereo Matching Results of LoG Transformed Image Pair 4	123
Figure 4.20:	Four Adjacent Pixel Arrangement for Central Pixel C	124
Figure 4.21:	Output of Improved Area Correlation Method on Image Pair 1	126
Figure 4.22:	Output of Improved Area Correlation Method on Image Pair 2	127
Figure 4.23:	Output of Improved Area Correlation Method on Image Pair 3	127
Figure 4.24:	Output of Improved Area Correlation Method on Image Pair 4	127
Figure 4.25:	Results of Outdoor Environment – Scene 1	128
Figure 4.26:	Results of Outdoor Environment – Scene 2	128
Figure 4.27:	Results of Outdoor Environment – Scene 3	128
Figure 4.28:	Results of Outdoor Environment – Scene 4	129
Figure 4.29:	Block Diagram of Improved Area Correlation Method	129
Figure 4.30:	Results of Critical Case Images - Cameras Tilted by an Angle of 30 Degree	130
Figure 4.31:	Results of Critical Case Images - Cameras Tilted by an Angle of 60 Degree	130
Figure 4.32:	Results of Critical Case Images – Non Textured Objects	130
Figure 5.1:	The Scanning Method of The vOICe	141
Figure 5.2:	Cappelle's Multi-resolution Image	142
Figure 5.3:	O'Hea's Left to Right Scanning on the 5 x 5 Pixels Image	145
Figure 5.4:	Left to Right Scanning in Meijer's System	145
Figure 5.5:	Spiral Scanning for 6 x 6 Pixels Image	146
Figure 5.6:	Stereo Scanning for 8 x 8 Pixels Image in NAVI System	147

xvi

Figure 5.7:	Linear Frequency Variation	150
Figure 5.8:	Examples for Sound Justification	152
Figure 5.9:	Twelve Key Patterns in Piano	154
Figure 6.1:	The Process of Stereo Sonification	162
Figure 6.2:	Simulated Image and its 3D Sound Visualization	164
Figure 6.3:	Processed Real Time Image 1 and its 3D Sound Visualization	166
Figure 6.4:	Real time Stereo Image 1 Without Image Processing and its 3D Sound Visualization	167
Figure 6.5:	Processed Real Time Image 2 and its 3D Sound Visualization	168
Figure 6.6:	Real time Stereo Image 2 Without Image Processing and its 3D Sound Visualization	169
Figure 6.7:	Variation of Sound Amplitude based on Distance	171
Figure 6.8:	Person at a Distance of 450 cm	172
Figure 6.9:	Person at a Distance of 350 cm	172
Figure 6.10:	Person at a Distance of 250 cm	173
Figure 6.11:	Person at a Distance of 150 cmRSITI MALAYSIA SABAH	173
Figure 6.12:	Person at a Distance of 90 cm	173
Figure 6.13:	Final Model of SVETA	175
Figure 6.14:	Internal Hardware of Stereo Cameras	176
Figure 6.15:	Integrated Stereo Cameras	178
Figure 6.16:	Compact Computing Device	179
Figure 6.17:	Camera Support used in Version I	181
Figure 6.18:	Prototype used in Improved Version I	181
Figure 6.19:	SVETA Prototype Version II	182
Figure 6.20:	Blind user wearing final model of SVETA	183
Figure 6.21:	Improved Version III of SVETA	184
Figure 7.1:	Examples of Simulation Object Placed in Different Locations	187

xvii

xviii

Figure 7.1 Co	ontd: Examples of Simulation Object Placed in Different Locations	188
Figure 7.2:	Examples of Simulation Object with Different Shapes at Different Distances	189
Figure 7.2 Co	ntd: Examples of Simulation Object with Different Shapes at Different Distances	190
Figure 7.3:	Examples of Complex Simulated Images	191
Figure 7.3 Co	ntd: Examples of Complex Simulated Images	192
Figure 7.4:	Blind Volunteer Undergoing Training with SVETA	193
Figure 7.5:	Blind User Training with Real Life Objects	194
Figure 7.6:	Stereo Left Image and its Corresponding Disparity Image for the Person Approaching from Right to Left Direction of the User	195
Figure 7.6 Contd: Stereo Left Image and its Corresponding Disparity Image for the Person Approaching from Right to Left Direction of the User		196
Figure 7.7:	Blind User Tested with Moving Obstacle	197
Figure 7.8:	Blind User Identifying Wall	198
Figure 7.9:	Blind User Identifying Obstacle in Indoor Environment	198
Figure 7.10:	Blind User Identifying Person in Outdoor Environment	199
Figure B1:	Physical Dimensions and Mounting Diagram of Stereo Camera	220

Figure 3.20:	Object Enhancement Results of Image Set 1	71
Figure 3.21:	Object Enhancement Results of Image Set 2	72
Figure 3.22:	Object Enhancement Results of Image Set 3	73
Figure 3.23:	Object Enhancement Results of Image Set 4	73
Figure 3.24:	Object Enhancement Results of Image Set 5	74
Figure 3.25:	Noise Removal Results of Image Set 1	76
Figure 3.26:	Noise Removal Results of Image Set 2	76
Figure 3.27:	Noise Removal Results of Image Set 3	77
Figure 3.28:	Noise Removal Results of Image Set 4	77
Figure 3.29:	Noise Removal Results of Image Set 5	78
Figure 3.30:	Isolated Object Results of Image Set 1	79
Figure 3.31:	Isolated Object Results of Image Set 2	79
Figure 3.31 C	ontd: Isolated Object Results of Image Set 2	80
Figure 3.32:	Isolated Object Results of Image Set 3	80
Figure 3.33:	Isolated Object Results of Image Set 4	81
Figure 3.34:	Isolated Object Results of Image Set 5	81
Figure 3.35:	Block Diagram of the Proposed Stages for Object Extraction	82
Figure 3.36:	Results of Disparity Calculation for Image Set 1	84
Figure 3.37:	Results of Disparity Calculation for Image Set 2	85
Figure 3.38:	Results of Disparity Calculation for Image Set 3	86
Figure 3.39:	Results of Disparity Calculation for Image Set 4	86
Figure 3.40:	Results of Disparity Calculation for Image Set 5	87
Figure 3.41:	Iris Area (Shaded region)	89
Figure 3.42:	Input Membership Function for Size (OS)	90
Figure 3.43:	Input Membership Function for Euclidean Distance (ED)	90

Figure 3.44:	Input Membership Function for Ratio of Object Area	
i iguro o. i i.	lying within the Central Region (RO)	90
Figure 3.45:	Input Membership Function for Disparity (DT)	91
Figure 3.46:	Output Membership Function for Object Preference (OP)	91
Figure 3.47:	Fuzzy Preference Results for Image Set 1	94
Figure 3.48:	Fuzzy Preference Results for Image Set 2	94
Figure 3.49:	Fuzzy Preference Results for Image Set 3	95
Figure 3.50:	Fuzzy Preference Results for Image Set 4	96
Figure 3.51:	Fuzzy Preference Results for Image Set 5	96
Figure 3.52:	Proposed Stages for Isolated Object Matching Method	97
Figure 3.53:	Critical Case Examples	98
Figure 4.1:	Varied Illumination Condition	109
Figure 4.2:	Final Disparity Image after Object Extraction	111
Figure 4.2 Co	ntd: Final Disparity Image after Object Extraction	112
Figure 4.3:	Block Diagram for Fuzzy Relation Method	112
Figure 4.4:	Results for Overlapping Object Situation	113
Figure 4.5:	Indoor Environment - Image Pair 1	114
Figure 4.6:	Indoor Environment - Image Pair 2	114
Figure 4.7:	Indoor Environment - Image Pair 3	115
Figure 4.8:	Outdoor Environment - Image Pair 1	115
Figure 4.9:	Outdoor Environment - Image Pair 2	116
Figure 4.10:	Outdoor Environment - Image Pair 3	116
Figure 4.11:	Stereo Pairs from Titled Cameras - Image Pair 4	117
Figure 4.12:	LoG Transform for Image Pair 1	120
Figure 4.13:	LoG Transform for Image Pair 2	120
Figure 4.14:	LoG Transform for Image Pair 3	121

xv

Figure 4.15:	LoG Transform for Image Pair 4	121
Figure 4.16:	Stereo Matching Results of LoG Transformed Image Pair 1	122
Figure 4.17:	Stereo Matching Results of LoG Transformed Image Pair 2	122
Figure 4.18:	Stereo Matching Results of LoG Transformed Image Pair 3	123
Figure 4.19:	Stereo Matching Results of LoG Transformed Image Pair 4	123
Figure 4.20:	Four Adjacent Pixel Arrangement for Central Pixel C	124
Figure 4.21:	Output of Improved Area Correlation Method on Image Pair 1	126
Figure 4.22:	Output of Improved Area Correlation Method on Image Pair 2	127
Figure 4.23:	Output of Improved Area Correlation Method on Image Pair 3	127
Figure 4.24:	Output of Improved Area Correlation Method on Image Pair 4	127
Figure 4.25:	Results of Outdoor Environment – Scene 1	128
Figure 4.26:	Results of Outdoor Environment – Scene 2	128
Figure 4.27:	Results of Outdoor Environment – Scene 3	128
Figure 4.28:	Results of Outdoor Environment – Scene 4	129
Figure 4.29:	Block Diagram of Improved Area Correlation Method SABAH	129
Figure 4.30:	Results of Critical Case Images - Cameras Tilted by an Angle of 30 Degree	130
Figure 4.31:	Results of Critical Case Images - Cameras Tilted by an Angle of 60 Degree	130
Figure 4.32:	Results of Critical Case Images – Non Textured Objects	130
Figure 5.1:	The Scanning Method of The vOICe	141
Figure 5.2:	Cappelle's Multi-resolution Image	142
Figure 5.3:	O'Hea's Left to Right Scanning on the 5 x 5 Pixels Image	145
Figure 5.4:	Left to Right Scanning in Meijer's System	145
Figure 5.5:	Spiral Scanning for 6 x 6 Pixels Image	146
Figure 5.6:	Stereo Scanning for 8 x 8 Pixels Image in NAVI System	147

xvi

Figure 5.7:	Linear Frequency Variation	150
Figure 5.8:	Examples for Sound Justification	152
Figure 5.9:	Twelve Key Patterns in Piano	154
Figure 6.1:	The Process of Stereo Sonification	162
Figure 6.2:	Simulated Image and its 3D Sound Visualization	164
Figure 6.3:	Processed Real Time Image 1 and its 3D Sound Visualization	166
Figure 6.4:	Real time Stereo Image 1 Without Image Processing and its 3D Sound Visualization	167
Figure 6.5:	Processed Real Time Image 2 and its 3D Sound Visualization	168
Figure 6.6:	Real time Stereo Image 2 Without Image Processing and its 3D Sound Visualization	169
Figure 6.7:	Variation of Sound Amplitude based on Distance	171
Figure 6.8:	Person at a Distance of 450 cm	172
Figure 6.9:	Person at a Distance of 350 cm	172
Figure 6.10:	Person at a Distance of 250 cm	173
Figure 6.11:	Person at a Distance of 150 cm SITI MALAYSIA SABAH	173
Figure 6.12:	Person at a Distance of 90 cm	173
Figure 6.13:	Final Model of SVETA	175
Figure 6.14:	Internal Hardware of Stereo Cameras	176
Figure 6.15:	Integrated Stereo Cameras	178
Figure 6.16:	Compact Computing Device	179
Figure 6.17:	Camera Support used in Version I	181
Figure 6.18:	Prototype used in Improved Version I	181
Figure 6.19:	SVETA Prototype Version II	182
Figure 6.20:	Blind user wearing final model of SVETA	183
Figure 6.21:	Improved Version III of SVETA	184
Figure 7.1:	Examples of Simulation Object Placed in Different Locations	187

xvii