
A STUDY ON STRUCTURAL LIGHTWEIGHT 

CONCRETE USING OIL PALM SHELL (OPS) 
AGGREGATE 

DELSYE TEO CHING LEE 

SCHOOL OF ENGINEERING AND INFORMATION 
TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH 
2007 



A STUDY ON STRUCTURAL LIGHTWEIGHT 
CONCRETE USING OIL PALM SHELL (OPS) 

AGGREGATE 

DELSYE TEO CHING LEE 

THESIS SUBMITTED TO UNIVERSITI 
MALAYSIA SABAH FOR THE AWARD OF THE 

DEGREE OF DOCTOR OF PHILOSOPHY 

SCHOOL OF ENGINEERING AND INFORMATION 
TECHNOLOGY 

UNIVERSITI MALAYSIA SABAH 

2007 



UNIVERSITI MALAYSIA SABAH 

BORANG PENGESAHAN STATUS TESIS® 

JUDUL: A STUDY ON STRUCTURAL LIGHTWEIGHT CONCRETE USING OIL 
PALM SHELL (OPS) AGGREGATE 

IJAZAH: DOKTOR FALSAFAH (KEJURUTERAAN AWAM) 

SESI PENGAJIAN: 2004-2007 

Saya, DELSYE TEO CHING LEE mengaku membenarkan tesis ljazah Doktor 
Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat
syarat kegunaan seperti berikut: 

1. Tesis adalah hakmilik Universiti Malaysia Sabah.
2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk

tujuan pengajian saya.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagain bahan pertukaran

antara institusi pengajian tinggi.
4. TIDAK TEHAD

(Penulis: 

Tarikh: 14 July 2007 

Disahkan Oleh 

(TANDATANGAN PUSTAKAWAN) 

z 1Jj: &If l?ii -iN/N' :t--
(Penyelia: Prof. Madya Dr. Md. Abdul Mannan) 

Tarikh: 14 July 2007 

CATATAN: Tesis dimaksudkan sebagai tesis ljazah Doktor Falsafah dan Sarjana secara 
penyelidikan atau disertassi bagi pengajian secara kerja kursus dan penyelidikan, atau 
laporan Projek Sarjana Muda (LPSM) 



DECLARATION 

The materials in this thesis are original except for quotations, excerpts, summaries 
and references, which have been duly acknowledged. 

DELSYE TEO CHING LEE 
PS04-008-006 
14 JULY 2007 



ACKNOWLEDGEMENTS 

This doctoral thesis is the outcome of my research from working as a research 
assistant at Universiti Malaysia Sabah (UMS) and this dissertation would not have 
been possible without the help and support of many individuals. Firstly, I would like to 
acknowledge the Ministry of Science, Technology and Innovation Malaysia for their 
financial support from the IRPA research grant no. 03-02-10-0033-EA0031. This 
study would not have been possible without the availability of the abovementioned 
grant. 

My sincere appreciation goes out to the Vice Chancellor of Universiti Malaysia 
Sabah, and the Dean of School of Engineering and Information Technology for 
providing me with the opportunity to commence this Ph.D. research project in the first 
instance. 

I am extremely indebted to my supervisor and mentor, Associate Professor 
Dr. Md. Abdul Mannan for giving me an opportunity to work in his research group and 
for his excellent supervision and guidance throughout the thesis work. His admirable 
attitude in promoting research and development in his organisation is highly 
inspirational. 

I equally thank my associate supervisor, Associate Professor Dr. Kurian V. 
John, for his unsparing support, direction, assistance, and guidance throughout my 
graduate research career. I thank him particularly for his positive attitude, 
extraordinary optimism and his unremitting belief in my capabilities. 

I owe a great deal to Assistant Professor Dr. Ayman Ababneh from Clarkson 
University, New York who has provided invaluable guidance and expert assistance in 
my durability studies. Special thanks are also extended to Professor Dr. Kamatan 
Krishnaiah for his expert advice and untiring assistance, especially on the chemical 
analysis module. 

I am very grateful to Professor Dr. N. S. V. Kameswara Rao and Associate 
Professor Dr. lderis Zakaria for their fundamental critique which allowed me to 
improve my dissertation writing, and Associate Professor Dr. Narayanan Sambu 
Potty for patiently proof-reading the penultimate draft of my thesis and who had 
suggested many useful improvements. Thanks are also due to Pn. Hidayati Asrah for 
her assistance in the translation of the Abstract of my thesis. 

Sincere thanks go to the numerous lab technicians, Mr. Abd. Hataf Yazed, Mr. 
Munap Salleh, Mr. Julius Sokodor, Mr. Jasmi Jaya, Ms. Noridah Abas, Ms. Noor 
Aerni Dawalih, Mr. Abdullah Tarikim, Mr. Panjiman Saidin, Mr. Seri Pali, Mr. 
Alexander Koong, Mr. Yohanes Paulus, Mr. Borhan Masalin, Mr. Saidin Ahmad and 
Mr. lrwan Baharudzaman for their help and technical support that proved essential in 
completing this research work. Thanks are also due to student colleagues, 
particularly Mr. Paramasivam Suresh Kumar for his assistance throughout my 
research studies. I also wish to thank all those who are not mentioned herein, but 
whom I have had the opportunity to work with at Universiti Malaysia Sabah for their 
assistance, support, suggestions, insightful discussions and friendship. 

Life is not only about work. Without the love, support and encouragement of 
family and friends in good times as well as bad, this thesis would not have been 
possible. My deepest gratitude is reserved for my parents, Mr. Jeffrey Teo Seng Hui 
and Mdm. Florence Lee Cheon Ha; and sister, Ms. Tiffany Teo Li Lee for giving me 

ii 



endless encouragement and support during my scholastic endeavours and for 
believing in the importance of higher education. My mother and father are most 
directly responsible for who I am and what I have achieved today. I also thank them 
for their constant prayers and their many sacrifices which have enabled me to pursue 
this study. Their support is beyond words and I am forever grateful for everything they 
have done and owe them a debt that can never be repaid. 

I am also greatly indebted to my uncle, Mr. Leslie Teo Ai Hui, cousin, Dr. 
Jason Teo Tze Wi and his wife, Mdm. Annie Liu Shan Nee who accommodated me 
throughout my doctoral studies, and to my nephew, Evan Teo Hao Yang, and niece, 
Calista Teo Jing Yi for their laughter and tears. 

iii 



ABSTRACT 

An experimental investigation using waste oil palm shell (OPS) as renewable coarse 
aggregate in structural lightweight concrete was conducted. An optimum OPS 
concrete mix with slump of 50 to 70 mm, 28-day air-dry density of about 1965 kg/m3 

and 28-day compressive strength of more than 28 MPa was developed. The basic 
engineering properties which include the compressive strength, splitting tensile 
strength, modulus of rupture and modulus of elasticity of OPS concrete were 
compared with that of granite concrete (normal weight concrete). Four types of curing 
conditions were employed to determine its effect on the structural and durability 
properties of OPS concrete. The structural bond properties of OPS concrete were 
determined through the pull-out test incorporating different sizes and types of steel 
reinforcement up to an age of 180 days. The experimental ultimate bond strengths 
were compared with the theoretical values as per BS 8110. The flexural behaviour of 
OPS concrete beams was examined by testing 9 under-reinforced prototype beams 
under two-point loads. The experimental flexural properties such as the bending 
moment, deflection and cracking characteristics were compared with the design code 
provisions of BS 8110 and ACI 318, and these codes gave reasonable estimates of 
the experimental values. Other flexural properties namely the ductility, end rotation 
and strain development were compared to that of other lightweight concretes. In 
terms of durability, the water permeability, water absorption, volume of permeable 
voids (VPV), sorptivity, 90-day salt ponding, cyclic wetting and drying, and rapid 
chloride penetration test (RCPT) of OPS concrete were investigated. These durability 
properties were also compared with the work of other researchers. This experimental 
investigation confirmed that OPS concrete performed similarly to other structural 
lightweight concretes. The results obtained from this investigation provided a critical 
understanding on the performance of OPS concrete, thereby confirming that OPS 

can be used as coarse aggregates for structural lightweight concrete. 
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ABSTRAK 

KAJIAN KE ATAS KONKRIT STRUKTUR RINGAN MENGUNAKAN 
AGREGAT TEMPURUNG KELAPA SAWIT (OPS) 

Satu penyiasatan experimen telah dijalankan ke atas konkrit struktur ringan 
menggunakan tempurung kelapa sawit (OPS) terbuang sebagai agregat kasar yang 
boleh diperbaharui. Nisbah bancuhan optimum untuk konkrit OPS yang diperolehi 
mempunyai nilai kejatuhan dalam lingkungan 50 hingga 70 mm, ketumpatan kering 
udara konkrit keras pada 28 hari sebanyak kira-kira 1965 kg/m3 dan kekuatan 
mampatan pada 28 hari melebihi 28 MPa. Sifat-sifat kejuruteraan asas seperti 
kekuatan mampatan, kekuatan tegangan pemisahan, modulus perpecahan dan 
modulus keelastikan konkrit OPS telah dibandingkan dengan konkrit batu granit 
(konkrit berat biasa). Empat keadaan pengawetan telah digunakan untuk 
mengenalpasti kesannya ke atas sifat-sifat yang berkaitan dengan struktur dan 
ketahanlasakan konkrit OPS. Sifat ikatan struktur konkrit OPS telah ditentukan 
melalui ujian "pull-out" menggunakan pelbagai jenis and saiz tetulang besi, dan kajian 
in dijalankan sehingga 180 hari. Keputusan ujian kekuatan ikatan muktamad 
dibandingkan dengan nilai teoritis yang disyorkan oleh BS 8110. Sifat kelenturan 
konkrit OPS telah diuji melalui ujian ke atas 9 prototaip rasuk konkrit OPS bertetulang 
kurang pada beban dua titik. Sifat-sifat kelenturan yang diperolehi dari experimen 
seperti kapasiti kelenturan, ciri-ciri pembengkokan dan keretakan telah dibandingkan 
dengan syarat-syarat kod rekabentuk dari BS 8110 dan ACI 318, dan didapati 
bahawa kod-kod ini memberi anggaran nilai ujian yang agak munasabah. Sifat-sifat 
kelenturan lain seperti kelengkungan, peputaran hujung dan perkembangan terikan 
telah dibandingkan dengan konrit ringan yang lain. Dari segi ketahanlasakan seperti 
penusukan air, penyerapan air, liang kosong telap, "sorptivity", resapan klorida pada 
90 hari perendaman garam, kitar basah dan kering, dan penusukan klorida cepat 
(RCPT) telah disiasati. Perbandingan prestasi ketahalasakan OPS konkrit juga telah 
dibuat dengan penyiasatan penyelidik-penyelidik lain. Penyiasatan ini mengesahkan 
bahawa konkit OPS mempunyai sifat-sifat yang serupa dengan konkrit struktur ringan 
yang lain. Keputusan yang diperolehi dari penyiasatan ini memberi pengertian kritikal 
dalam pestasi konkrit OPS dan dengan demikian, mengesahkan bahawa OPS boleh 
digunakan sebagai agregat kasar untuk penghasilan konkrit struktur ringan. 
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1.1. Lightweight Concrete 

CHAPTER 1 

INTRODUCTION 

The use of lightweight concrete has been gaining increased popularity in the past few 

decades in the construction industry. Lightweight concrete generally has a density of 

less than 2000 kg/m
3 

and with compressive strength of more than 20 MPa (BS 8110), 

it is known as structural lightweight concrete. As its name implies, lightweight 

concrete is used to reduce the self-weight. With lower self-weights, substantial cost 

savings can be achieved as a result of smaller structural members, thinner sections, 

decreased storey height, lesser amount of reinforcing steel and lower foundation 

costs (Chandra & Berntsson, 2002; Pankhurst, 1993; Short & Kinniburgh, 1978). In 

addition, as total amount of materials to be handled is reduced, a subsequent 

reduction in labour costs and an increase in productivity can be expected (Neville & 

Brooks, 1990). 

Lightweight concrete, especially those made from lightweight aggregates are 

most commonly used for structural purposes and has found applications in a variety 

of constructions worldwide such as bridges, precast members, buildings and also 

offshore structures construction (Chandra & Berntsson, 2002; Raithby & Lydon, 

1981 ). In general, these lightweight concretes made from aggregates such as Leca 

(expanded clay), Lytag (sintered pulverised fuel ash) and Liapor (expanded shale), to 

name a few, are mostly utilised in the Western countries and are not extensively used 

in developing countries, which may be due to the limited supply and high production 

cost of the aggregates. 
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The use of lightweight concrete for structural applications is not popular in 

Malaysia. In Malaysia, the application of lightweight concrete is mostly limited to non

structural elements such as wall panels. 

1.2. Renewable Resources for Construction Materials 

Nearly 80% of the resources used today are non-renewable. Due to the scarcity of 

conventional raw materials, researchers are focusing more on developing 

construction materials with renewable resources. As a consequence, special 

attention is drawn towards the utilisation of solid wastes and by-products as 

aggregates, especially for lightweight concrete production in both developed and 

developing nations. 

Where agriculture is widespread, the wastes generated from the agro-based 

industries provide a valuable alternative to the conventional concrete materials. 

Depending on the properties of each material, there is a possibility of incorporating 

these wastes either as cement replacement, fibres or aggregates in concrete. Table 

1.1 further illustrates this. 

Table 1.1: Different applications of agricultural waste in concrete 

Application Type of agricultural waste 

Cement replacement Palm-oil fuel ash, rice husk ash 

Fibres 
Rice husk, straw, bagasse (waste from sugarcane), 
coir (fibrous outer shell of coconut), jute fibre 

Aggregates 
Coconut shell, oil palm boiler clinker (OPBC), oil 
palm shell (OPS) 

2 



1.3. Waste Selection Criteria in Concrete Production 

The most important consideration in the selection of waste for use in the concrete 

industry is the cost/benefit criteria. Taking the workability, strength and durability 

requirements of concrete into consideration, the optimum economic benefit will be 

achieved when the wastes meet the following criteria (Mannan, 2001; 

Nontanananndh, 1990): 

i) Locally available in plentiful amounts

ii) Low unit cost but of high quality

iii) No additional processing cost or minimum cost if processing is involved

iv) Does not cause any health hazards during handling

v) Easy to handle and store

vi) Does not cause degradation to the resulting product

1.4. Oil Palm Industry in Malaysia and Waste Generation 

The African oil palm tree or scientifically known as Elaeis guineensis was brought to 

Malaysia in the early 1900s and is currently used in commercial agriculture for the 

production of palm oil. The Malaysian oil palm industry has seen an unprecedented 

growth in the last four decades to emerge as one of the major agricultural industry in 

the country. Today, Malaysia has become the world's largest producer and exporter 

of palm oil, with oil palm planted in over 4.05 million hectares of land (MPOB, 2006). 

Sabah is the largest oil palm planted state, with a coverage of about 1.2 million 

hectares (Wahid, 2006). 

The oil palm yields about 18.88 tonnes/hectare of fresh fruit bunch (FFB) 

(MPOB, 2006). At the mills where the fresh fruit bunches (FFB) are processed and oil 

extraction takes place, solid residues and liquid wastes are generated. These wastes 

include empty fruit bunches (EFB), fibre, shell and effluent. The species of oil palm 
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