A STUDY ON STRUCTURAL LIGHTWEIGHT CONCRETE USING OIL PALM SHELL (OPS) AGGREGATE

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2007

A STUDY ON STRUCTURAL LIGHTWEIGHT CONCRETE USING OIL PALM SHELL (OPS) AGGREGATE

DELSYE TEO CHING LEE

THESIS SUBMITTED TO UNIVERSITI MALAYSIA SABAH FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2007

BORANG PENGESAHAN STATUS TESIS[®]

JUDUL: A STUDY ON STRUCTURAL LIGHTWEIGHT CONCRETE USING OIL PALM SHELL (OPS) AGGREGATE

IJAZAH: DOKTOR FALSAFAH (KEJURUTERAAN AWAM)

SESI PENGAJIAN: 2004-2007

Saya, DELSYE TEO CHING LEE mengaku membenarkan tesis Ijazah Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syaratsyarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian saya.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagain bahan pertukaran antara institusi pengajian tinggi.
- 4. TIDAK TEHAD

Disahkan Oleh

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Penulis: DELSYE TEO CHING LEE)

(TANDATANGAN PUSTAKAWAN)

MADAT SNAN

Tarikh: 14 July 2007

(Penyelia: Prof. Madya Dr. Md. Abdul Mannan)

Tarikh: 14 July 2007

CATATAN:[@] Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertassi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM)

DECLARATION

The materials in this thesis are original except for quotations, excerpts, summaries and references, which have been duly acknowledged.

Deligeta

DELSYE TEO CHING LEE PS04-008-006 14 JULY 2007

ACKNOWLEDGEMENTS

This doctoral thesis is the outcome of my research from working as a research assistant at Universiti Malaysia Sabah (UMS) and this dissertation would not have been possible without the help and support of many individuals. Firstly, I would like to acknowledge the Ministry of Science, Technology and Innovation Malaysia for their financial support from the IRPA research grant no. 03-02-10-0033-EA0031. This study would not have been possible without the availability of the abovementioned grant.

My sincere appreciation goes out to the Vice Chancellor of Universiti Malaysia Sabah, and the Dean of School of Engineering and Information Technology for providing me with the opportunity to commence this Ph.D. research project in the first instance.

I am extremely indebted to my supervisor and mentor, Associate Professor Dr. Md. Abdul Mannan for giving me an opportunity to work in his research group and for his excellent supervision and guidance throughout the thesis work. His admirable attitude in promoting research and development in his organisation is highly inspirational.

I equally thank my associate supervisor, Associate Professor Dr. Kurian V. John, for his unsparing support, direction, assistance, and guidance throughout my graduate research career. I thank him particularly for his positive attitude, extraordinary optimism and his unremitting belief in my capabilities.

I owe a great deal to Assistant Professor Dr. Ayman Ababneh from Clarkson University, New York who has provided invaluable guidance and expert assistance in my durability studies. Special thanks are also extended to Professor Dr. Kamatan Krishnaiah for his expert advice and untiring assistance, especially on the chemical analysis module.

I am very grateful to Professor Dr. N. S. V. Kameswara Rao and Associate Professor Dr. Ideris Zakaria for their fundamental critique which allowed me to improve my dissertation writing, and Associate Professor Dr. Narayanan Sambu Potty for patiently proof-reading the penultimate draft of my thesis and who had suggested many useful improvements. Thanks are also due to Pn. Hidayati Asrah for her assistance in the translation of the Abstract of my thesis.

Sincere thanks go to the numerous lab technicians, Mr. Abd. Hataf Yazed, Mr. Munap Salleh, Mr. Julius Sokodor, Mr. Jasmi Jaya, Ms. Noridah Abas, Ms. Noor Aemi Dawalih, Mr. Abdullah Tarikim, Mr. Panjiman Saidin, Mr. Seri Pali, Mr. Alexander Koong, Mr. Yohanes Paulus, Mr. Borhan Masalin, Mr. Saidin Ahmad and Mr. Irwan Baharudzaman for their help and technical support that proved essential in completing this research work. Thanks are also due to student colleagues, particularly Mr. Paramasivam Suresh Kumar for his assistance throughout my research studies. I also wish to thank all those who are not mentioned herein, but whom I have had the opportunity to work with at Universiti Malaysia Sabah for their assistance, support, suggestions, insightful discussions and friendship.

Life is not only about work. Without the love, support and encouragement of family and friends in good times as well as bad, this thesis would not have been possible. My deepest gratitude is reserved for my parents, Mr. Jeffrey Teo Seng Hui and Mdm. Florence Lee Choon Ha; and sister, Ms. Tiffany Teo Li Lee for giving me

endless encouragement and support during my scholastic endeavours and for believing in the importance of higher education. My mother and father are most directly responsible for who I am and what I have achieved today. I also thank them for their constant prayers and their many sacrifices which have enabled me to pursue this study. Their support is beyond words and I am forever grateful for everything they have done and owe them a debt that can never be repaid.

I am also greatly indebted to my uncle, Mr. Leslie Teo Ai Hui, cousin, Dr. Jason Teo Tze Wi and his wife, Mdm. Annie Liu Shan Nee who accommodated me throughout my doctoral studies, and to my nephew, Evan Teo Hao Yang, and niece, Calista Teo Jing Yi for their laughter and tears.

ABSTRACT

An experimental investigation using waste oil palm shell (OPS) as renewable coarse aggregate in structural lightweight concrete was conducted. An optimum OPS concrete mix with slump of 50 to 70 mm, 28-day air-dry density of about 1965 kg/m³ and 28-day compressive strength of more than 28 MPa was developed. The basic engineering properties which include the compressive strength, splitting tensile strength, modulus of rupture and modulus of elasticity of OPS concrete were compared with that of granite concrete (normal weight concrete). Four types of curing conditions were employed to determine its effect on the structural and durability properties of OPS concrete. The structural bond properties of OPS concrete were determined through the pull-out test incorporating different sizes and types of steel reinforcement up to an age of 180 days. The experimental ultimate bond strengths were compared with the theoretical values as per BS 8110. The flexural behaviour of OPS concrete beams was examined by testing 9 under-reinforced prototype beams under two-point loads. The experimental flexural properties such as the bending moment, deflection and cracking characteristics were compared with the design code provisions of BS 8110 and ACI 318, and these codes gave reasonable estimates of the experimental values. Other flexural properties namely the ductility, end rotation and strain development were compared to that of other lightweight concretes. In terms of durability, the water permeability, water absorption, volume of permeable voids (VPV), sorptivity, 90-day salt ponding, cyclic wetting and drying, and rapid chloride penetration test (RCPT) of OPS concrete were investigated. These durability properties were also compared with the work of other researchers. This experimental investigation confirmed that OPS concrete performed similarly to other structural lightweight concretes. The results obtained from this investigation provided a critical understanding on the performance of OPS concrete, thereby confirming that OPS can be used as coarse aggregates for structural lightweight concrete.

iv

ABSTRAK

KAJIAN KE ATAS KONKRIT STRUKTUR RINGAN MENGUNAKAN AGREGAT TEMPURUNG KELAPA SAWIT (OPS)

Satu penyiasatan experimen telah dijalankan ke atas konkrit struktur ringan menggunakan tempurung kelapa sawit (OPS) terbuang sebagai agregat kasar yang boleh diperbaharui. Nisbah bancuhan optimum untuk konkrit OPS yang diperolehi mempunyai nilai kejatuhan dalam lingkungan 50 hingga 70 mm, ketumpatan kering udara konkrit keras pada 28 hari sebanyak kira-kira 1965 kg/m³ dan kekuatan mampatan pada 28 hari melebihi 28 MPa. Sifat-sifat kejuruteraan asas seperti kekuatan mampatan, kekuatan tegangan pemisahan, modulus perpecahan dan modulus keelastikan konkrit OPS telah dibandingkan dengan konkrit batu granit (konkrit berat biasa). Empat keadaan pengawetan telah digunakan untuk mengenalpasti kesannya ke atas sifat-sifat yang berkaitan dengan struktur dan ketahanlasakan konkrit OPS. Sifat ikatan struktur konkrit OPS telah ditentukan melalui ujian "pull-out" menggunakan pelbagai jenis and saiz tetulang besi, dan kajian in dijalankan sehingga 180 hari. Keputusan ujian kekuatan ikatan muktamad dibandingkan dengan nilai teoritis yang disyorkan oleh BS 8110. Sifat kelenturan konkrit OPS telah diuji melalui ujian ke atas 9 prototaip rasuk konkrit OPS bertetulang kurang pada beban dua titik. Sifat-sifat kelenturan yang diperolehi dari experimen seperti kapasiti kelenturan, ciri-ciri pembengkokan dan keretakan telah dibandingkan dengan syarat-syarat kod rekabentuk dari BS 8110 dan ACI 318, dan didapati bahawa kod-kod ini memberi anggaran nilai ujian yang agak munasabah. Sifat-sifat kelenturan lain seperti kelengkungan, peputaran hujung dan perkembangan terikan telah dibandingkan dengan konrit ringan yang lain. Dari segi ketahanlasakan seperti penusukan air, penyerapan air, liang kosong telap, "sorptivity", resapan klorida pada 90 hari perendam<mark>an garam</mark>, kitar basah dan kering, dan penusukan klorida cepat (RCPT) telah disiasati. Perbandingan prestasi ketahalasakan OPS konkrit juga telah dibuat dengan penyiasatan penyelidik-penyelidik lain. Penyiasatan ini mengesahkan bahawa konkit OPS mempunyai sifat-sifat yang serupa dengan konkrit struktur ringan yang lain. Keputusan yang diperolehi dari penyiasatan ini memberi pengertian kritikal dalam pestasi konkrit OPS dan dengan demikian, mengesahkan bahawa OPS boleh digunakan sebagai agregat kasar untuk penghasilan konkrit struktur ringan.

CONTENTS

DECLARATION	1
ACKNOWLEDGEMENTS	ii
ABSTRACT	iv
ABSTRAK	v
CONTENTS	vi
LIST OF FIGURES	xii
LIST OF TABLES	xvii

CHAPTER 1: INTRODUCTION

1.1.	Lightweight Concrete	1
1.2.	Renewable Resources for Construction Materials	2
1.3.	Waste Selection Criteria in Concrete Production	3
1.4.	Oil Palm Industry in Malaysia and Waste Generation	3
1.5.	Use of Oil Palm Shell (OPS) as Coarse Aggregate in	
	Concrete	4
1.6.	Research Significance	5
1.7.	Research Objectives	6
1.8.	Scope of Work	7

CHAPTER 2: LITERATURE REVIEW ON STRUCTURAL LIGHTWEIGHT

CONCRETE

2.1.	Introduction	11
2.2.	Definition of Lightweight Concrete	11
2.3.	Lightweight Aggregates	12
	2.3.1. Naturally Occurring Aggregates	13
	2.3.2. Artificially Produced Aggregates	14

vi

		2.3.3.	Aggregates from Industrial By-Products	16
		2.3.4.	Aggregates from Organic Solid Wastes	18
	2.4.	Gener	al Characteristics of Lightweight Concrete	19
	2.5.	Steel-	Concrete Bond Properties	21
		2.5.1.	Factors Affecting Bond Properties	22
		2.5.2.	Previous Research on the Steel-Concrete Bond	
			of Lightweight Concrete	24
	2.6.	Flexur	al Behaviour of Lightweight Concrete Beams	26
	2.7.	Durab	ility Characteristics	31
		2.7.1.	General Factors Affecting the Durability of	
			Concrete	32
		2.7.2.	Concrete Durability Affected by Chloride	35
		2.7.3.	Previous Research on Durability of Lightweight	
			Concrete	36
	2.8.	Conclu	uding Remarks	40
CHAPTER 3:	MATE	RIALS	AND EXPERIMENTAL PROCEDURES	
	3.1.	Introdu	uction	42
	3.2.	Materi	als and Properties	42
		3.2.1.	Cement	42
		3.2.2.	Sand	43
		3.2.3.	Granite Aggregate	44
		3.2.4.	OPS Aggregate	45
		3.2.5.	Water	49
		3.2.6.	Superplasticiser	49
		3.2.7.	Steel Reinforcement	50
	3.3.	Mixing	and Compaction	51

3.4.Curing Regimes52

vii

3.5.	Properties of Fresh Concrete	53
3.6.	Consistency Test for OPS Concrete	54
3.7.	Tests to Determine Basic Concrete Properties	54
3.8.	Pull-out Test	55
3.9.	Prototype Beam Test	57
	3.9.1. Details and Fabrication of Reinforced Concrete	
	Beams	58
	3.9.2. Test Set-up	63
	3.9.3. Instrumentation	64
	3.9.4. Beam Testing	65
3.10.	Durability Tests	66
	3.10.1. Water Permeability	66
	3.10.2. Water Absorption	69
	3.10.3. Volume of Permeable Voids (VPV)	69
	3.10.4. Sorptivity	69
	3.10.5. 90-day Salt Ponding	71
	3.10.6. Cyclic Wetting and Drying	73
	3.10.7. Rapid Chloride Penetrability Test (RCPT)	76

CHAPTER 4: MIX DESIGN AND BASIC PROPERTIES OF OPS CONCRETE

4.1.	Introduction	81
4.2.	Mix Design for Conventional Lightweight Concrete	81
4.3.	Mix Design for OPS Concrete	83
4.4.	Acceptable Mix Proportion for OPS Concrete	87
	4.4.1. Consistency Test for OPS Concrete	90
4.5.	Granite Concrete	93
4.6.	Basic Concrete Properties	93
	4.6.1. Properties of Fresh Concrete	94

viii

	4.6.2. Properties of Hardened Concrete	96
4.7.	Concluding Remarks	102

CHAPTER 5: STRUCTURAL BOND PROPERTIES OF OPS CONCRETE

5.1.	Introduction	104
5.2.	Pull-out Test	104
5.3.	Compressive Strength Test on Companion Specimens	120
5.4.	Relationship Between Bond Strength and Compressive	
	Strength	122
5.5.	Concluding Remarks	123

CHAPTER 6: FLEXURAL BEHAVIOUR OF REINFORCED OPS CONCRETE

BEAM	S	
6.1.	Introduction	126
6.2.	Beam Properties	126
6.3.	General Behaviour of Beams	127
6.4.	Bending Moment	129
6.5.	Cracking Behaviour	130
6.6.	Deflection Behaviour	133
6.7.	Ductility	137
6.8.	End Rotation	139
6.9.	Strain Development	141
6.10.	Concluding Remarks	146

CHAPTER 7: DURABILITY CHARACTERISTICS OF OPS CONCRETE

7.1.	Introduction	148
7.2.	Water Permeability	148
7.3.	Water Absorption	150

7.4.	Volume of Permeable Voids (VPV)	152
7.5.	Sorptivity	153
7.6.	90-day Salt Ponding	154
	7.6.1. Chloride Profile	155
	7.6.2. Diffusion Coefficient	156
	7.6.3. Time to Corrosion Initiation	160
7.7.	Cyclic Wetting and Drying	161
7.8.	Silver Nitrate Test	164
7.9.	Rapid Chloride Penetrability Test (RCPT)	166
7.10.	Concluding Remarks	167

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS

8.1.	General Remarks	170
8.2.	Conclusions	171
8.3.	Recommendations for Future Research	173
REFERENCES	UNIVERSITI MALAYSIA SABAH	175

APPENDIX A: INSTRUMENTS USED FOR PROTOTYPE BEAM TESTING 192

APPENDIX B: DETERMINATION OF CHLORIDE ION CONCENTRATION

B.1.	Concrete Digestion	194
B.2.	Filtrate Analysis (Using HACH DR2010	
	Spectrophotometer)	195

APPENDIX C: EXPRESSIONS USED FOR ANALYSIS OF REINFORCED

OPS CONCRETE BEAMS

C.1. Ultimate Moment

X

	C.1.1. As Per BS 8110	197
	C.1.2. As Per ACI 318	198
C.2.	Cracking Characteristic	199
	C.2.1. Crack Width as per BS 8110	199
	C.2.2. Crack Width as per ACI 318	200
C.3.	Deflection Characteristic	200
	C.3.1. Midspan Deflection as per BS 8110	200
	C.3.2. Midspan Deflection as per ACI 318	201

APPENDIX D: ESTIMATION OF TIME TO CORROSION INITIATION 202

APPENDIX E: LIST OF PUBLICATIONS DERIVED FROM THIS STUDY 205

LIST OF FIGURES

Figure 2.1 🔅	Schematic diagram showing the differences between porosity	
	and permeability	34
Figure 3.1 ;	Particle size distribution of Papar river sand	44
Figure 3.2	Particle size distribution of crushed granite and OPS aggregates	46
Figure 3.3	Various shapes of OPS aggregates	48
Figure 3.4 :	Reinforced cylindrical concrete pull-out specimen	56
Figure 3.5	Pull-out test set-up	57
Figure 3.6	Details of reinforced concrete beam section	59
Figure 3.7	Fabricated reinforcement cages	61
Figure 3.8 :	Strain gauge fixed on steel reinforcement and protected with	
	silicone gel	61
Figure 3.9	Poker vibrator being used for compaction	62
Figure 3.10:	Curing of beams with (a) plastic sheet (b) wet burlap	63
Figure 3.11:	Reinforced concrete beam testing set-up YSIA SABAH	64
Figure 3.12:	Detail A – Demec points and electrical strain gauge positions	
	for beams (a) S1-S3, SR1 and D1-D3 (b) SR2 and SR3	65
Figure 3.13:	Concrete specimens for water permeability testing	67
Figure 3.14:	(a) OPS concrete specimen being loaded in the test chamber	
	(b) Permeability test set-up	68
Figure 3.15:	Sorptivity test for OPS concrete specimen	71
Figure 3.16:	OPS concrete panels ponded with sodium chloride solution	72
Figure 3.17:	OPS concrete specimens subjected to (a) wetting cycle	
	(b) drying cycle	75
Figure 3.18:	OPS concrete specimens kept in vacuum desiccator	77
Figure 3.19:	Sealed OPS concrete specimen	77

Figure 3.20:	Experimental configuration for RCPT method	79
Figure 3.21:	RCPT set-up in laboratory	80
Figure 4.1 :	Cross-section of OPS concrete	90
Figure 4.2 :	Normal frequency distribution of 28-day compressive strength	
	for OPS concrete	93
Figure 4.3	Development of compressive strength of OPS and granite	
	concrete	97
Figure 4.4	Development of split tensile strength of OPS and granite	
	concrete	97
Figure 4.5 :	Development of modulus of rupture of OPS and granite concrete	98
Figure 4.6	Development of modulus of elasticity of OPS and granite	
	concrete	98
Figure 4.7	Ratio of split tensile to compressive strength with age	101
Figure 4.8 :	Ratio of modulus of rupture to compressive strength with age	101
Figure 4.9 :	Ratio of modulus of elasticity to compressive strength with age	102
Figure 5.1	Bond strength development of OPS concrete cured under Site-1 condition (CS1 curing)	105
Figure 5.2 :	Bond strength development of OPS concrete cured under	
	Site-2 condition (CS2 curing)	105
Figure 5.3	Bond strength development of OPS concrete cured under	
	precast condition (CL curing)	106
Figure 5.4	Bond strength development of OPS concrete cured under full	
	water condition (CC curing)	106
Figure 5.5 :	Specimens with (a) 16 mm diameter bars, which showed	
	formation of more cavities and (b) 10 mm diameter bars, which	
	showed formation of less cavities as indicated by the arrows	108
Figure 5.6	Bond stress-slip relationship for specimens with (a) plain bars	
	and (b) deformed bars cured under Site-1 condition (CS1 curing)	116

xiii

Figure 5.7	Bond stress-slip mationship for specimens with (a) plain bars	
	and (b) deformed bars cured under Site-2 condition (CS2 curing)	117
Figure 5.8	Bond stress-slip relationship for specimens with (a) plain bars	
	and (b) deformed bars cured under precast condition (CL curing)	118
Figure 5.9 :	Bond stress-slip relationship for specimens with (a) plain bars	
	and (b) deformed bars cured under full water condition (CC	
	curing)	119
Figure 5.10:	Compressive strength development of OPS concrete under four	
	curing conditions	120
Figure 5.11:	Crack paths of tested OPS concrete specimens (a) at earlier	
	ages (b) at later ages	121
Figure 5.12:	Ratio of bond strength to compressive strength with age for OPS	
	concrete specimens cured under Site-2 condition (CS2 curing)	122
Figure 6.1 :	Tested reinforced OPS concrete beam	128
Figure 6.2 :	Crushing of reinforced OPS concrete beam in the compression	
	zone	128
Figure 6.3 :	Typical moment-deflection curve for reinforced OPS concrete	
	beams	134
Figure 6.4	Moment-deflection curve for series (a) "S" (b) "SR" and (c) "D"	
	beams	135
Figure 6.5 ;	End rotations for series (a) "S", (b) "SR" and (c) "D" beams	140
Figure 6.6	Strain distribution along the depth of beam (a) S1, (b) S2 and	
	(c) S3 at different loads	142
Figure 6.7 :	Strain distribution along the depth of beam (a) SR1, (b) SR2	
	and (c) SR3 at different loads	143
Figure 6.8 :	Strain distribution along the depth of beam (a) D1, (b) D2 and	
	(c) D3 at different loads	144

xiv

Figure 7.1 :	Water permeability of OPS concrete with age under different	
	curing conditions	149
Figure 7.2 :	Water absorption of OPS concrete with age under different	
	curing conditions	152
Figure 7.3	Volume of permeable voids of OPS concrete with age under	
	different curing conditions	153
Figure 7.4 :	Sorptivity of OPS concrete with age under different curing	
	conditions	154
Figure 7.5	Chloride profiles of OPS concrete under different curing	
	conditions	156
Figure 7.6	Regression plot of chloride concentration vs. penetration depth	
	for OPS concrete cured under Site-1 condition (CS1 curing)	157
Figure 7.7	Regression plot of chloride concentration vs. penetration depth	
	for OPS concrete cured under Site-2 condition (CS2 curing)	157
Figure 7.8	Regression plot of chloride concentration vs. penetration depth	
	for OPS concrete cured under precast condition (CL curing)	158
Figure 7.9 :	Regression plot of chloride concentration vs. penetration depth	
	for OPS concrete cured under full water condition (CC curing)	158
Figure 7.10:	Chloride profiles of OPS concrete after 4 cycles of wetting and	
	drying under different curing conditions	162
Figure 7.11:	Chloride profiles of OPS concrete after 10 cycles of wetting and	
	drying under different curing conditions	162
Figure 7.12:	Chloride profiles of OPS concrete after 30 cycles of wetting and	
	drying under different curing conditions	163
Figure 7.13:	Typical formation of purplish-white precipitate as indicated by	
	arrows on (a) 90-day salt ponding slab panel and (b) cyclic	
	wetting and drying specimen	165

xv

Figure 7.14:	Variation of RCPT values for OPS concrete with age under	
	different curing conditions	167
Figure A.1	Demec Gauge with 200 mm gauge length	192
Figure A.2 :	Theodolite with an accuracy of 1 second	193
Figure A.3 :	Hand-held microscope with an optical magnification of X 40	
	and a sensitivity of 0.02 mm	193
Figure B.1	Filtering process of OPS concrete sample	195
Figure B.1	Spectrophotometer (HACH DR2010)	196
Figure C.1 ;	Beam cross-section and equivalent stress block	197
Figure C.2	Effective concrete area per bar (ACI 318)	200
Figure D.1	Time to corrosion initiation for OPS concrete under CS1 curing	
	(with $D_e = 10.37 \times 10^{-8} \text{ cm}^2/\text{sec}$ and chloride threshold limit =	
	0.40%)	203
Figure D.2 :	Time to corrosion initiation for OPS concrete under CS2 curing	
	(with $D_e = 5.86 \times 10^{-8} \text{ cm}^2$ /sec and chloride threshold limit =	
	0.40%)	203
Figure D.3 :	Time to corrosion initiation for OPS concrete under CL curing	
	(with $D_e = 12.02 \times 10^{-8} \text{ cm}^2/\text{sec}$ and chloride threshold limit =	
	0.40%)	204
Figure D.4 :	Time to corrosion initiation for OPS concrete under CC curing	
	(with $D_e = 6.96 \times 10^{-8} \text{ cm}^2/\text{sec}$ and chloride threshold limit =	
	0.40%)	204

LIST OF TABLES

Table 1.1	Different applications of agricultural waste in concrete	2
Table 1.2 🔅	Investigation approach	10
Table 2.1	Different applications of lightweight concretes according to the	
	density and compressive strength	12
Table 2.2	Propriety names of lightweight aggregates	16
Table 2.3	Details of reinforced lightweight concrete beams used in earlier	
	studies	28
Table 3.1 :	Physical properties and chemical composition of OPC	43
Table 3.2	Properties of Papar river sand	44
Table 3.3	Properties of crushed granite and OPS aggregates	48
Table 3.4 :	Chemical composition of OPS aggregate	49
Table 3.5	Physical and chemical properties of superplasticiser	50
Table 3.6	Yield strength of steel reinforcement bars	50
Table 3.7	Adopted curing regimes	53
Table 3.8	Standard deviation for different types of quality control for	
	concrete	54
Table 3.9 :	Reinforced OPS concrete beam details	60
Table 3.10:	RCPT ratings as per ASTM C 1202	80
Table 4.1 :	Trial mixes for OPS concrete	85
Table 4.2	Properties of resulting fresh OPS concrete	86
Table 4.3	Properties of resulting hardened OPS concrete	87
Table 4.4 :	Acceptable mix proportions for OPS concrete for structural use	88
Table 4.5 :	Statistical analysis for 28-day compressive strength of OPS	
	concrete	92
Table 4.6 ;	Properties of fresh OPS and granite concrete	95

Table 4.7 :	Summary of properties of hardened OPS and granite concrete	
	at 28 days	96
Table 5.1	Results of pull-out test for specimens cured under Site-1	
	condition (CS1 curing)	111
Table 5.2	Results of pull-out test for specimens cured under Site-2	
	condition (CS2 curing)	112
Table 5.3	Results of pull-out test for specimens cured under precast	
	condition (CL curing)	113
Table 5.4	Results of pull-out test for specimens cured under full water	
	condition (CC curing)	114
Table 6.1	Properties of companion OPS concrete specimens	126
Table 6.2	Experimental and theoretical moments of reinforced OPS	
	concrete beams	129
Table 6.3 :	Comparison of experimental and predicted ultimate moments	
	for different lightweight concrete beams	130
Table 6.4 :	Cracking characteristics of reinforced OPS concrete beams	131
Table 6.5	Comparison of experimental and predicted crack widths at	
	service moments for reinforced OPS concrete beams	133
Table 6.6	Comparison of experimental and predicted deflections at	
	service moments for reinforced OPS concrete beams	137
Table 6.7	Displacement ductility of reinforced OPS concrete beams with	
	different reinforcement ratios	138
Table 6.8 :	Strain characteristics of reinforced OPS concrete beams	145
Table 7.1 :	Surface chloride concentration and chloride diffusion coefficient	
	of OPS concrete under different curing conditions	159
Table 7.2 :	Time to corrosion initiation for OPS concrete under different	
	curing conditions	161
Table 7.3 :	Depth of chloride front for OPS concrete by silver nitrate test	166

xviii

CHAPTER 1

INTRODUCTION

1.1. Lightweight Concrete

The use of lightweight concrete has been gaining increased popularity in the past few decades in the construction industry. Lightweight concrete generally has a density of less than 2000 kg/m³ and with compressive strength of more than 20 MPa (BS 8110), it is known as structural lightweight concrete. As its name implies, lightweight concrete is used to reduce the self-weight. With lower self-weights, substantial cost savings can be achieved as a result of smaller structural members, thinner sections, decreased storey height, lesser amount of reinforcing steel and lower foundation costs (Chandra & Berntsson, 2002; Pankhurst, 1993; Short & Kinniburgh, 1978). In addition, as total amount of materials to be handled is reduced, a subsequent reduction in labour costs and an increase in productivity can be expected (Neville & Brooks, 1990).

Lightweight concrete, especially those made from lightweight aggregates are most commonly used for structural purposes and has found applications in a variety of constructions worldwide such as bridges, precast members, buildings and also offshore structures construction (Chandra & Berntsson, 2002; Raithby & Lydon, 1981). In general, these lightweight concretes made from aggregates such as Leca (expanded clay), Lytag (sintered pulverised fuel ash) and Liapor (expanded shale), to name a few, are mostly utilised in the Western countries and are not extensively used in developing countries, which may be due to the limited supply and high production cost of the aggregates. The use of lightweight concrete for structural applications is not popular in Malaysia. In Malaysia, the application of lightweight concrete is mostly limited to non-structural elements such as wall panels.

1.2. Renewable Resources for Construction Materials

Nearly 80% of the resources used today are non-renewable. Due to the scarcity of conventional raw materials, researchers are focusing more on developing construction materials with renewable resources. As a consequence, special attention is drawn towards the utilisation of solid wastes and by-products as aggregates, especially for lightweight concrete production in both developed and developing nations.

Where agriculture is widespread, the wastes generated from the agro-based industries provide a valuable alternative to the conventional concrete materials. Depending on the properties of each material, there is a possibility of incorporating these wastes either as cement replacement, fibres or aggregates in concrete. Table 1.1 further illustrates this.

Application	Type of agricultural waste
Cement replacement	Palm-oil fuel ash, rice husk ash
Fibres	Rice husk, straw, bagasse (waste from sugarcane), coir (fibrous outer shell of coconut), jute fibre
Aggregates	Coconut shell, oil palm boiler clinker (OPBC), oil palm shell (OPS)

Table 1.1: Different applications of agricultural waste in concrete

1.3. Waste Selection Criteria in Concrete Production

The most important consideration in the selection of waste for use in the concrete industry is the cost/benefit criteria. Taking the workability, strength and durability requirements of concrete into consideration, the optimum economic benefit will be achieved when the wastes meet the following criteria (Mannan, 2001; Nontanananndh, 1990):

- i) Locally available in plentiful amounts
- ii) Low unit cost but of high quality
- iii) No additional processing cost or minimum cost if processing is involved
- iv) Does not cause any health hazards during handling
- v) Easy to handle and store
- vi) Does not cause degradation to the resulting product

1.4. Oil Palm Industry in Malaysia and Waste Generation

The African oil palm tree or scientifically known as *Elaeis guineensis* was brought to Malaysia in the early 1900s and is currently used in commercial agriculture for the production of palm oil. The Malaysian oil palm industry has seen an unprecedented growth in the last four decades to emerge as one of the major agricultural industry in the country. Today, Malaysia has become the world's largest producer and exporter of palm oil, with oil palm planted in over 4.05 million hectares of land (MPOB, 2006). Sabah is the largest oil palm planted state, with a coverage of about 1.2 million hectares (Wahid, 2006).

The oil palm yields about 18.88 tonnes/hectare of fresh fruit bunch (FFB) (MPOB, 2006). At the mills where the fresh fruit bunches (FFB) are processed and oil extraction takes place, solid residues and liquid wastes are generated. These wastes include empty fruit bunches (EFB), fibre, shell and effluent. The species of oil palm

3