CHARACTERIZATION OF UV INITIATED SAGO STARCH-g-POLY (ACRYLIC ACID)

Lee Jau Shya R.N. Kumar H.D. Rozman B.M.N. Mohd. Azemi

CHARACTERIZATION OF UV INITIATED SAGO STARCH-g-POLY (ACRYLIC ACID)

CHARACTERIZATION OF UV INITIATED SAGO STARCH-g-POLY (ACRYLIC ACID)

Lee Jau Shya R.N. Kumar H.D. Rozman B.M.N. Mohd. Azemi

©Universiti Malaysia Sabah, 2006

All rights reserved.

Except as permitted by Act 332, Malaysian Copyright Act of 1987, no parts of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without prior written permission from Universiti Malaysia Sabah. Permission of rights are subjected to royalty payment.

Perpustakaan Negara Malaysia Catalouging-in-Publication Data

Characterization of UV initiated sago starch-g-poly (Acrylic Acid) / Lee Jau Shya ...[et al.] Bibliography: p.151 ISBN 983-2369-28-2 I. Acrylic acid. 2. Acrylates. I. Lee, Jau Shya. 668,4232

> Layout Artist: Chester Desmond Sinidol Cover Designer: Jupili Selamat Typeface for text: Times New Roman Text type and leading size : 11/12 points

> > PERCETAKAN BUNGA RAYA SDN. BHD.

CONTENTS

LIST OF CONTENTS	Page
	·
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF PHOTOS	xiv
LIST OF APPENDICES	xiv
LIST OF SYMBOLS	xv
PREFACE	xvi
ACKNOWLEDGEMENTS	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Preamble	1
1.2 Research Objectives	2
CHAPTER 2 LITERATURE REVIEW	3
2.1 Starch	3
2.1.1 Introduction	3
2.1.2 Basic Starch Chemistry	3
2.1.3 Chemical Composition	6
2.1.3.1 Amylose	6
2.1.3.2 Amylopectin	8
2.1.3.3 Minor Components	11
(a) MOISTURE	11
	. 11
(c) Protein	12

(d) Ash	12
(e) Phosphorus and Miscellaneous	12
2.1.4 Structure and Organization of Starch Granule	12
2.1.4.1 Crystalline Phase of Starch Granule	14
2.1.4.2 Amorphous Phase of Starch Granule	16
2.1.4.3 Size and Shape of Starch Granules	17
2.2 Sago Starch	19
2.2.1 Sources and Uses	19
2.2.2 Potential and Importance to the Economy	19
2.2.3 Physicochemical Properties	21
2.2.4 Sago Starch Standard	22
2.3 Starch Modification	23
2.3.1 Genetic Modification	24
2.3.2 Enzymatic Modification	25
2.3.3 Physical Modification	26
2.3.4 Chemical Modification	27
2.3.4.1 Substitution (Stabilization)	27
2.3.4.2 Conversion	28
2.3.4.3 Grafting	29
(a) Free Radical Graft Copolymerization	31
(b) Reactions of Free Radical	32
Graft Copolymerization	
2.4 Ultraviolet (UV) Induced Grafting	32
2.4.1 Light Absorption Principle of Photoinitiator	34
2.4.2 Photoinitiator	36
2.4.2.1 Type I Photoinitiator	36
(a) Initiation Mechanism	37
(b) Irgacure 2959	38
2.4.2.2 Type II Photoinitiator	38
2.5 Starch-g-Poly(Acrylic Acid)	39
2.5.1 Acrylic Acid	39
2.5.2 Applications	40
2.5.3 Tentative Mechanism	41

2.6 Physicochemical Properties of Starch	44
2.6.1 X-ray Diffraction	44
2.6.1.1 Basic Principle	44
2.6.1.2 Application in Study of Starch	45
2.6.2 Swelling Power and Solubility	47
2.6.3 Pasting Properties	49
2.6.3.1 Definition	49
2.6.3.2 Measuring Instruments and Rapid Visco Analyser (RVA)	49
2.6.3.3 Theory and Factors Affecting Pasting Properties	50
2.7 Intrinsic Viscosity and Coil Overlap Concentration	53
2.7.1 Factors Affecting Intrinsic Viscosity	55
2.7.2 Coil Overlap Concentration	55
2.8 Digestibility	· 57
2.8.1 In Vivo Digestion of Starch	57
2.8.2 In Vitro Digestion of Starch	58
2.8.2.1 Microscopic Observation	59
2.8.2.2 a-Amylase	60
2.8.3 Factors Affecting Starch Digestibility	61
2.8.4 Digestibility of Sago Starch	64
CHAPTER 3 MATERIALS AND METHODS	67
3.1 Sago Starch-g-Poly(Acrylic Acid)	67
3.1.1 Preparation of Sago Starch-g-Poly(Acrylic Acid)	67
3.1.2 Infra-Red Spectral Analysis (FTIR)	68
3.1.3 Determination of Carboxyl Group Content	69
3.1.4 Determination of Moisture Content	70
3.1.5 Scanning Electron Microscopy (SEM)	70
3.1.6 Determination of Blue Value	70
3.1.7 X-ray Diffraction Studies	71
3.1.8 Swelling Power and Solubility	72
3.1.9 Swelling and Solubility in Dimethy1 Sulfoxide (DMSO)	73

.

3.1.10	Rapid Visco-Analyzer (RVA) Pasting Profile Analysis	73
3.1.11	Intrinsic Viscosity and Coil Overlap Concentration	74
3.1.12	In Vitro Digestibility	76
	3.1.12.1 Enzyme Preparation	76
	3.1.12.2 Digestion Procedure	76
	3.1.12.3 Analysis of Hydrolysates	77
	(Reducing Sugar Determination)	
	(a) Reagents	77
	(b) Standard Curve	78
	3.1.12.4 Scanning Electron Microscopic	78
	(SEM) Examination	
3.2 Statisti	cal Analyses	79
CHAPTER	4 RESULTS AND DISCUSSIONS	81
4.1 Graftin	g Evidence	81
4.1.1 Ir	nfra-Red Spectral Analysis (FTIR)	81
4.	1.1.1 Preliminary Study	81
	- Effect of Photoinitiator (PI)	
4.	1.1.2 Effect of Monomer (Acrylic Acid)	83
4.1.2 C	arboxyl Group Content	84
4.2 Scanni	ng Electron Microscopy (SEM)	85
4.3 Blue Va	alue (BV)	88
4.4 X-ray I	Diffraction Studies	91
4.5 Swellin	g Power and Solubility	94
4.6 Swellin	g and Solubility in Dimethyl Sulfoxide (DMSO)	97
4.7 Pasting	, Properties	102
4.8 Intrinsi	c Viscosity and Coil Overlap Concentration	108
4.8.1 In	trinsic Viscosity	108
4.8.2 C	oil Overlap Concentration	110
4.9 In Vitro	Digestibility	112
4.9.1 Se	canning Electron Microscopic (SEM) Examination	115

CONCLUSIONS	119
RECOMMENDATIONS FOR FUTURE RESEARCH	123
S	125
A R	125
	120
D	128
E	129
F ·	130
CS	131
	CONCLUSIONS RECOMMENDATIONS FOR FUTURE RESEARCH

INDEX

149

LIST OF TABLES

Table		Page
2.1	Approximate amylose and amylopectin content of common food starches*	10
2.2	Characteristic of amylose and amylopectin*	11
2.3	Approximate size and shape of common food starch granules*	18
2.4	Typical yields of crops grown under marginal condition*	20
2.5	Amylose content and proximate composition for sago starch	21
2.6	Requirements for sago starch*	23
2.7	Some characteristics imparted to starches by modification*	24
4.1	Carboxyl group content and moisture content for UV initiated S-g-poly(AA) at different percentage of acrylic acid (AA) monomer	85
4.2	Blue values for native untreated sago, native defatted sago, control and S-g-PAA copolymers. The results are mean and the standard deviation of four measurements	90
4.3	Relative crystallinity for native sago starch, control and S-g-PAA copolymers	93
4.4	Swelling power and % solubles and for native sago starch, control and starch graft copolymers. The results are mean and the standard deviation of triplicate	95
4.5	Pasting temperature, peak viscosity and peak time of native untreated sago, control and S-g-PAA copolymers. The results are the average and the standard deviation of four measurements	104
4.6	Intrinsic viscosity $[\eta]$ and coil overlap concertration *C of native untreated sago starch, control and S-g- PAA copolymers. The results are average of three measurements	109
4.7	In vitro enzyme digestibility (after 5 hours digestion) of native sago starch, control (UV irradiated) and S- g-PAA copolymers. The results are the average and the standard deviation of triplicate	113

LIST OF FIGURES

Figure		Page
2.1	Open-chain and pyranose ring structures of the hexose sugar D-glucose. The ring form is referred to a D-glucopyranose and can be in either the α or β configuration. Starch polymers contain only α linkages.	4
2.2	α -1,4 and α -1,6 glycosidic bonds of starch	5
2.3	α -D-Glucopyranose in the ${}^{4}C_{1}$ conformation as drawn in structural formulas. All bulky groups are in equatorial (solid line) positions, all hydrogen atoms in axial (dashed line) positions	5
2.4	Conformational structures for amylose complexes: a) random coil helix of amylose in solution; b) amylose iodine-iodide complex; c) lamellar structure for organic molecule-amylose complex.	7
2.5	Cluster (racemose) model for amylopectin structure	9
2.6	Model for the starch granule used to fit the SANS data. The whole granule is shown schematically in : a) Stacks of semicrystalline lamellae are separated by amorphous growth rings. b) Magnified view of one such stack, show- ing that it is made up of altering crystalline lamellae and amorphous lamellae. c) The crystalline lamellae com- prise regions of lined up double helices formed from amy- lopectin branches. The amorphous lamellae are where the amylopectin branch points sit	13
2.7	X-ray powder patterns for starch granules and amylose complexes	15

2.8	Model of a starch crystallite showing the possible	16
2.9	Schematic representation of a starch graft conclymer	30
2.10	Typical energy level diagram for aromatic ketones	35
2.11	Type I photoinitiator: Unimolecular fragmentation	36
2.12	α - Cleavage of alkylaryl ketones	37
2.13	α - Cleavage of Irgacure 2959 and other possible	38
	side reactions during photocleavage	
2.14	Type II photoinitiator: Bimolecular Reaction	38
2.15	Preparation of acrylic acid from ethylene oxide	39
2.16	Preparation of acrylic acid from acetylene, carbon monoxide and water	40
2.17	Preparation of acrylic acid from propylene	40
2.18	Side chain propagation of S-g-PAA copolymer	42
2.19	Termination reactions involve in graft copolymerization	43
	of S-g-PAA copolymer	
2.20	Reinforcement of light diffracted from two planes	44
2.21	Starch X-ray patterns	45
2.22	Typical Rapid Visco-Analyser pasting curve	50
2.23	A schematic representation of granular changes in	51
	relationship to viscosity. The viscosity profile was	
	measured by a viscoamy lograph.	
2.24	Schematic representation of a single molecular coil. The	54
	centre of gravity of the macromolecule is at O, r is the	
	chain end-to-end distance, and s is the radius of gyration	
	about the centre of gravity of the macromolecule	
2.25	Crossover between dilute and concentrated solutions:	56
	(a) dilute, (b) onset of overlap and (c) concentrated.	
3.1	Flow chart for preparation of sago starch-g-poly	68
	(acrylic acid)	
4.1	FTIR spectra of starch graft copolymer prepared	83
	with different amount of photoinitiator	.,
4.2	FTIR spectra of native sago starch, control and	84
	starch graft copolymers	1

4.3	X-ray diffractogram for (A) native sago starch, (B) control, (C) 10AA and (D) 20AA	92
4.4	Cross-linking mechanism of starch molecules induced by UV irradiation; where St represents starch molecule	96
4.5	Hydrogen bond between starch molecule and DMSO to form complex	100
4.6	Schematic diagram of native sago starch molecules and starch graft copolymers molecules with different hydrodynamic volumes	111
4.7	The effects of UV irradiation and UV initiated graft copolymerization on rates of hydrolysis (mg maltose/g substrate) for sago starch during 7 hours of incubation with α -amylase	112

LIST OF PHOTOS

Photo

Apper	ndices	
	LIST OF APPENDICES	
	X1,800 (b, scale bar = $20.0\mu m$) magnification	
4.7	Native sago starch (a) and 20AA (b) treated with barley malt α_{a} any last at X4 000 (a scale bar = 10 0 µm) and	118
	barley malt α -amylase at X600 magnification (scalc bar = 50.0 μ m)	
4.6	heating in boiling water bath for 10 minutes. A= native sago starch, B=control, C=5AA, D=10AA, E=20AA Native sago starch (a) and 20AA (b) treated with	116
4.5	starch, B = control, C = 5AA, D =10AA, E =20AA Starch samples in DMSO after 2 months storage and	101
4.4	bar = $20.0\mu m$ Starch samples in DMSO before storage (a) and after two months (b) at ambient temperature $A = native sage$	99
4.3	Scanning electron micrograph for (a) native sago starch and (b) 20AA at magnification of X1,000, scale	88
4.2	bar = $50.0 \mu m$ Scanning electron micrograph for 20AA at magnification of X 500, scale har = 50.0 μm	87
4.1	A) maize; B)potato; C) wheat; D) rye; E) rice; F) lentil bean; G) green pea; H) avocado; I) shoti Scanning electron micrograph for (a) native sago starch and (b) control at magnification of X500 scale	86
2.1	Scanning electron micrograph of starch granules:	18

Appendix A	- Standard curve for Blue Value	125
	(BV) determination	
Appendix B	- Determination of intrinsic viscosity $[\eta]$	126
	for native sago starch	
Appendix C	- Standard curve for calibrating DNS	127
	solution	

Appendix D	- RVA pasting profiles for native sago	128
	starch, control and S-g-PAA copolymers.	
	A = native sago starch, B = control,	
	C = 2.5 AA, D = 5 AA, E = 7.5 AA,	
	F = 10 AA, G = 20 AA	
Appendix E	- Plot of η_{sr}/c vs. c of native sago starch,	129
-	control and S-g-PAA copolymers	
	* C is the coil overlap concentration.	
Appendix F	- Publications from this research project	130

LIST OF SYMBOLS

Symbol	Common Unit	Definition
η	Pas	Viscosity
[η]	ml/g	Intrinsic viscosity
η.,	-	Specific viscosity
η.	-	Relative viscosity
α	-	Mark Houwink exponent
С	%	Correction for lipid
c	g/ml	Sample concentration
*C	g/ml	Coil overlap concentration
K	-	Mark Houwink constant
М	g	Molecular weight
R.	m	Radius of gyration
t	S	Efflux time for solution
t	S	Efflux time for solvent
Ň	ml	Total volume of NaOH for neutralization
W	g	Sample weight

PREFACE

Modification of starch had been a focused area of study since several decades ago, due to the fact that almost unlimited end applications can be achieved to suit different industries from the manifested desirable functionalities. The most novel innovation of this research project is to produce photografted sago starch using UV curing technique, which is widely used in coating industry. This research project was designed to explore the possibility of employing UV curing technique in the presence of photoinitiator (Irgacure 2959) to graft-copolymerize acrylic acid onto sago starch. Effect of UV irradiation as well as UV initiated grafting was studied by examining the changes at both molecular and granular levels experienced by native sago starch after the treatments. Extended and in depth discussion was done with the attempt to elucidate and establish the structure-functional properties relationship resulting from the UV treatments.

The literature review of starch in general and particularly in sago starch of this book is believed to be a good reading material for students and researchers who are interested in studies of starch. Methods and experimental techniques employed in various aspects of starch characterization (ranging from physicochemical properties such as crystallinity, swelling power and solubility and pasting properties, morphology and *in vitro* digestibility) carried out in this research may also be a source of information for research scientists engaged in the research of starch. Last but not least, the innovative UV curing technique employed in photografting may offer a new chapter of research interest to further explore the efficiency, sustainability, as well as other related aspects of study.

J.S. Lee

AKNOWLEDGEMENTS

The author would like to express her greatest gratitude to Prof. Mohd. Azemi Mohd. Noor, Assoc. Prof. Dr. Rozman Hj Din and Assoc. Prof. Dr. R.N. Kumar for their guidance and constructive critics in making this research into a reality. The author's most sincere appreciation goes to Assoc. Prof. Dr. Abdul Karim for devoting his priceless time and sharing his knowledge and experiences whenever seeking assistance. The author's endless thanks and indebtedness to her beloved parents, Tanour, Maueer, Kang, A. Osman, Lai Hoong, and Guan Seng for their encouragements and prayers. The author is also grateful for financial support of this research project from Sarawak Government.