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ASBTRACT 

Comparison of Face Recognition Techniques: The Effects of Features and 

Parameters Setting 

Face recognition is an important biometric application. In this thesis, a comparison 

of two common techniques for face recognition is carried out under the same 

conditions. The first technique is the Principal Component Analysis (PCA) while the 

second Is Linear Discriminant Analysis (LOA). In addition, the performance of PCA 

and PCA (with Radon) was also carried out. The Euclidean distance is used as the 

matching criteria. An investigation of the effect of the parameters of PCA on the 

performance of the face recognition system is carried out. First, it was found that 

the number of eigenvalues used affects the recognition rates of the system. The 

maximum number of eigenvalues used is 300. The equal correct rates increases 

from 1 until 40 to 80 eigenvalues used then become steady afterwards regardless 

of the image size used. Second, it was found that the higher the number of 

training images per person the lower the false acceptance rate. Third, the image 

size used effect the recognition rate when a fixed number of eigenvalues used. 

However, different image size has their own their optimum number of eigenvalues 

to achieve highest equal correct rate. When optimum eigenvalues used, their 

recognition rate did not vary significantly. A comparison of performance, time and 

resource used by all face recognition system is presented. Four individual systems 

are compared; PCA, PCA with Radon, LOA, and LOA with Radon. Each individual 

system gives recognition rate of 89%,88%, 94%, and 92% respectively with LOA 

outperform the other three techniques. It was found that no improvement on 

recognition rate when PCA and LOA use the Radon Transform features as input 

showing that applying Radon Transform on properly normalized frontal image does 

not boost the recognition performance. When compared the individual system to 

the data fusion system, it was found out that data fusion system gives better 

recognition rate than all the individual face recognition system. Fusion of PCA, 

LOA, and LOA with Radon give the best recognition performance, giving 98% 

correct recall and reject rate, and uses 62.8 second process time and 22.2 MB 

space. 
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ASBTRAK 

Pengesanan wajah adalah satu aplikasi biometrik yang penting. Dalam tesis ini, 

perbandingan antara dua teknik umum untuk pengesanan wajah dijalankan di 

bawah keadaan yang sama. Teknik pertama adalah "Principal Component Analysis" 

(PCA) manakala yang kedua adalah ''Linear Discriminant Analysis" (LDA). Di 

samping itu, perbandingan prestasi PCA dan PCA (dengan Radon) juga telah 

dijalankan. "Euclidean Distance" digunakan sebagai kriteria perpadanan. 

Penyiasatan terhadap kesan parameter PCA pada prestasi sistem pengesanan 

wajah telah dijalankan. Pertama sekali, bilangan ''eigenvaluesN yang digunakan 

memberi kesan terhadap kadar pengesanan sistem. Bilangan maksimum 

''eigenvalues'' yang digunakan ialah 300. Kadar pengesanan meningkat dari satu 

sehingga 40 ke 80 ''eIgenvalues'' yang digunakan dan kemudiannya menjadi stabil 

tanpa mengira saiz imej. Kedua, semakin tinggi bilangan imej "training" untuk satu 

orang lebih rendah kadar penerimaan salah. Ketiga, saiz imej yang digunakan 

memberi kesan terhadap kadar pengesanan apabila bilangan ''eigenvalues'' yang 

digunakan adalah tetap. Walau bagaimanapun, saiz imej berlainan mempunyai 

bilangan ''eigenvalues'' optimum tersendiri untuk mencapai kadar pengesanan 

tertinggi. Apabila bilangan "eigenvalues" optimum digunakan, perbezaan kadar 

pengesanan adalah tidak ketara antara imej saiz yang bertainan. Perbandingan 

prestasi, masa dan sumber yang digunakan oleh semua sistem pengesanan wajah 

dibentangkan. Empat sistem individu PCA, PCA (dengan Radon), LOA, dan LOA 

(dengan Radon) telah dibandingkan. Setiap sistem memberikan kadar pengesanan 

setinggi 89%, 88%, 94%, dan 92% dengan LOA mengatasi prestasi tiga teknik 

yang lain. Tiada peningkatan pada kadar pengesanan apabila PCA dan LOA 

menggunakan ''Radon Transform" sebagai input dan ini menunjukkan bahawa 

aplikasi Radon Transform terhadap imej wajah depan yang ''normalizedN tidak 

meningkatkan prestasl pengesanan. Sistem gabungan data membeti kadar 

pengesanan yang lebih baik apabila dibandingkan dengan sistem individu. 

Gabungan PCA, LOA, dan LOA (dengan radon) memberi prestasi pengesanan yang 

terbaik, memberikan 98% peratus kadar penerimaan dan penolakan yang betu~ 

dan menggunakan 62.8 saat masa proses dan 22.2 MB ruang. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Face Recognition 

Face recognition is one of the biometric methods used to identify a person by the 

features of his/her face. Face recognition has received a considerable attention in 

recent years both from the industry and research communities (International 

Biometric Group, 2009). The importance of face recognition arises from the fact 

that a face recognition system does not require the cooperation of an individual 

while most biometric system needs such cooperation. Among the popular biometric 

technologies, facial features and face recognition scored the highest compatibility 

in a machine readable travel documents (MRTD) system based on a number of 

evaluation factors (see Figure 1.1) and is the most successful form of human 

surveillance (Lu, 2003). 

100~--------------------~ 

• 80 

f e 60 
B. 
J .::40 
at 

~ 
20 

o 

Figure 1.1: Comparison of various biometric features based on MRTD 

Source: (LU, 2003) 

Facial recognition technology is one of the fastest growing fields in the 

biometrics industry. Interest in face recognition is being fueled by the availability 
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and the low cost of video hardware, the ever-increasing number of video cameras 

being placed in the workspace and the noninvasive aspect of facial recognition 

systems. 

The goal of the face recognition Is to identify or verify the persons present 

in the shots based on their facial features, despite of wide variations in pose, facial 

expressions and illumination changes (Zhao, 2003). But automatic face recognition 

systems need to overcome various problems like pose invariance, illumination 

invariance, facial expression changes etc. Many methods of face recognition have 

been proposed during the past 30 years (Zhao, 2003). As a result, the current 

status of face recognition technology Is well advanced. Various novel techniques 

have been proposed ranging from the traditional template matching to the latest 

three-dimensional techniques. Although over 30 years of extensive research has 

been conducted in this area, there still exist open research Issues, the performance 

of the current algorithms being still far from that of human perception. 

1.2 Applications of Face Recognition 

Face recognition has received considerable interest as a widely accepted biometric 

because of the ease in collecting face images of persons. Although very reliable 

methods of biometric personal identification exist, for example, fingerprint analysis 

and retinal or iris scans, these methods rely on the cooperation of the participants, 

whereas a personal identification system based on analysis of frontal or profile 

images of the face is often effective without the participant's cooperation or 

knowledge (Zhao, 2003). 

Face recognition is being used in various applications like crowd 

surveillance, criminal identification, and criminal record, access to restricted area 

etc. Nowadays, the necessity for personal Identification In the fields of private and 

secure system make face recognition one of the main fields among other biometric 

technology, such as fingerprint identification, hand geometry identification, iris 

Identification etc. Figure 1.2 shows that facial recognition takes 11.4% of the total 

biometric market. Table 1.1 shows the typical applications of face recognition. 

2 
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1.6% 

5.1% 

Fingerprint 

. Iris recognition 

• Hand geometry 

• Middleware 

• Face recognition 

• Voice Recognition 

• Vein Recognition 
2.4%_---..; 

• AFIS / Live-Scan 

• Other Modalities 

Figure 1.1: The ratio of different biometric method in market 

Source: (International Biometric Group, 2009) 

Table 1.1: Applications of face recognition 

Area Specific applications 

Entertai nment 
Video game, virtual reality, training programs 

Human-robot-interaction, human-computer-interaction 

Drivers' licenses, entitlement programs 

Smart cards Immigration, national ID, passports, voter registration 

Welfare fraud 

1V Parental control, personal device logon, desktop logon 

Information Application security, database security, file encryption 

security Intranet security, internet access, medical records 

Secure trading terminals 

Law Advanced video surveillance, CClV control 

enforcements Portal control, post event analysis 

and surveillance Shoplifting, suspect tracking and investigation 

Source: (Zhao, 2003) 

1.3 Motivation 

There are many biometrics methods that can be used to identify a person such as 

face, fingerprint, hand, voice, eye and signature. Among these biometric methods, 

the face is the feature which best distinguishes a person and face recognition is a 

widely accepted biometric because of the ease in collecting face images of persons 
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and can be use as biometric trait for system where user is unaware that he or she 

is being subjected (Lu, 2003). Although over than 30 years of extensive research 

has been conducted in this area, there still exist open research issues, the 

performance of the current algorithms being still far from that of human perception 

(Zhao, 2003). Nowadays, there are many research works related to face 

recognition. Most of the work claimed to have good performance on recognition 

rate but no benchmark test to compare the face recognition systems, thus making 

a comparison between the various results reported Is hard to be made. 

Comparison between various face recognition systems is important so that we can 

know which system performs better than others under the same test condition. 

This thesis will focus on preparing a benchmark test for evaluating common 

reported global based face recognition approach. The test bed and test criteria 

chosen are based on the literature review of face recognition. 

1.4 Problem Statement 

Currently there are many face recognition research reports published. Most of 

them used different database and different criteria for their experiments, thus a 

comparison between the various results reported is hard to be made. In addition, 

from all the face recognition reports published, there are no comparisons made for 

resources used by the published system. 

1.5 Objectives 

The main objectives of the thesis are: 

I. To establish a test bed and test criteria for evaluating common reported 

global approach. The test bed and test criteria chosen are based on the 

literature review. 

ii. To investigate fusing strategies for combining several global approaches. 

1.6 Scope 

The scopes of the thesis are: 

I. All the face images used for experiments are still Image type. 

ii. There is only one face per Image. 
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