$See \ discussions, stats, and author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/278158795$

New Laurene-type Sesquiterpene from Bornean Laurencia nangii

Article in Natural product communications \cdot June 2015

Lichen View project

Project

CITATION	S READS					
9	156					
1 author:						
J	Charles S VAIRAPPAN					
	Universiti Malaysia Sabah (UMS)					
	166 PUBLICATIONS 1,970 CITATIONS					
	SEE PROFILE					
Some of the authors of this publication are also working on these related projects:						

Antimicrobial Peptides Production for Destruction of Multiple Drug Resistant Superbugs, MARS View project

All content following this page was uploaded by Charles S VAIRAPPAN on 17 March 2017.

IPC Natural Product Communications

New Laurene-type Sesquiterpene from Bornean Laurencia nangii

Takashi Kamada and Charles Santhanaraju Vairappan*

Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia

csv@ums.edu.my

Received: April 8th, 2015; Accepted: May 13th, 2015

We report the chemical composition of a population of Bornean *Laurencia nangii* Masuda. A new compound, neolaurene (1), along with five known metabolites, neolaurallene (2), 2,10-dibromo-3-chloro- α -chamigrene (3), deoxyprepacifenol (4), cycloelatanene B (5) and intricatetraol (6), were isolated and their chemical structures elucidated based on spectroscopic data. In addition, their cytotoxicity and antibacterial activity were evaluated.

Keywords: Laurencia nangii, Rhodomelaceae, Red alga, Laurene-type sesquiterpene.

Red algae of the genus *Laurencia* (Rhodomelaceae) are widespread in tropical and subtropical seas [1a]. The vast majority of *Laurencia* species produce metabolites that are predominantly halogenated terpenes and C_{15} -acetogenins [1b]. *Laurencia* species biosynthesize a characteristic class of compounds that are species-unique within the genus [1c]. Thus, halogenated secondary metabolites can serve as an important taxonomic tool since *Laurencia* species are morphologically similar [1d]. In addition, halogenated metabolites have been reported to possess cytotoxic [1e], antimicrobial [1f] and anti-inflammatory activities [1g].

Here, we investigated one population of *L. nangii* collected from Lohok Butun (Sabah, Malaysia) that resulted in the isolation of one new sesquiterpene, neolaurene (1; Figure 1) with five known compounds: neolaurallene (2) [2a], 2,10-dibromo-3-chloro- α -chamigrene (3) [2b], deoxyprepacifenol (4) [2c], cycloelatanene B (5) [2d] and intricatetraol (6) [2e]. We report the isolation, structural elucidation and bioactivites of these compounds.

Figure 1: Structures of compounds 1-6.

Compound 1 was isolated as a colorless oil. The molecular formula of 1, $C_{15}H_{20}$ (corresponding to 6 degrees of unsaturation), was deduced from the HR-ESI-MS measurements, m/z 199.1413 [M-H]⁺. The ¹³C NMR and DEPT spectra displayed thirteen signals, including two with the same δ values (Table 1). The NMR data of 1 exhibited two 2H doublets at $\delta_{\rm H}$ 7.14 (2H, d, J = 8.3 Hz, H-7, 11) and 7.10 (2H, d, J = 8.3 Hz, H-8, 10) and four aromatic carbons at $\delta_{\rm C}$ 145.0 (C), 134.6 (C), 128.6 (2C, CH) and 127.1 (2C, CH), clearly indicating the presence of a 1,4-disubstituted benzene ring, the same as that of laurene-type sesquiterpenoids such as laurene and isolaurene [3a, b]. Spectroscopic data suggested the

Figure 2: Selected HMBC of compound 1.

Table 1: ¹H (600 MHz) and ¹³C (150 MHz) NMR spectral data of 1 in CDCl₃.

_	compound 1						
Position	δ _C	$\delta_{\rm H}$ (mult., J in Hz)					
1	50.0						
2	53.4	2.36 (1H, d, 6.9)					
3	144.7						
4	121.6	5.32 (1H, brs)					
5	42.4	2.91 (1H, dd, 15.8, 2.1)					
		2.21 (1H, dd, 15.8, 2.1)					
6	145.0						
7	127.1	7.14 (1H, d, 8.3)					
8	128.6	7.10 (1H, d, 8.3)					
9	134.6						
10	128.6	7.10 (1H, d, 8.3)					
11	127.1	7.14 (1H, d, 8.3)					
12	15.7	1.73 (3H, s)					
13	15.3	0.58 (3H, d, 6.9)					
14	31.7	1.34 (3H, s)					
15	21.0	2.32 (3H, s)					

presence of a 1,4-disubstituted benzene ring to fulfill 6 degrees of unsaturation. Furthermore, the NMR spectra revealed the presence of four methyl groups, namely one vinylic (δ H 1.73, s; δ C 15.7; H₃C-12), one tertiary (δ H 1.34, s; δ C 31.7; H₃C-14), one secondary (δ H 0.58, d, *J* = 6.9 Hz; δ C 15.3; H₃C-13), and one aromatic (δ H 2.32, s; δ C 21.0; H₃C-15), instead of the two vinylic, but no secondary displayed by isolaurene (the remaining 2 degrees of unsaturation also present as one cyclopentene). The ¹³C NMR and DEPT spectra of 1 further confirmed the presence of the trimethylcyclopentenyl substituent as judged from carbon signals, including two quaternary carbons at δ C 50.0 (C-1) and 144.7 (C-3), two secondary carbons at δ C 42.4 (C-5), together with protons of one methylene (δ H 2.91, dd, *J* = 15.8, 2.1 Hz, H_p-5; δ H 2.21, dd, *J* = 15.8, 2.1 Hz, H_α-5) and two methines (δ H 5.32, brs, H-4; δ H 2.36, d, *J* = 6.9 Hz, H-2).

The protons of **1** were assigned by ${}^{1}\text{H}-{}^{1}\text{H}$ COSY experiments and the position of H-13 was determined from correlations between H-13/H-2. The structure connectivities were achieved by HMBC spectra shown in Figure 2. The HMBC correlations between H₃-15

and C-9, in addition to C-8 and C-10, confirmed the location of the methyl group in a *p*-position relative to the other substitution. The HMBC correlation of signals at H₃-13 ($\delta_{\rm H}$ 0.58) with C-1, C-2 and C-3 determined the position of the secondary methyl group located on C-2 and signals at H₃-12 ($\delta_{\rm H}$ 1.73) with C-2, C-3 and C-4 determined the position of the vinyl methyl group located on C-3. The HMBC correlations between H₃-14 ($\delta_{\rm H}$ 1.34) and C-1, C-2, C-5 and C-6 is a further confirmation of the structure of the compound (The up field shift of Me-13 at $\delta_{\rm H}$ 0.58 could be attributed to the anisotropic effect of the benzene ring). Furthermore, the HMBC correlations between H-7 and H-11 with C-1 confirmed the planar structure of compound 1. The relative stereochemistry of 1 was assigned based on NOESY data. The strong NOESY correlations between H-2/H-5 β with H-14 determined the stereochemistry at C-1 and C-2.

To date, compound 1 represents the only example of such a 3,4olefinic laurene-type carbon skeleton from a marine source. This is the first report of L. *nangii* that produces several skeleton-types of sesquiterpenes such as laurene- and chamigrene-types, together with bromoallene and triterpene.

 Table 2: Cytotoxic and antibacterial activities of compounds from Laurencia nangii.

Dislarias Asses	Compounds						
Biological Assay	1	2	3	4	5	6	
Cytotoxic Assay ^a							
HeLa	125.0	-	175.0	-	-	175.0	
MCF-7	175.0	175.0	175.0	175.0	175.0	175.0	
P-388	125.0	-	175.0	-	-	175.0	
Antibacterial Assay ^b							
Escherichia coli	12.5	75.0	75.0	-	-	75.0	
Salmonella thypi	7.5	75.0	50.0	-	-	-	
Staphylococcus aureus	7.5	50.0	25.0	-	-	25.0	
Vibrio cholerae	12.5	-	-	-	-	75.0	

^a - Minimum Inhibitory Concentration (MIC) calculated in μ g disc⁻¹. ^b - 50% Lethal Concentration (LC₅₀) calculated in μ g mL⁻¹. Standard deviations were

 \sim 50% Lethal Concentration (LC₅₀) calculated in µg m \sim 5% of the values obtained and are not shown.

The bioassay results are given in Table 2. Compound 1 exhibited stronger antibacterial activities (MIC \leq 12.5 µg/disc) and cytotoxic activities than the other compounds.

References

Experimental

Biological materials: Specimens of *L. nangii* were collected from Lohok Butun (04°27.233'N, 118°41.133'E), Sabah, Malaysia in May 2010. Voucher specimens (No. 39010) are deposited in the BORNEENSIS Collection of the Institute for Tropical Biology and Conservation, University of Malaysia Sabah.

Extraction and isolation: The partially dried algal specimens (100 g) were extracted with MeOH (2 L). The MeOH solution was concentrated *in vacuo* and partitioned between EtOAc and H₂O. The EtOAc extract (1.0 g) was chromatographed on a Si gel column using an *n*-hexane and EtOAc system of increasing polarity as eluent to yield 5 fractions. A portion of the fraction (50.0 mg) eluted with *n*-hexane/EtOAc (8:2) was submitted to repeated preparative TLC with toluene to yield compounds 1 (2.0 mg), 2 (9.8 mg), 3 (5.0 mg), 4 (5.2 mg) and 5 (11.4 mg). The fraction (50.0 mg) eluted with *n*-hexane/EtOAc (1:1) was submitted to repeated preparative TLC with *n*-hexane/EtOAc (1:1) to yield compound 6 (9.6 mg).

Bioassays: Cytotoxic activity was conducted against HeLa, MCF-7 and P-388 cells according to methods described by Sandhya and Mishra [4]. Antibacterial activity was conducted against four human pathogenic strains according to methods described by Vairappan *et al.* [5].

Neolaurene (1)

Colorless oil. $[\alpha]_D^{28}$: +2.2 (c 0.10, CHCl₃). IR ν_{max} (cm⁻¹): 2950, 1695, 1646, 1504 and 890. ¹H and ¹³C NMR: Table 1. HR-ESI-MS: m/z 199.1493 [M-H]⁺ (calcd for C₁₅H₁₉, 199.1481).

Acknowledgments: We are grateful to the Sabah Parks for the support and assistance during field survey. The authors would also like to acknowledge Assoc. Prof. Dr. Tatsufumi Okino for the HRMS measurements.

- (a) Ji NY, Li XM, Cui CM, Wang BG. (2007) Two new brominated diterpenes from *Laurencia decumbens*. *Chinese Chemical Letters*, 18, 957-959;
 (b) Ji NY, Li XM, Li K, Ding LP, Gloer JB, Wang BG. (2007) Diterpenes, sesquiterpenes, and a C₁₅-acetogenin from the marine red alga *Laurencia mariannensis*. *Journal of Natural Products*, 70, 1901-1905;
 (c) Fenical W. (1976) Chemical variation in a new bromochamigrene derivative from the red seaweed *Laurencia pacifica*. *Phytochemistry*, 15, 511-512;
 (d) Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M. (2002) Halogenated metabolites from the new Okinawan red alga *Laurencia yonaguniensis*. *Journal of Natural Products*, 65, 395-398;
 (e) Juagan EG, Kalidindi R. Scheuer P. (1997) Two new chamigrenes from an Hawaiian red alga, *Laurencia cartilaginea*. *Tetrahedron*, 53, 521-528;
 (f) Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M. (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian *Laurencia* spp. *Phytochemistry*, 69, 2490-2494;
 (g) Chatter R, Othman RB, Rabhi S, Kladi M, Tarhouni S, Vagias C, Roussis V, Tabbane LG, Kharrat R. (2011) *In vivo and in vitro* anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red alga *Laurencia glandulifera*. *Marine Drugs*, 9, 1293-1306.
- (a) Suzuki M, Kurosawa E, Furusaki A, Katsuragi S, Matsumoto T. (1984) Neolaurallene, a new halogenated C-15 nonterpenoid from the red alga *Laurencia okamurai* Yamada. *Chemistry Letters*, 13, 1033-1034; (b) Howard BM, Fenical W. (1975) Structures and chemistry of two new halogen-containing chamigrene derivatives from *Laurencia. Tetrahedron Letters*, 16, 1687-1690; (c) Fronczek F. (1989) Redetermination of the absolute configuration of deoxyprepacifenol, from the Mediterranean red alga, *Laurencia majuscula. Acta Crystallographica Section C*, 45, 1102–1104; (d) Dias DA, Urban S. (2011) Phytochemical studies of the southern Australian marine alga, *Laurencia elata. Phytochemistry*, 72, 2081-2089; (e) Suzuki M, Matsuo Y, Takeda S, Suzuki T. (1993) Intricatetraol, a halogenated triterpene alcohol from the red alga *Laurencia intricata. Phytochemistry*, 33, 651-656.
- (a) Irie T, Yasunari Y, Suzuki T, Imai N, Kurosawa E, Masamune T. (1965) A new sesquiterpene hydrocarbon from *Laurencia glandulifera*. *Tetrahedron Letters*, 6, 3619-3624; (b) Irie T, Suzuki T, Yasunari Y, Kurosawa E, Masamune T. (1969) Laurene, a sesquiterpene hydrocarbon from *Laurencia* species. *Tetrahedron*, 25, 459-468.
- [4] Sandhya T, Mishra KP. (2006) Cytotoxic response of breast cancer cell lines, MCF 7 and T 47 D to triphala and its modification by antioxidants. *Cancer Letters*, 238, 304-313.
- [5] Vairappan CS, Kawamoto T, Miwa H, Suzuki M. (2004) Potent antibacterial activity of halogenated compounds against antibiotic resistant bacteria. Planta Medica, 70, 1087-1090.