
A MULTI-OBJECTIVES GENETIC ALGORITHM 
CLUSTERING ENSEMBLES BASED 

APPROACH TO SUMMARIZE 
RELATIONAL DATA 

 

 

 

 

GABRIEL JONG CHIYE 
 

 

 

 

 

FACULTY OF COMPUTING AND INFORMATICS 
UNIVERSITI MALAYSIA SABAH 

2015



A MULTI-OBJECTIVES GENETIC ALGORITHM 
CLUSTERING ENSEMBLES BASED 

APPROACH TO SUMMARIZE 
RELATIONAL DATA 

 
 

GABRIEL JONG CHIYE 
 
 
 

SUBMITTED IN PARTIAL FULFILLMENT FOR 
THE REQUIREMENTS FOR THE BACHELOR 

OF COMPUTER SCIENCE  
(SOFTWARE ENGINEERING) 

 

 

FACULTY OF COMPUTING AND INFORMATICS 
UNIVERSITI MALAYSIA SABAH 

2015



ii 
 

SUPERVISOR’S CONFIRMATION 

 

 

NAME : GABRIEL JONG CHIYE 

MATRIK NO. : BK11110089 

TITLE : A MULTI-OBJECTIVES GENETIC ALGORITHM 
CLUSTERING ENSEMBLES BASED APPROACH TO 
SUMMARIZE RELATIONAL DATA 

DEGREE : DEGREE IN BACHELOR OF COMPUTER SCIENCE  
(SOFTWARE ENGINEERING) 

VIVA DATE : 29 JUNE 2015 

 

 

CERTIFIED BY 

 

1. SUPERVISOR 
 Associate Professor Dr. Rayner Alfred Signature 
 
 
 
  ___________________



iii 
 

DECLARATION 

 

 

I hereby declare that the material in this thesis is my own except for quotations, 
excerpts, equations, summaries and references. All information from these other 
sources has been duly acknowledged. 

 

 

 

June 29, 2015 ____________________ 

 Gabriel Jong Chiye 

 BK11110089 

 



iv 
 

ACKNOWLEDGEMENT 

 

 

First of all, I would like to express my very great appreciation to my main supervisor 

Associate Professor Dr. Rayner Alfred for provided me with valuable suggestions during 

the planning of this project, constructive guidance during the development of this 

project work. His willingness to give his time and share his knowledge so generously 

has been very much appreciated. I would also like to offer my special thanks to my 

examiner Dr. Lau Hui Keng and panel Dr. Mohd Hanafi Ahmad Hijazi for their 

encouragement, value recommendations and advise to keep my progress on schedule. 

I would also like to extend my thanks to senior lecturer Dr. Chin Kim On for his help 

in offering me the research laboratory and necessary resources to run the experiments. 

My special thanks extended to my doctorate degree and master degree colleagues 

from the Center of Excellence of Semantic Agents for their professional guidance. 

Finally, I wish to thank my parents and brother for their continuous love, support 

and encouragement throughout my study. 

 

Gabriel Jong Chiye 

June 2015



v 
 

ABSTRACT 

 

 

K-means algorithm is one of the well-known clustering algorithms that promise to 
converge to a local optimum in few iterative. However, traditional k-means algorithm is 
designed to cluster data of single target table. Due to the nature of data collected in 
real life applications, many data have been collected and stored in relational databases. 
Traditional clustering and classification learning algorithms cannot be applied directly in 
learning multi-relational databases. Several approaches have been designed and 
proposed to learn relational data which includes Inductive Logic Programming based 
approaches, Graph based approaches, Multi-View approaches and also Dynamic 
Aggregation of Relational Attributes approach. Dynamic Aggregation of Relational 
Attributes approach is very effective in learning relational data set. Dynamic 
Aggregation of Relational Attributes summarizes relational data by clustering records 
exist in non-target tables. However, the quality of summarization of data depends 
highly on the position of initial centroids selected. Thus, it may affect the overall 
classification task. Thus, this project proposes a Genetic Algorithm-based Clustering 
Ensembles in learning relational datasets by combining the results obtained from 
several k-means clustering runs with different values of number of clusters, in which 
the location of centroids are optimal for every sets of clusters. The effects of using 
different similarity measurements and applying different fitness functions for the 
genetic algorithm on the predictive accuracies of the classifiers are also studied. Based 
on the results obtained, it can be concluded that using the consensus result of several 
clustering results can increase the predictive accuracy of classification task. It can be 
concluded that the Euclidean distance has better performance on mutagenesis 
datasets and cosine similarity has better performance on hepatitis datasets when 
evaluated with Weka C4.5 classifier, but the other way round when Naïve Bayes 
classifier is used for evaluation. 
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ABSTRAK 

 

 

Bersama-samaan: Kekelompokan Berdasarkan Susunan 

 

Algorithma k-means adalah satu algoritma pengelompokan yang berjanji untuk 
menghasilkan satu optima tempatan dalam beberapa lelaran. Walau bagaimanapun, 
algorithma k-means yang tradisional telah direka untuk mengelompok data jadual 
sasaran tunggal. Oleh kerana aplikasi kehidupan sebanar, kita mengumpul dan 
menyimpan data di dalam pangkalan data berhubungan. Algoritma pembelajaran 
secara pengelompokan dan klasifikasi tidak bolek diguna secara langsung dengan 
pangkalan data berhubungan. Beberapa cara telah direka dan dicadangkan untuk 
belajar data berhubung, termasuk Inductive Logic Programming, Graph, Multi-View, 
dan Dynamic Aggregation of Relational Attributes. Dynamic Aggregation of Relational 
Attributes merupakan cara yang berkesan untuk belajar data berhubung. Dynamic 
Aggregation of Relational Attributes meringkaskan data berhubung dengan 
mengelompok rekod dalam jadual bukan sasaran. Walao bagaimanapun, kualiti 
ringkasan data sangat bergantung kepada kedudukan pusat awal yang dipilih. Dengan 
itu, ia boleh menjejaskan kerja keseluruhan klasifikasi. Oleh itu, kerja ini mencadang 
satu cara pengelompokan ensemble berdasarkan algoritma genetic bagi belajar data 
berhubung dengan menggabungkan keputusan yang didapat dari beberapa larian 
pengelompokan k-mean dengan bilang kelompokan yang berbeza, di mana lokasi 
pusat adalah optima untuk setiap pengelompokan. Kesan ketepatan ramalan oleh 
pengelas bagi mengguna pengukuran jarak yang berbeza dan mengguna fungsi 
kecergasan dalam algoritma genetik juga telah dikaji. Berdasarkan keputusan kajian 
yang telah diperolehi, ia boleh disimpulkan bahawa keputusan koncensus boleh 
meningkat ketepatan ramalan oleh tugas pengelasan. Ia juga boleh dikatakan bahawa 
jarak Euclidean boleh memperoleh prestasi yang lebih tinggi dalam data mutagenesis, 
persamaan kosinus memperoleh prestasi yang lebih tinggi dalam data hepatitis semasa 
dinilai dengan pengelas Weka C4.5, tetapi sebaliknya ketika dinilai dengan pengelas 
Naïve Bayes. 
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