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ABSTRACT 
 
 
 

The use of Artificial Intelligence has emerged into every corner of our daily life. In 
this modern technology era, there are many 3-Dimensional games are developed 
with Artificial Intelligence methods to bring out a better gaming experience. The most 
used of Artificial Intelligence in gaming environment is Real Time Strategy games 
which Real Time means actual time during a process whereas Strategy means a set 
of different skills. Tower Defense games are one of the Real Time Strategy category 
which human players exert their gameplay strategy to build tower and win highest 
level of game. Research on implementing Artificial Intelligence to Tower Defense 
games are seems unpopular in the world but Tower Defense games have been 
proven that its simplicity and availability to create a test bed for research. Most of 
the research used it as a testbed for comparing the performances of proposed 
algorithms. This research aims to compare the performance of Evolutionary 
Algorithms comprising of Differential Evolution and Evolutionary Programming 
combined Jordan Recurrent Neural Network, Elman’s Recurrent Neural Network, 
Feed Forward Neural Network, and Ensemble Neural Network. The results showed 
the performance for Differential Evolution outperformed Evolutionary Programming. 
By comparing the Artificial Neural Networks, the Ensemble Neural Network proved to 
be slightly better than other Artificial Neural Networks. The combination of 
Differential Evolution and Ensemble Neural Network generated better results 
compared to other combination.  
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ABSTRAK 
 
 
 

Penggunaan Kepintaran Buatan muncul di setiap sudut dalam kehidupan kita. Dalam 
era teknologi moden ini, terdapat banyak permainan 3-Dimensi dibangunkan dengan 
kaedah Kepintaran Buatan untuk membawa pengalaman permainan yang lebih baik. 
Kaeadah Kepintaran Buatan sering digunakan dalam persekitaran permainan iaitu 
Strategi Masa Sebenar, Masa Sebenar bermakna process pada masa yang sama 
manakala Strategi bermakna satu set kemahiran yang berbeza. Tambahan pula, 
permainan Menara Pertahanan adalah salah satu kategori Strategi Masa Sebenar, 
pemain manusia menggunakan strategi mereka untuk membina menara dan 
memenangi permainan peringkat tertinggi. Penyelidikan menggunakan Kepintaran 
Buatan dalam permainan Menara Pertahanan adalah tidak popular di dunia, walau 
bagaimanapun permainan Menara Pertahanan telah membuktikan bahawa 
kesederhanaan dan kesediaan permainan untuk membuat ujian untuk kajian. 
Kebanyakan kajian yang digunakan sebagai ujian untuk membandingkan prestasi 
algoritma yang dicadangkan. Kajian ini bertujuan untuk membandingkan prestasi 
algoritma evolusi yang terdiri daripada Evolusi Kebezaan dan Pengaturcaraan Evolusi 
menggabungkan Rangkaian Neural Berulang Jordan, Rangkaian Neural Berulang 
Elman, Rangkaian Neural Suap Hadapan, dan Rangkaian Neural Ensembel. Merujuk 
pada keputusan, prestasi Evolusi Kebezaan mengatasi Pengaturcaraan Evolusi. 
Melalui prestasi Rangkaian Neural Buatan, Rangkaian Neural Ensembel terbukti 
mempunyai sedikit baik daripada rangkaian neural yang lain. Kombinasi Evolusi 
Kebezaan dan Rangkaian Neural Ensembel menjana keputusan yang lebih baik 
berbanding dengan kombinasi yang lain. 
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CHAPTER 1 

INTRODUCTION 

1.1. Overview 
This individual project, titled “Improving Tower Defense Game AI (Differential 
Evolution vs Evolutionary Programming)”, is a research of implementing Artificial 
Intelligence to Tower Defense games. Tower Defense games have been proven that 
its simplicity and availability makes the games are easily to be implemented on AI. 
However, there are some challenges to get user interest and a few complexity which 
are enough for greater test-bed purposes. The real challenges of this games is to get 
better performance based on strategic and tactical control.  

The contents in this chapter are divided into seven sections. First section 
introduces about the project and provides a general overview of this chapter. Section 
two describes problem background of this project and section three provides discussion 
about problem statements. The forth section discusses the objectives of the projects. 
The project scope is defined in section five. The sixth section is the project contribution. 
The final section in this chapter summarizes the development of the project report. 

1.2. Problem Background 
Nowadays there are many researchers and game makers started using Evolutionary 
Algorithm to research and implement the Artificial Intelligence computer bot to various 
Real Time Strategy game, the computer bot will learn the players or opponents 
behaviors and counter their strategy to enhance the gaming experience. However, 



 

there only a few researchers who are interested on Tower Defense games using 
Artificial Intelligence agent by replacing human player to play the game. 

Implementing and designing computational intelligence methods on Tower 
Defense games will enable the Artificial Intelligence agent, replacing human player, to 
build tower accordingly and efficiently throughout learning across the generations of 
agent and win the game.  

There will be two teams, human player to build towers and another is enemies 
that are programmed to intrude player’s base or last defense. There are many criteria 
for the player to survive the game, first the player should build towers with certain 
amount of gold that are given through surviving each level of games and killing the 
enemies.  

There are different levels of difficulty which make the game competitive. After 
each level of game, enemies will be upgraded by increasing health quantity and 
movement speed. To have a best score, player should build a minimum quantity of 
tower and get the highest score of all the game. This determines the player has a great 
skills of building tower strategically and great observation.    

In order to win the game, player needs to build the tower strategically at certain 
locations which will eliminate all enemies which evading the base. On the other hand, 
if certain amount of enemies survive and reach the base, they will reduce player’s life 
and eventually player will lose whenever there is no life remaining. The point is, 
surviving the game will not be easy if player unable to use correct strategy to kill all 
enemies. 
 

 

1.3. Problem Statement 
According to previous work done by Michael Manus Chong (2011), implementing AI in 
TD games can create an efficient, challenging and interesting TD games. However, in 
order to achieve best performance for game controller, a very heavy time consumption 
is concerned that process of EA to evolve ANN used almost twenty two hours to 
complete 100 generations for each methods. The main concern is whether the 
proposed ANN able to reduce the time consumption or complete less than 100 
generations for each methods.  

Tower defense games can be categorized as challenging games as it consists 
of complex criteria to win the games. There are multiple regions available to build 
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towers and choosing certain strategies to counter the enemies throughout different 
level of difficulty.  Most map designers always ignore the level of difficulty in the games 
as they do not have time to test and design an appropriate map. This may create lack 
of challenge and interest to the gamers. Hence, implementing AI agents to the map or 
game will also determine the game’s level of difficulty and also the experience. In order 
to determine the level of difficulty, the table below will show how to categorize it based 
on the success rate of AI agent in the game 

.  

Table 1.1: Example of success rate to determine the level of difficulty 
Success Rate (%) Level of Difficulty 

0 – 30 Very Difficult 

30 – 70 Moderate 

70 – 100 Very Easy 

 

 

In this project, there will be a new different kind of map for Tower Defense 
game which is a total of two customized map, comparing to previous work that 
containing only one single map. The purpose of creating new map is to compare 
performance of AI controller and result between senior’s algorithms and current 
proposed algorithms on original map with result of current proposed algorithms on 
new designed map.  

To have better comparison, two different Artificial Neural Networks will be 
implemented, Elman Recurrent Neural Network and Ensemble Neural Network which 
ensemble Jordan Recurrent Neural Network and Feed Forward Neural Network. 
Previous Evolutionary Algorithms will be continue to evolve the weight of neural 
networks in this project.  
 

 

1.4. Project Objectives 
The project’s objectives are as follows: 

a. Design and create one new tower defense map from World Editor 
Warcraft 3 for optimization and testing used. 
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b. To investigate, design, implement, and compare the selected 
evolutionary algorithms (differential evolution and evolutionary 
programming) to evolve for the required game controllers. 

c. To investigate, design and implement, and compare the selected artificial 
neural networks (Elman recurrent neural network and ensemble neural 
Network) in evolving the required game controllers. 

d.     To compare result of Elman Recurrent Neural Network, Feed Forward 
Neural Network, Jordan Recurrent Neural Network and Ensemble Neural 
Network.  

 

 

1.5. Project Scopes 
The project’s scopes are as follows: 

a. The game controller using Warcraft 3 World Editor due to its platform 
able to implement the AI and environment. 

b. There was contained 30 regions to build the towers and each game have 
5 waves of creeps which contain 20 creeps per wave. 

 

 

1.6. Project Contribution 
This section show the comparison of current work and previous work of this project. 
In previous work, the algorithms used are Evolutionary Programming, Differential 
Evolution, Feed forward neural network and Jordan recurrent neural network. Besides, 
a map was designed to be conducted in the experiments. For this current project, the 
proposed algorithms are the same with previous with addition of Elman recurrent 
neural network and another new map.  
 

 

1.7. Organization of the Project 
In chapter 1, Introduction, introduce the project’s overview, background, statement, 
objectives, scopes and organization.  
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In chapter 2, Literature Review, review the related works that are similar to this 
project and study the techniques are being used, evolutionary algorithms, neural 
networks and game genres.  

In chapter 3, Methodology, explain the methods are being used throughout the 
project. During the project, evolutionary algorithms used are differential evolution and 
evolutionary programming. Besides, neural networks used are feed-forward neural 
network, Jordan recurrent neural network and Ensemble neural network. 

In chapter 4, Experimental Setup, setup and explain the process of creating 
gaming environment and algorithms.  

In chapter 5, Results and Analysis, results of implementations will be shown in 
graph and table form. The result will be analyzed with series of mathematical 
calculation to show comparison.  

In chapter 6, Conclusion, a summary of current project will be delivered. 
Additional information of the project’s experiment setup and future works will be 
discussed in this chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 
This chapter will discuss on the methods and terms that are being used and related in 
the research, such as Real Time Strategy, Tower Defense, Evolutionary Algorithms and 
Artificial Neural Network. Besides, comparisons of all the literature reviews will be made 
in table form at end of the session. All the discussions are partly based on past research 
articles, academic journal and book.  

2.2. Real Time Strategy 
Real Time Strategy games are some part of simulations where a group of players in 
different teams planning their tactics and strategy to destroy and counter opponent’s 
bases. In RTS games, players can be offensive or defensive while planning the game 
strategy, for classic and famous example of games, Blizzard Entertainment: Warcraft 
3 (Blizzard Entertainment, 2014), technically players should have planned their 
resources to build bases or defend towers accordingly to defend enemies intrusions, 
and in the meantime, they create and plan their attacking strategies with limited 
number of different troops, better health yet lower attack or vice versa. As there are 
many kind of strategies and constraints in RTS games, implementation of Artificial 
Intelligence in them are suitable to solve extremely complex environments.  

David and Colm (2001) expressed that problem solving can be handled at 
different levels of abstraction, ranging from strategic to unit level. In addition, for AI 



 

agents, the lack of ability for good strategic planning does not lead to goal although 
they exhibit good tactical behavior. They proposed a multi-agent system using Genetic 
Programming on board game that able to recognize and adapt the environment while 
interacting between agents.  

Christopher and Sushil (2013) compared Hill-Climber and Genetic Algorithm in 
searching a better strategy and performance. Their result show that hill-climbing 
produces more effective strategies after three hour but only get effective solutions 6% 
of the time out of thirty two runs. However, in GA, all the population of individual get 
optimal solutions 100% of the time out of ten runs after twenty hours.  

X.L. Tong et al. (2011) proposed an idea to handle the problem of multi-team 
weapon target assignment and distribution of defensive position with restrictive limit 
of weapon resource in RTS games. They used Genetic Algorithm and Particle swarm 
optimization and compare their performance. Both methods able to achieve efficient 
results similarly but PSO tends to be a little faster than GA.   

 

Table 2.1: Summary of Problem and Method Used 

 Problem Method Used 

David and Colm (2001) Board Game Genetic Programming 

Christopher and Sushil 
(2013) 

Warcraft Map Hill-Climber and Genetic 
Algorithm 

X.L. Tong et al. (2011) - Multi-team weapon 
target assignment 
- Distribution of defensive 
position 

Genetic Algorithm and 
Particle swarm 
optimization 

 

 

2.3. Tower Defense 
Tower Defense is one of the genre of Real Time Strategy games. There are three main 
aspect in every Tower Defense game which are player, enemy and base. The rule of 
the game is player must build towers on given spaces to attack waves of enemies and 
prevent them to approach the base. If player does not able to place the tower 
strategically, the game will eventually ended with bad score.  

To survive the waves of enemies, player must have sufficient resources to build 
tower at better location by killing the enemies and pass the game’s level. Enemy will 
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be enhanced with health, movement speed or ability after each round of game play. 
Once an enemy reach the base, player will lose a life or resources according to the 
game’s rule. The remaining life will be bring forward to the next round and player has 
to plan carefully until the game ends.  

Tower Defense games are always a challenging, simple and fun games. The 
simplicity and strategically of gameplay have created a large group of TD gamers over 
the centuries. The purpose of implementing Computer Intelligence in TD games is to 
create a more interesting, interactive and sustainable gaming experience (Phillipa 
Avery et al., 2011).  

Paul (2011) proposed an adaptive algorithm and variance algorithm to study 
the AI pattern on building the tower in the game. His results showed that they can 
achieve its goal at least 50% of the time while other stuck at local optimum.  

Leow et al. (2013) implemented Genetic Programming (GP) with Feed-forward 
neural network (FFNN) and Elman-recurrent neural network (ERNN) on Warcraft 3 
Tower Defense game. Their results showed the proposed algorithms are not getting 
ideal results. There must different evolutionary algorithms to achieve a better results.  

Examples of Tower Defense games are Plants Vs Zombies (PopCap Games, 
2014), Element Tower Defense in Warcraft 3 (Evan Hatampour, 2014), Defense Grid 
(Hidden Path Entertainment, 2014) and PixelJunks Monsters (Q-Games, 2014). Plants 
Vs Zombies game has a little different than other common Tower Defense game as its 
enemy’s travelling path are straight forward whereas common Tower Defense game 
has a distorted path. 

 

 

2.3.1. Plants Vs Zombies 
Plants Vs Zombies was designed by PopCap Games in 2009. This game has some 
similarity of common Tower Defense games but the gameplay is far more interesting 
and successfully attracted many players to download and play. The unique 
characteristics of this game are straight path for enemy to reach the bases. Next is 
graphic design, defensive towers are illustrated by different kind of plant and enemies 
are zombies. The developer also inserted stories as part of different level of gameplay 
which players will not feel boring of the game. The resource of the game, the Sun or 
light source, is generated through planting “sunflower” and randomly dropping into the 
screen.  
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Figure 2.1: Plants vs Zombies  

 

 

2.3.2. Common Tower Defense Games 
Element TD, created by Evan Hatampour, is an eight players Warcraft 3 Tower Defense 
and players must defend their own path and compete each other with the longest stay 
in the game. There are six elements in this game which are light, darkness, water, fire, 
nature and earth. Each element takes greater additional damage from other elements. 
Players also able to combine the elements of towers to create a unique dual tower.  
 

 
Figure 2.2: Element TD 

 

 

Defense Grid, created by Hidden Path Entertainment, has a bigger map than 
other tower defense games. The interesting parts of the game are the better graphic 
design, larger map and enemies will return to spawn point after they successfully grab 
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a core from player’s base. The developer created different gaming experience for 
example, single player campaign, player versus player arena and multiplayer co-op (all 
players in a team). 

 

 
Figure 2.3 Defense Grid 

 

 

PixelJunks Monsters, created by Q-Games, is another popular tower defense 
game. The uniqueness of this game are player needs to control a character to collect 
resources (coins and gems), the cartoony art design and different path designed, linear 
or branching path.   

 

 
Figure 2.4: PixelJunks Monsters 
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Table 2.2: Summary of Tower Defense Games 

Tower Defense Game Path Unique Feature 

Plants Vs Zombies Multiple small linear path 
( Land and Water ) 

Plants as defensive towers 
and Zombies as enemies 

Element TD Linear  Eliminate enemies using 
elements. 

Defense Grid Multiple linear path Enemies will return to their 
spawn point after carrying 
core from player’s base. 

PixelJunks Monsters Linear or branching.  Player controls character 
to collect coins and gems. 

 

 

2.4. Map Design 
To study a usual map designed for Tower Defense game, total of 12 map design are 
studied from various sources.  
 

Table 2.3: Table of 12 Different Map Design for Tower Defense Game 
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